首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The majority of glutamatergic synapses formed onto principal neurons of the mammalian central nervous system are associated with dendritic spines. Spines are tiny protuberances that house the proteins that mediate the response of the postsynaptic cell to the presynaptic release of glutamate. Postsynaptic signals are regulated by an ion channel signaling cascade that is active in individual dendritic spines and involves voltage-gated calcium (Ca) channels, small conductance (SK)-type Ca-activated potassium channels, and NMDA-type glutamate receptors. Pharmacological studies using the toxin SNX-482 indicated that the voltage-gated Ca channels that signal within spines to open SK channels belong to the class Ca(V)2.3, which is encoded by the Alpha-1E pore-forming subunit. In order to specifically test this conclusion, we examined the effects of SNX-482 on synaptic signals in acute hippocampal slices from knock-out mice lacking the Alpha-1E gene. We find that in these mice, application of SNX-482 has no effect on glutamate-uncaging evoked synaptic potentials and Ca influx, indicating that that SNX-482 indeed acts via the Alpha-1E-encoded Ca(V)2.3 channel.  相似文献   

2.
Giessel AJ  Sabatini BL 《Neuron》2010,68(5):936-947
Acetylcholine release and activation of muscarinic cholinergic receptors (mAChRs) enhance synaptic plasticity in?vitro and cognition and memory in?vivo. Within the hippocampus, mAChRs promote NMDA-type glutamate receptor-dependent forms of long-term potentiation. Here, we use calcium (Ca) imaging combined with two-photon laser glutamate uncaging at apical spines of CA1 pyramidal neurons to examine postsynaptic mechanisms of muscarinic modulation of glutamatergic transmission. Uncaging-evoked excitatory postsynaptic potentials and Ca transients are increased by muscarinic stimulation; however, this is not due to direct modulation of glutamate receptors. Instead, mAChRs modulate a negative feedback loop in spines that normally suppresses synaptic signals. mAChR activation reduces the Ca sensitivity of small conductance Ca-activated potassium (SK) channels that are found in the spine, resulting in increased synaptic potentials and Ca transients. These effects are mediated by M1-type muscarinic receptors and occur in a casein kinase-2-dependent manner. Thus, muscarinic modulation regulates synaptic transmission by tuning the activity of nonglutamatergic postsynaptic ion channels.  相似文献   

3.
Carter AG  Sabatini BL 《Neuron》2004,44(3):483-493
Striatal medium spiny neurons (MSNs) in vivo undergo large membrane depolarizations known as state transitions. Calcium (Ca) entry into MSNs triggers diverse downstream cellular processes. However, little is known about Ca signals in MSN dendrites and spines and how state transitions influence these signals. Here, we develop a novel approach, combining 2-photon Ca imaging and 2-photon glutamate uncaging, to examine how voltage-sensitive Ca channels (VSCCs) and ionotropic glutamate receptors contribute to Ca signals in MSNs. We find that upstate transitions switch the VSCCs available in dendrites and spines, decreasing T-type while enhancing L-type channels. Moreover, these transitions change the dominant synaptic Ca source from Ca-permeable AMPA receptors to NMDA receptors. Finally, pairing bAPs with synaptic inputs generates additional synaptic Ca signals due to enhanced Ca influx through NMDA receptors. By altering the sources, amplitude, and kinetics of spine Ca signals, state transitions may gate synaptic plasticity and gene expression in MSNs.  相似文献   

4.
Excitatory synapses on mammalian principal neurons are typically formed onto dendritic spines, which consist of a bulbous head separated from the parent dendrite by a thin neck. Although activation of voltage-gated channels in the spine and stimulus-evoked constriction of the spine neck can influence synaptic signals, the contribution of electrical filtering by the spine neck to basal synaptic transmission is largely unknown. Here we use spine and dendrite calcium (Ca) imaging combined with 2-photon laser photolysis of caged glutamate to assess the impact of electrical filtering imposed by the spine morphology on synaptic Ca transients. We find that in apical spines of CA1 hippocampal neurons, the spine neck creates a barrier to the propagation of current, which causes a voltage drop and results in spatially inhomogeneous activation of voltage-gated Ca channels (VGCCs) on a micron length scale. Furthermore, AMPA and NMDA-type glutamate receptors (AMPARs and NMDARs, respectively) that are colocalized on individual spine heads interact to produce two kinetically and mechanistically distinct phases of synaptically evoked Ca influx. Rapid depolarization of the spine triggers a brief and large Ca current whose amplitude is regulated in a graded manner by the number of open AMPARs and whose duration is terminated by the opening of small conductance Ca-activated potassium (SK) channels. A slower phase of Ca influx is independent of AMPAR opening and is determined by the number of open NMDARs and the post-stimulus potential in the spine. Biphasic synaptic Ca influx only occurs when AMPARs and NMDARs are coactive within an individual spine. These results demonstrate that the morphology of dendritic spines endows associated synapses with specialized modes of signaling and permits the graded and independent control of multiple phases of synaptic Ca influx.  相似文献   

5.
L-type voltage-sensitive Ca2+ channels (VSCCs) are enriched on the neuronal soma and trigger gene expression during synaptic activity. To understand better how these channels regulate somatic and nuclear Ca2+ dynamics, we have investigated Ca2+ influx through L-type VSCCs following synaptic stimulation, using the long-wavelength Ca2+ indicator fluo-3 combined with laser scanning confocal microscopy. Single synaptic stimuli resulted in rapid Ca2+ transients in somatic cytoplasmic compartments (<5 ms rise time). Nuclear Ca2+ elevations lagged behind cytoplasmic levels by approximately 60 ms, consistent with a dependence on diffusion from a cytoplasmic source. Pharmacological experiments indicated that L-type VSCCs mediated approximately 50% of the nuclear and somatic (cytoplasmic) Ca2+ elevation in response to strong synaptic stimulation. In contrast, relatively weak excitatory postsynaptic potentials (EPSPs; approximately 15 mV) or single action potentials were much less effective at activating L-type VSCCs. Antagonist experiments indicated that activation of the NMDA-type glutamate receptor leads to a long-lasting somatic depolarization necessary to activate L-type VSCCs effectively during synaptic stimuli. Simulation of action potential and somatic EPSP depolarization using voltage-clamp pulses indicated that nuclear Ca2+ transients mediated by L-type VSCCs were produced by sustained depolarization positive to -25 mV. In the absence of synaptic stimulation, action potential stimulation alone led to elevations in nuclear Ca2+ mediated by predominantly non-L-type VSCCs. Our results suggest that action potentials, in combination with long-lived synaptic depolarizations, facilitate the activation of L-type VSCCs. This activity elevates somatic Ca2+ levels that spread to the nucleus.  相似文献   

6.
Recent studies have revealed that Ca(2+) signals evoked by action potentials or by synaptic activity within individual dendritic spines are regulated at multiple levels. Ca(2+) influx through glutamate receptors and voltage-sensitive Ca(2+) channels located on spines depends on the channel subunit composition, the activity of kinases and phosphatases, the local membrane potential and past patterns of activity. Furthermore, sources of spine Ca(2+) interact nonlinearly such that activation of one Ca(2+) channel can enhance or depress the activity of others. These studies have revealed that each spine is a complex and partitioned Ca(2+) signaling domain capable of autonomously regulating the electrical and biochemical consequences of synaptic activity.  相似文献   

7.
It has been proposed that the small volume of a dendritic spine can amplify Ca2+ signals during synaptic transmission. Accordingly, we have performed calculations to determine whether the activation of N-methyl-D-aspartate (NMDA) type glutamate receptors during synaptic transmission results in significant elevation in intracellular Ca2+ levels, permitting optical detection of synaptic signals within a single spine. Simple calculations suggest that the opening of even a single NMDA receptor would result in the influx of approximately 310 000 Ca2+ ions into the small volume of a spine, producing changes in Ca2+ levels that are readily detectable using high affinity Ca2+ indicators such as fura-2 or fluo-3. Using fluorescent Ca2+ indicators, we have imaged local Ca2+ transients mediated by NMDA receptors in spines and dendritic shafts attributed to spontaneous miniature synaptic activity. Detailed analysis of these quantal events suggests that the current triggering these transients is attributed to the activation of <10 NMDA receptors. The frequency of these miniature synaptic Ca2+ transients is not randomly distributed across synapses, as some synapses can display a >10-fold higher frequency of transients than others. As expected for events mediated by NMDA receptors, miniature synaptic Ca2+ transients were suppressed by extracellular Mg2+ at negative membrane potentials; however, the Mg2+ block could be removed by depolarization.  相似文献   

8.
Emptage N  Bliss TV  Fine A 《Neuron》1999,22(1):115-124
We have used confocal microscopy to monitor synaptically evoked Ca2+ transients in the dendritic spines of hippocampal pyramidal cells. Individual spines respond to single afferent stimuli (<0.1 Hz) with Ca2+ transients or failures, reflecting the probability of transmitter release at the activated synapse. Both AMPA and NMDA glutamate receptor antagonists block the synaptically evoked Ca2+ transients; the block by AMPA antagonists is relieved by low Mg2+. The Ca2+ transients are mainly due to the release of calcium from internal stores, since they are abolished by antagonists of calcium-induced calcium release (CICR); CICR antagonists, however, do not depress spine Ca2+ transients generated by backpropagating action potentials. These results have implications for synaptic plasticity, since they show that synaptic stimulation can activate NMDA receptors, evoking substantial Ca2+ release from the internal stores in spines without inducing long-term potentiation (LTP) or depression (LTD).  相似文献   

9.
Many neurons receive excitatory glutamatergic input almost exclusively onto dendritic spines. In the absence of spines, the amplitudes and kinetics of excitatory postsynaptic potentials (EPSPs) at the site of synaptic input are highly variable and depend on dendritic location. We hypothesized that dendritic spines standardize the local geometry at the site of synaptic input, thereby reducing location-dependent variability of local EPSP properties. We tested this hypothesis using computational models of simplified and morphologically realistic spiny neurons that allow direct comparison of EPSPs generated on spine heads with EPSPs generated on dendritic shafts at the same dendritic locations. In all morphologies tested, spines greatly reduced location-dependent variability of local EPSP amplitude and kinetics, while having minimal impact on EPSPs measured at the soma. Spine-dependent standardization of local EPSP properties persisted across a range of physiologically relevant spine neck resistances, and in models with variable neck resistances. By reducing the variability of local EPSPs, spines standardized synaptic activation of NMDA receptors and voltage-gated calcium channels. Furthermore, spines enhanced activation of NMDA receptors and facilitated the generation of NMDA spikes and axonal action potentials in response to synaptic input. Finally, we show that dynamic regulation of spine neck geometry can preserve local EPSP properties following plasticity-driven changes in synaptic strength, but is inefficient in modifying the amplitude of EPSPs in other cellular compartments. These observations suggest that one function of dendritic spines is to standardize local EPSP properties throughout the dendritic tree, thereby allowing neurons to use similar voltage-sensitive postsynaptic mechanisms at all dendritic locations.  相似文献   

10.
Dendritic spines are cellular microcompartments that are isolated from their parent dendrites and neighboring spines. Recently, imaging studies of spine Ca(2+) dynamics have revealed that Ca(2+) can enter spines through voltage-sensitive and ligand-activated channels, as well as through Ca(2+) release from intracellular stores. Relationships between spine Ca(2+) signals and induction of various forms of synaptic plasticity are beginning to be elucidated. Measurements of spine Ca(2+) concentration are also being used to probe the properties of single synapses and even individual calcium channels in their native environment.  相似文献   

11.
Christie JM  Jahr CE 《Neuron》2008,60(2):298-307
NMDA receptor (NMDAR) activation can alter synaptic strength by regulating transmitter release from a variety of neurons in the CNS. As NMDARs are permeable to Ca(2+) and monovalent cations, they could alter release directly by increasing presynaptic Ca(2+) or indirectly by axonal depolarization sufficient to activate voltage-sensitive Ca(2+) channels (VSCCs). Using two-photon microscopy to measure Ca(2+) excursions, we found that somatic depolarization or focal activation of dendritic NMDARs elicited small Ca(2+) transients in axon varicosities of cerebellar stellate cell interneurons. These axonal transients resulted from Ca(2+) entry through VSCCs that were opened by the electrotonic spread of the NMDAR-mediated depolarization elicited in the dendrites. In contrast, we were unable to detect direct activation of NMDARs on axons, indicating an exclusive somatodendritic expression of functional NMDARs. In cerebellar stellate cells, dendritic NMDAR activation masquerades as a presynaptic phenomenon and may influence Ca(2+) -dependent forms of presynaptic plasticity and release.  相似文献   

12.
It has long been accepted that action potentials arising from Pacinian corpuscles (PCs) originate at the first node of Ranvier located within the PC and that the mechanotransduction events (receptor potentials) are formed by stretch-activated channels selectively sensitive predominantly to Na+. Also, it has been shown previously that tetrodotoxin (TTX) affects the receptor potential suggesting that transduction may involve voltage-sensitive Na+ channels. To determine whether voltage-sensitive Na+ channels exist in the membrane thought to be responsible for transduction, immunocytochemical studies were performed using polyclonal antibodies raised in rabbit against the alpha subunit of rat type I and type II voltage-gated sodium channels. The results show the presence of label on the neurite and axolemma, as well as in the node regions. Interestingly, labeling is also found on the inner and outer lamellae that form the non-neural accessory structure surrounding the neurite. The presence of this label in the surrounding lamellae suggests that voltage-sensitive Na+ channels, that are involved in both transduction and action-potential generation, may be made available to the neurite via transport from the lamellae, a mechanism perhaps operating in parallel to axoplasmic transport.  相似文献   

13.
Glutamate receptor trafficking into dendritic spines is a pivotal step in synaptic plasticity, yet the relevance of plasticity-producing rise of [Ca2+]i and of spine morphology to subsequent delivery of glutamate receptors into dendritic spine heads are still not well understood. Following chemical induction of LTP, an increase in eGFP-GluR1 fluorescence in short but not long dendritic spines of cultured hippocampal neurons was found. Repeated flash photolysis of caged calcium, which produced a transient rise of [Ca2+]i inside spine heads caused a selective, actin and protein synthesis dependent increase of eGFP-GluR1 in these spines. Strikingly, GluR1 increase was correlated with the ability of a calcium transient generated in the spine head to diffuse into the parent dendrite, and inversely correlated with the length of the spine: short spines were more likely to raise GluR1 than long ones. These observations link, for the first time, calcium transients in dendritic spines with spine morphology and its ability to undergo synaptic plasticity.  相似文献   

14.
Book review     
It has long been accepted that action potentials arising from Pacinian corpuscles (PCs) originate at the first node of Ranvier located within the PC and that the mechanotransduction events (receptor potentials) are formed by stretch-activated channels selectively sensitive predominantly to Na +. Also, it has been shown previously that tetrodotoxin (TTX) affects the receptor potential suggesting that transduction may involve voltage-sensitive Na + channels. To determine whether voltage-sensitive Na + channels exist in the membrane thought to be responsible for transduction, immunocytochemical studies were performed using polyclonal antibodies raised in rabbit against the alpha subunit of rat type I and type II voltage-gated sodium channels. The results show the presence of label on the neurite and axolemma, as well as in the node regions. Interestingly, labeling is also found on the inner and outer lamellae that form the non-neural accessory structure surrounding the neurite. The presence of this label in the surrounding lamellae suggests that voltage-sensitive Na + channels, that are involved in both transduction and action-potential generation, may be made available to the neurite via transport from the lamellae, a mechanism perhaps operating in parallel to axoplasmic transport.  相似文献   

15.
Stojilkovic SS 《Cell calcium》2012,51(3-4):212-221
Endocrine pituitary cells express numerous voltage-gated Na(+), Ca(2+), K(+), and Cl(-) channels and several ligand-gated channels, and they fire action potentials spontaneously. Depending on the cell type, this electrical activity can generate localized or global Ca(2+) signals, the latter reaching the threshold for stimulus-secretion coupling. These cells also express numerous G-protein-coupled receptors, which can stimulate or silence electrical activity and Ca(2+) influx through voltage-gated Ca(2+) channels and hormone release. Receptors positively coupled to the adenylyl cyclase signaling pathway stimulate electrical activity with cAMP, which activates hyperpolarization-activated cyclic nucleotide-regulated channels directly, or by cAMP-dependent kinase-mediated phosphorylation of K(+), Na(+), Ca(2+), and/or non-selective cation-conducting channels. Receptors that are negatively coupled to adenylyl cyclase signaling pathways inhibit spontaneous electrical activity and accompanied Ca(2+) transients predominantly through the activation of inwardly rectifying K(+) channels and the inhibition of voltage-gated Ca(2+) channels. The Ca(2+)-mobilizing receptors activate inositol trisphosphate-gated Ca(2+) channels in the endoplasmic reticulum, leading to Ca(2+) release in an oscillatory or non-oscillatory manner, depending on the cell type. This Ca(2+) release causes a cell type-specific modulation of electrical activity and intracellular Ca(2+) handling.  相似文献   

16.
Increases in cytosolic Ca2+ concentration ([Ca2+]i) mediated by NMDA-sensitive glutamate receptors (NMDARs) are important for synaptic plasticity. We studied a wide variety of dendritic spines on rat CA1 pyramidal neurons in acute hippocampal slices. Two-photon uncaging and Ca2+ imaging revealed that NMDAR-mediated currents increased with spine-head volume and that even the smallest spines contained a significant number of NMDARs. The fate of Ca2+ that entered spine heads through NMDARs was governed by the shape (length and radius) of the spine neck. Larger spines had necks that permitted greater efflux of Ca2+ into the dendritic shaft, whereas smaller spines manifested a larger increase in [Ca2+]i within the spine compartment as a result of a smaller Ca2+ flux through the neck. Spine-neck geometry is thus an important determinant of spine Ca2+ signaling, allowing small spines to be the preferential sites for isolated induction of long-term potentiation.  相似文献   

17.
The effects of temperature on ion fluxes and catecholamine secretion that are mediated by nicotinic acetylcholine receptors (nAChRs), voltage-sensitive calcium channels (VSCCs), and voltage-sensitive sodium channels (VSSCs) were investigated using bovine adrenal chromaffin cells. When the chromaffin cells were stimulated with DMPP, a nicotinic cholinergic agonist, or 50 mM K+, the intracellular calcium ([Ca2+]i) elevation reached a peak and decreased more slowly at lower temperatures. The DMPP-induced responses were more sensitive to temperature changes compared to high K+-induced ones. In the measurement of intracellular sodium concentrations ([Na+]i), it was found that nicotinic stimulation required a longer time to attain the maximal level of [Na+]i at lower temperatures. In addition, the VSSCs-mediated [Na+]i increase evoked by veratridine was also reduced as the temperature decreased. The measurement of [3H]norepinephrine (NE) secretion showed that the secretion within the first 3 min evoked by DMPP or high K+ was greatest at 37 degrees C. However, at 25 degrees C, the secretion evoked by DMPP, but not that by the 50 mM K+, was greater after 10 min of stimulation. This data suggest that temperature differentially affects the activity of nAChRs, VSCCs, and VSSCs, resulting in differential [Na+]i and [Ca2+]i elevation, and in the [3H]NE secretion by adrenal chromaffin cells.  相似文献   

18.
Oertner TG  Matus A 《Cell calcium》2005,37(5):477-482
Most excitatory synapses in the brain are made on spines, small protrusions from dendrites that exist in many different shapes and sizes. Spines are highly motile, a process that reflects rapid rearrangements of the actin cytoskeleton inside the spine, and can also change shape and size over longer timescales. These different forms of morphological plasticity are regulated in an activity-dependent way, involving calcium influx through glutamate receptors and voltage-gated calcium channels. Many proteins regulating the turnover of filamentous actin (F-actin) are calcium-dependent and might transduce intracellular calcium levels into spine shape changes. On the other hand, the morphology of a spine might affect the function of the synapse residing on it. In particular, the induction of synaptic plasticity is known to require large elevations in the postsynaptic calcium concentration, which depend on the ability of the spine to compartmentalize calcium. Since the actin cytoskeleton is also known to anchor postsynaptic glutamate receptors, changes in the actin polymerization state have the potential to influence synaptic function in a number of ways. Here we review the most prominent types of changes in spine morphology in hippocampal pyramidal cells with regard to their calcium-dependence and discuss their potential impact on synaptic function.  相似文献   

19.
20.
Okada M  Zhu G  Yoshida S  Kanai K  Hirose S  Kaneko S 《Life sciences》2002,72(4-5):465-473
Carbamazepine (CBZ) and zonisamide (ZNS) are effective antiepileptic drugs (AEDs) for the treatment of epilepsy and mood disorder. One of the mechanisms of action of CBZ and ZNS is inactivation of voltage-gated Na+ channel (VGSC). However, the major mechanism(s) of action of these AEDs is not clear yet. We have been exploring novel targeting mechanisms for the antiepileptic actions of CBZ and ZNS during the past ten years. In this report, we describe our hypothesis regarding the new targeting mechanisms for the antiepileptic action of AEDs. We determined an interaction between these AEDs and inhibitors of both voltage-sensitive Ca2+ channels (VSCCs) and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) on neurotransmitter exocytosis using microdialysis. Perfusion with therapeutic concentrations of CBZ and ZNS increased basal neurotransmitter release. This stimulatory action was predominantly inhibited by inhibitors of N-type VSCC and syntaxin. CBZ and ZNS increased Ca2+-evoked release, an action selectively inhibited by inhibitors of N-type VSCC and syntaxin. CBZ and ZNS reduced K+-evoked release, an action predominantly inhibited by inhibitors of P-type VSCCs and synaptobrevin. These actions of CBZ and ZNS on neurotransmitter exocytosis could be observed under the condition of inhibition of VGSC using perfusion with tetrodotoxin. Our findings enhance our understanding of the mechanisms of action of CBZ and ZNS as AEDs, which possibly reduce P-type VSCCs/synaptobrevin-related exocytosis mechanisms during the depolarization stage, and simultaneously enhance N-type VSCCs/syntaxin-related exocytosis mechanisms at the resting stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号