首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Palmer  A C Gavin    A R Nebreda 《The EMBO journal》1998,17(17):5037-5047
M-phase entry in eukaryotic cells is driven by activation of MPF, a regulatory factor composed of cyclin B and the protein kinase p34(cdc2). In G2-arrested Xenopus oocytes, there is a stock of p34(cdc2)/cyclin B complexes (pre-MPF) which is maintained in an inactive state by p34(cdc2) phosphorylation on Thr14 and Tyr15. This suggests an important role for the p34(cdc2) inhibitory kinase(s) such as Wee1 and Myt1 in regulating the G2-->M transition during oocyte maturation. MAP kinase (MAPK) activation is required for M-phase entry in Xenopus oocytes, but its precise contribution to the activation of pre-MPF is unknown. Here we show that the C-terminal regulatory domain of Myt1 specifically binds to p90(rsk), a protein kinase that can be phosphorylated and activated by MAPK. p90(rsk) in turn phosphorylates the C-terminus of Myt1 and down-regulates its inhibitory activity on p34(cdc2)/cyclin B in vitro. Consistent with these results, Myt1 becomes phosphorylated during oocyte maturation, and activation of the MAPK-p90(rsk) cascade can trigger some Myt1 phosphorylation prior to pre-MPF activation. We found that Myt1 preferentially associates with hyperphosphorylated p90(rsk), and complexes can be detected in immunoprecipitates from mature oocytes. Our results suggest that during oocyte maturation MAPK activates p90(rsk) and that p90(rsk) in turn down-regulates Myt1, leading to the activation of p34(cdc2)/cyclin B.  相似文献   

2.
Tyrosine-phosphorylated p34cdc2 and cyclin B2 are present and physically associated in small growing stage IV oocytes (800 microns in diameter) of Xenopus laevis. Microinjection of M-phase promoting factor (MPF) into stage IV oocytes induces germinal vesicle breakdown and the activation of the kinase activity of the p34cdc2/cyclin B2 complex measured on p13suc1 beads. During the in vivo activation of MPF in stage IV oocytes, p34cdc2 tyrosine dephosphorylation is not detectable, in contrast to stage VI oocytes. Addition of cycloheximide in MPF-injected stage IV oocytes induces neither the inhibition of histone H1 kinase activity nor the cyclin B2 degradation. Therefore, the activation mechanism of histone H1 kinase in stage IV oocytes does not require detectable tyrosine dephosphorylation of p34cdc2. It is suggested rather that the tyrosine phosphorylation of p34cdc2 plays a role in inhibiting cyclin B2 degradation.  相似文献   

3.
The p34cdc2 protein kinase is a component of maturation-promoting factor, the master regulator of the cell cycle in all eukaryotes. The activity of p34cdc2 is itself tightly regulated by phosphorylation and dephosphorylation. Predicted regulatory phosphorylation sites of Xenopus p34cdc2 were mutated in vitro, and in vitro-transcribed RNAs were injected into Xenopus oocytes. The cdc2 single mutants Thr-14----Ala and Tyr-15----Phe did not induce germinal vesicle breakdown (BVBD) upon microinjection into oocytes. In contrast, the cdc2 double mutant Ala-14/Phe-15 did induce GVBD. Both the Ala-14 and Ala-14/Phe-15p34cdc2 mutants were shown to coimmunoprecipitate cyclin B1 and to phosphorylate histone H1 in immune complex kinase assays. Microinjection of antisense oligonucleotides to c-mosXe was used to demonstrate the role of mos protein synthesis in the induction of GVBD by the Ala-14/Phe-15 cdc2 mutant. Thr-161 was also mutated. p34cdc2 single mutants Ala-161 and Glu-161 and triple mutants Ala-14/Phe-15/Ala-161 and Ala-14/Phe-15/Glu-161 failed to induce GVBD in oocytes and showed a decreased binding to cyclin B1 in coimmunoprecipitations. Each of the cdc2 mutants was also assayed by coinjection with cyclin B1 or c-mosXe RNA into oocytes. Several of the cdc2 mutants were found to affect the kinetics of cyclin B1 and/or mos-induced GVBD upon coinjection, although none affected the rate of progesterone-induced maturation. We demonstrate here the significance of Thr-14, Tyr-15, and Thr-161 of p34cdc2 in Xenopus oocyte maturation. In addition, these results suggest a regulatory role for mosXe in induction of oocyte maturation by the cdc2 mutant Ala-14/Phe-15.  相似文献   

4.
cdc25+ encodes a protein phosphatase that dephosphorylates p34cdc2.   总被引:38,自引:12,他引:26       下载免费PDF全文
To determine how the human cdc25 gene product acts to regulate p34cdc2 at the G2 to M transition, we have overproduced the full-length protein (cdc25Hs) as well as several deletion mutants in bacteria as glutathione-S-transferase fusion proteins. The wild-type cdc25Hs gene product was synthesized as an 80-kDa fusion protein (p80GST-cdc25) and was judged to be functional by several criteria: recombinant p80GST-cdc25 induced meiotic maturation of Xenopus oocytes in the presence of cycloheximide; p80GST-cdc25 activated histone H1 kinase activity upon addition to extracts prepared from Xenopus oocytes; p80GST-cdc25 activated p34cdc2/cyclin B complexes (prematuration promoting factor) in immune complex kinase assays performed in vitro; p80GST-cdc25 stimulated the tyrosine dephosphorylation of p34cdc2/cyclin complexes isolated from Xenopus oocyte extracts as well as from overproducing insect cells; and p80GST-cdc25 hydrolyzed p-nitrophenylphosphate. In addition, deletion analysis defined a functional domain residing within the carboxy-terminus of the cdc25Hs protein. Taken together, these results suggest that the cdc25Hs protein is itself a phosphatase and that it may function directly in the tyrosine dephosphorylation and activation of p34cdc2 at the G2 to M transition.  相似文献   

5.
Progesterone-induced meiotic maturation of Xenopus oocytes requires the synthesis of new proteins, such as Mos and cyclin B. Synthesis of Mos is thought to be necessary and sufficient for meiotic maturation; however, it has recently been proposed that newly synthesized proteins binding to p34(cdc2) could be involved in a signaling pathway that triggers the activation of maturation-promoting factor. We focused our attention on cyclin B proteins because they are synthesized in response to progesterone, they bind to p34(cdc2), and their microinjection into resting oocytes induces meiotic maturation. We investigated cyclin B accumulation in response to progesterone in the absence of maturation-promoting factor-induced feedback. We report here that the cdk inhibitor p21(cip1), when microinjected into immature Xenopus oocytes, blocks germinal vesicle breakdown induced by progesterone, by maturation-promoting factor transfer, or by injection of okadaic acid. After microinjection of p21(cip1), progesterone fails to induce the activation of MAPK or p34(cdc2), and Mos does not accumulate. In contrast, the level of cyclin B1 increases normally in a manner dependent on down-regulation of cAMP-dependent protein kinase but independent of cap-ribose methylation of mRNA.  相似文献   

6.
Mitogen-activated protein kinase (MAP kinase) is a serine/threonine kinase whose enzymatic activity is thought to play a crucial role in mitogenic signal transduction and also in the progesterone-induced meiotic maturation of Xenopus oocytes. We have purified MAP kinase from Xenopus oocytes and have shown that the protein is present in metaphase ll oocytes under two different forms: an inactive 41-kD protein able to autoactivate and to autophosphorylate in vitro, and an active 42-kD kinase resolved into two tyrosine phosphorylated isoforms on 2D gels. During meiotic maturation, MAP kinase becomes tyrosine phosphorylated and activated following the activation of the M-phase promoting factor (MPF), a complex between the p34cdc2 kinase and cyclin B. In vivo, MAP kinase activity displays a different stability in metaphase l and in metaphase II: protein synthesis is required to maintain MAP kinase activity in metaphase I but not in metaphase II oocytes. Injection of either MPF or cyclin B into prophase oocytes promotes tyrosine phosphorylation of MAP kinase, indicating that its activation is a downstream event of MPF activation. In contrast, injection of okadaic acid, which induces in vivo MPF activation, promotes only a very weak tyrosine phosphorylation of MAP kinase, suggesting that effectors other than MPF are required for the MAP kinase activation. Moreover, in the absence of protein synthesis, cyclin B and MPF are unable to promote in vivo activation of MAP kinase, indicating that this activation requires the synthesis of new protein(s). © 1993 Wiley-Liss, Inc.  相似文献   

7.
To investigate the role of mitogen-activated protein (MAP) kinase kinase (MEK)/MAP kinase cascade on p34cdc2 kinase activity and cyclin B1 levels during parthenogenetic activation of porcine oocytes, MEK activity, MAP kinase activity, p34cdc2 kinase activity, and cyclin B1 levels were assayed in mature porcine oocytes after treatment with different concentrations of Ca2+ ionophore. A high concentration of Ca2+ ionophore (50 microM) rapidly reduced MEK activity in oocytes for up to 8 h of culture. MEK activity in the 10-microM treatment group was significantly higher. The low concentration treatment transiently decreased p34cdc2 kinase activity but did not affect MAP kinase activity and ultimately induced reactivation of p34cdc2 kinase via the synthesis of cyclin B1. On the other hand, treatments of a high concentration of Ca2+ ionophore or a low concentration of Ca2+ ionophore plus MEK inhibitor, U0126, linearly decreased MAP kinase activity following the decrease of p34cdc2 kinase activity; most of these oocytes formed pronuclei. These results suggest that decreasing MAP kinase activity is essential to maintaining low p34cdc2 kinase activity resulting from the degradation of cyclin B via a Ca(2+)-dependent pathway; lower activities of both MAP kinase and p34cdc2 kinase induce normal meiotic completion and pronuclear formation of parthenogenetically activated porcine oocytes.  相似文献   

8.
Previous independent studies suggested that type II cAMP-dependent protein kinase and the p34cdc2 protein kinase cell cycle regulator co-localize at centrosomes. In order to investigate whether there is an association of type II cAMP-dependent protein kinase with p34cdc2 in human fibroblasts, we used three different approaches. First, the regulatory subunits RI and RII were photoaffinity-labeled with 8-N3-[32P]cAMP, and anti-p34cdc2 immunoprecipitates were screened for the presence of either RI or RII regulatory subunits by one- or two-dimensional gel electrophoresis. Second, anti-RII alpha immunoprecipitates were screened for the presence of p34cdc2 by Western blot using three different affinity-purified antibodies recognizing different domains of human p34cdc2. Conversely, anti-p34cdc2 immunoprecipitates (three different antibodies), as well as the material retained on p13suc1-Sepharose Bio-Beads, which binds specifically p34cdc2, were screened for the presence of RII alpha. Finally, we have looked for cAMP-dependent protein kinase activity specifically inhibited by PKI in immunoprecipitates obtained from extracts treated with different anti-p34cdc2 antibodies. All these experiments gave concordant results and demonstrate that at least at G0/G1, human fibroblasts contain a complex of active type II cAMP-dependent protein kinase associated through its RII alpha subunit with p34cdc2.  相似文献   

9.
A R Nebreda  J V Gannon    T Hunt 《The EMBO journal》1995,14(22):5597-5607
The meiotic maturation of Xenopus oocytes triggered by progesterone requires new protein synthesis to activate both maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase). Injection of mRNA encoding mutant p34cdc2 (K33R) that can bind cyclins but lacks protein kinase activity strongly inhibited progesterone-induced activation of both MPF and MAP kinase in Xenopus oocytes. Similar results were obtained by injection of GST-p34cdc2 K33R protein or by injection of a monoclonal antibody (A17) against p34cdc2 that blocks its activation by cyclins. Both the dominant-negative p34cdc2 and monoclonal antibody A17 blocked the accumulation of p39mos and activation of MAP kinase in response to progesterone, as well as blocking the appearance of MPF, although they did not inhibit the translation of p39mos mRNA. These results suggest that: (i) activation of free p34cdc2 by newly made proteins, probably cyclin(s), is normally required for the activation of both MPF and MAP kinase by progesterone in Xenopus oocytes; (ii) the activation of translation of cyclin mRNA normally precedes, and does not require either MPF or MAP kinase activity; and (iii) de novo synthesis and accumulation of p39mos is probably both necessary and sufficient for the activation of MAP kinase in response to progesterone.  相似文献   

10.
P R Clarke  D Leiss  M Pagano    E Karsenti 《The EMBO journal》1992,11(5):1751-1761
Cyclins are proteins which are synthesized and degraded in a cell cycle-dependent fashion and form integral regulatory subunits of protein kinase complexes involved in the regulation of the cell cycle. The best known catalytic subunit of a cyclin-dependent protein kinase complex is p34cdc2. In the cell, cyclins A and B are synthesized at different stages of the cell cycle and induce protein kinase activation with different kinetics. The kinetics of activation can be reproduced and studied in extracts of Xenopus eggs to which bacterially produced cyclins are added. In this paper we report that in egg extracts, both cyclin A and cyclin B associate with and activate the same catalytic subunit, p34cdc2. In addition, cyclin A binds a less abundant p33 protein kinase related to p34cdc2, the product of the cdk2/Eg1 gene. When complexed to cyclin B, p34cdc2 is subject to transient inhibition by tyrosine phosphorylation, producing a lag between the addition of cyclin and kinase activation. In contrast, p34cdc2 is only weakly tyrosine phosphorylated when bound to cyclin A and activates rapidly. This finding shows that a given kinase catalytic subunit can be regulated in a different manner depending on the nature of the regulatory subunit to which it binds. Tyrosine phosphorylation of p34cdc2 when complexed to cyclin B provides an inhibitory check on the activation of the M phase inducing protein kinase, allowing the coupling of processes such as DNA replication to the onset of metaphase. Our results suggest that, at least in the early Xenopus embryo, cyclin A-dependent protein kinases may not be subject to this checkpoint and are regulated primarily at the level of cyclin translation.  相似文献   

11.
Cyclin is a component of maturation-promoting factor from Xenopus   总被引:88,自引:0,他引:88  
J Gautier  J Minshull  M Lohka  M Glotzer  T Hunt  J L Maller 《Cell》1990,60(3):487-494
Highly purified maturation-promoting factor (MPF) from Xenopus eggs contains both cyclin B1 and cyclin B2 as shown by Western blotting and immunoprecipitation using Xenopus anti-B-type cyclin antibodies. Immunoprecipitates with these antibodies display the histone H1 kinase activity characteristic of MPF, for which exogenously added B1 and B2 cyclins are both substrates. Protein kinase activity against cyclin oscillates in maturing oocytes and activated eggs with the same kinetics as p34cdc2 kinase activity. These data indicate that B-type cyclin is the other component of MPF besides p34cdc2.  相似文献   

12.
W G Dunphy  J W Newport 《Cell》1989,58(1):181-191
It has been demonstrated that the Xenopus homolog of the fission yeast cdc2 protein is a component of M phase promoting factor (MPF). We show that the Xenopus cdc2 protein is phosphorylated on tyrosine in vivo, and that this tyrosine phosphorylation varies markedly with the stage of the cell cycle. Tyrosine phosphorylation is high during interphase (in Xenopus oocytes and activated eggs) but absent during M phase (in unfertilized eggs). In vitro activation of pre-MPF from Xenopus oocytes results in tyrosine dephosphorylation of the cdc2 protein and switching-on of its kinase activity. The product of the fission yeast suc1 gene (p13), which inhibits the entry into mitosis in Xenopus extracts, completely blocks tyrosine dephosphorylation and kinase activation. However, p13 has no effect on the activated form of the cdc2 kinase. These findings suggest that p13 controls the activation of the cdc2 kinase, and that tyrosine dephosphorylation is an important step in this process.  相似文献   

13.
C Smythe  J W Newport 《Cell》1992,68(4):787-797
In cell-free extracts derived from Xenopus eggs which oscillate between S phase and mitosis, incompletely replicated DNA blocks the activation of p34cdc2-cyclin by maintaining p34cdc2 in a tyrosine-phosphorylated form. We used a recombinant cyclin fusion protein to generate a substrate to measure the ability of the tyrosine kinase(s) to phosphorylate and inactivate p34cdc2 in the absence of tyrosine phosphatase activity. p34cdc2 tyrosine phosphorylation is highly regulated during the cell cycle, being elevated in S phase and attenuated in mitosis. The elevation in p34cdc2 tyrosine phosphorylation rate occurs in response to the presence of incompletely replicated DNA. Moreover, okadaic acid and caffeine, which uncouple the dependence of mitosis on the completion of S phase, increase unphosphorylated p34cdc2 by attenuating tyrosine kinase function. These data indicate that the control system, which monitors the state of DNA replication, modulates the function of the tyrosine kinase by a phosphorylation/dephosphorylation mechanism, ensuring that mitosis occurs only when S phase is complete.  相似文献   

14.
We have examined the time course of protein tyrosine phosphorylation in the meiotic cell cycles of Xenopus laevis oocytes and the mitotic cell cycles of Xenopus eggs. We have identified two proteins that undergo marked changes in tyrosine phosphorylation during these processes: a 42-kDa protein related to mitogen-activated protein kinase or microtubule-associated protein-2 kinase (MAP kinase) and a 34-kDa protein identical or related to p34cdc2. p42 undergoes an abrupt increase in its tyrosine phosphorylation at the onset of meiosis 1 and remains tyrosine phosphorylated until 30 min after fertilization, at which point it is dephosphorylated. p42 also becomes tyrosine phosphorylated after microinjection of oocytes with partially purified M-phase-promoting factor, even in the presence of cycloheximide. These findings suggest that MAP kinase, previously implicated in the early responses of somatic cells to mitogens, is also activated at the onset of meiotic M phase and that MAP kinase can become tyrosine phosphorylated downstream from M-phase-promoting factor activation. We have also found that p34 goes through a cycle of tyrosine phosphorylation and dephosphorylation prior to meiosis 1 and mitosis 1 but is not detectable as a phosphotyrosyl protein during the 2nd through 12th mitotic cell cycles. It may be that the delay between assembly and activation of the cyclin-p34cdc2 complex that p34cdc2 tyrosine phosphorylation provides is not needed in cell cycles that lack G2 phases. Finally, an unidentified protein or group of proteins migrating at 100 to 116 kDa increase in tyrosine phosphorylation throughout maturation, are dephosphorylated or degraded within 10 min of fertilization, and appear to cycle between low-molecular-weight forms and high-molecular-weight forms during early embryogenesis.  相似文献   

15.
16.
The mitotic inducer p34cdc2 requires association with a cyclin and phosphorylation on Thr161 for its activity as a protein kinase. CAK, the p34cdc2 activating kinase, was previously identified as an enzyme necessary for this activating phosphorylation. We confirm here that CAK is a protein kinase and describe its purification over 13,000-fold from Xenopus egg extracts. We further show that CAK contains a protein identical or closely related to the previously identified Xenopus MO15 gene: p40MO15 copurifies with CAK, and an antiserum to p40MO15 specifically depletes cAK activity. CAK appears to be the only protein in Xenopus egg extracts that can activate complexes of either p34cdc2 or the closely related protein kinase, p33cdk2, with either cyclin A or cyclin B. The sequence similarity between p40MO15 and p34cdc2, and the approximately 200 kDa size of CAK, suggest that p40MO15 may itself be regulated by subunit association and by protein phosphorylations.  相似文献   

17.
Cyclin B targets p34cdc2 for tyrosine phosphorylation.   总被引:28,自引:7,他引:21       下载免费PDF全文
L Meijer  L Azzi    J Y Wang 《The EMBO journal》1991,10(6):1545-1554
A universal intracellular factor, the 'M phase-promoting factor' (MPF), triggers the G2/M transition of the cell cycle in all organisms. In late G2, it is present as an inactive complex of tyrosine-phosphorylated p34cdc2 and unphosphorylated cyclin Bcdc13. In M phase, its activation as an active MPF displaying histone H1 kinase (H1K) originates from the concomitant tyrosine dephosphorylation of the p34cdc2 subunit and the phosphorylation of the cylin Bcdc13 subunit. We have investigated the role of cyclin in the formation of this complex and the tyrosine phosphorylation of p34cdc2, using highly synchronous mitotic sea urchin eggs as a model. As cells leave the S phase and enter the G2 phase, a massive tyrosine phosphorylation of p34cdc2 occurs. This large p34cdc2 tyrosine phosphorylation burst does not arise from a massive increase in p34cdc2 concentration. It even appears to affect only a fraction (non-immunoprecipitable by anti-PSTAIR antibodies) of the total p34cdc2 present in the cell. Several observations point to an extremely close association between accumulation of unphosphorylated cyclin and p34cdc2 tyrosine phosphorylation: (i) both events coincide perfectly during the G2 phase; (ii) both tyrosine-phosphorylated p34cdc2 and cyclin are not immunoprecipitated by anti-PSTAIR antibodies; (iii) accumulation of unphosphorylated cyclin by aphidicolin treatment of the cells, triggers a dramatic accumulation of tyrosine-phosphorylated p34cdc2; and (iv) inhibition of cyclin synthesis by emetine inhibits p34cdc2 tyrosine phosphorylation without affecting the p34cdc2 concentration. These results show that, as it is synthesized, cyclin B binds and recruits p34cdc2 for tyrosine phosphorylation; this inactive complex then requires the completion of DNA replication before it can be turned into fully active MPF. These results fully confirm recent data obtained in vitro with exogenous cyclin added to cycloheximide-treated Xenopus egg extracts.  相似文献   

18.
The protein kinase activity of the cell cycle regulator p34cdc2 is inactivated when the mitotic cyclin to which it is bound is degraded. The amino (N)-terminus of mitotic cyclins includes a conserved "destruction box" sequence that is essential for degradation. Although the N-terminus of sea urchin cyclin B confer cell cycle-regulated degradation to a fusion protein, a truncated protein containing only the N-terminus of Xenopus cyclin B2, including the destruction box, is stable under conditions where full length molecules are degraded. In an attempt to identify regions of cyclin B2, other than the destruction box, involved in degradation, the stability of proteins encoded by C-terminal deletion mutants of cyclin B2 was examined in Xenopus egg extracts. Truncated cyclin with only the first 90 amino acids was stable, but other C-terminal deletions lacking between 14 and 187 amino acids were unstable and were degraded by a mechanism that was neither cell cycle regulated nor dependent upon the destruction box. None of the C-terminal deletion mutants bound p34cdc2. To investigate whether the binding of p34cdc2 is required for cell cycle-regulated degradation, the behavior of proteins encoded by a series of full length Xenopus cyclin B2 cDNA with point mutations in conserved amino acids in the p34cdc2-binding domain was examined. All of the point mutants failed to form stable complexes with p34cdc, and their degradation was markedly reduced compared to wild-type cyclin. Similar results were obtained when the mutant cyclins were synthesized in reticulocyte lysates and when cyclin mRNA was translated directly in a Xenopus egg extract. These results indicate that mutations that interfere with p34cdc2 binding also interfere with cyclin destruction, suggesting that p34cdc2 binding is required for the cell cycle-regulated destruction of Xenopus cyclin B2.  相似文献   

19.
The regulation of p34cdc2 was investigated by overproducing p34cdc2, cyclin (A and B) and the wee1+ gene product (p107wee1) using a baculoviral expression system. p34cdc2 formed a functional complex with both cyclins as judged by co-precipitation, phosphorylation of cyclin in vitro, and activation of p34cdc2 histone H1 kinase activity. Co-production of p34cdc2 and p107wee1 in insect cells resulted in a minor population of p34cdc2 that was phosphorylated on tyrosine and displayed an altered electrophoretic mobility. When p34cdc2 and p107wee1 were co-produced with cyclin (A or B) in insect cells, there was a dramatic increase in the population of p34cdc2 that was phosphorylated on tyrosine and that displayed a shift in electrophoretic mobility. The phosphorylation of p34cdc2 on tyrosine was absolutely dependent upon the presence of kinase-active p107wee1. Tyrosine-specific as well as serine/threonine-specific protein kinase activities co-immunoprecipitated with p107wee1. These results suggest that cyclin functions to facilitate tyrosine phosphorylation of p34cdc2 and that p107wee1 functions to regulate p34cdc2, either directly or indirectly, by tyrosine phosphorylation.  相似文献   

20.
M A Flix  P Cohen    E Karsenti 《The EMBO journal》1990,9(3):675-683
In Xenopus embryos, the cell cycle is abbreviated to a rapid alternation between interphase and mitosis. The onset of each M phase is induced by the periodic activation of the cdc2 kinase which is triggered by a threshold level of cyclins and apparently involves dephosphorylation of p34cdc2. We have prepared post-ribosomal supernatants from eggs sampled during interphase (interphase extracts) and just before the first mitosis of the early embryonic cell cycle (prophase extracts). In 'interphase extracts', the cdc2 kinase never activates spontaneously upon incubation at room temperature whereas in 'prophase extracts' it does. We show here that in 'interphase extracts', specific inhibition of type 2A phosphatase by okadaic acid induces cdc2 kinase activation. This requires a subthreshold level of cyclin and the presence of a particulate factor in the extract. Inhibition of type 1 phosphatases by inhibitor 1 and inhibitor 2 never results in cdc2 kinase activation. These results demonstrate that during the period of cyclin accumulation, cdc2 kinase activation is inhibited by a type 2A phosphatase. In 'prophase extracts', spontaneous activation of the cdc2 kinase is inhibited by beta-glycerophosphate and NaF, but not by okadaic acid, inhibitor 1 and inhibitor 2 or divalent cation chelation. This demonstrates that when enough cyclin has accumulated, cdc2 kinase activation involves a protein phosphatase which must be distinct from the type 1 and 2A phosphatases, and from the calcium-dependent (type 2B) and magnesium-dependent (type 2C) phosphatases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号