首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) and the 46 kDa cation-dependent MPR (CD-MPR) are key components of the lysosomal enzyme targeting system that bind newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases and divert them from the secretory pathway. Previous studies have mapped two high-affinity Man-6-P binding sites of the CI-MPR to domains 1-3 and 9 and one low-affinity site to domain 5 within its 15-domain extracytoplasmic region. A structure-based sequence alignment predicts that domain 5 contains the four conserved residues (Gln, Arg, Glu, Tyr) identified as essential for Man-6-P binding by the CD-MPR and domains 1-3 and 9 of the CI-MPR. Here we show by surface plasmon resonance (SPR) analyses of constructs containing single amino acid substitutions that these conserved residues (Gln-644, Arg-687, Glu-709, Tyr-714) are critical for carbohydrate recognition by domain 5. Furthermore, the N-glycosylation site at position 711 of domain 5, which is predicted to be located near the binding pocket, has no influence on the carbohydrate binding affinity. Endogenous ligands for the MPRs that contain solely phosphomonoesters (Man-6-P) or phosphodiesters (mannose 6-phosphate N-acetylglucosamine ester, Man-P-GlcNAc) were generated by treating the lysosomal enzyme acid alpha-glucosidase (GAA) with recombinant GlcNAc-phosphotransferase and uncovering enzyme (N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase). SPR analyses using these modified GAAs demonstrate that, unlike the CD-MPR or domain 9 of the CI-MPR, domain 5 exhibits a 14-18-fold higher affinity for Man-P-GlcNAc than Man-6-P, implicating this region of the receptor in targeting phosphodiester-containing lysosomal enzymes to the lysosome.  相似文献   

2.
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) plays a critical role in the trafficking of newly synthesized mannose 6-phosphate-containing acid hydrolases to the lysosome. The receptor contains two high affinity carbohydrate recognition sites within its 15-domain extracytoplasmic region, with essential residues for carbohydrate recognition located in domain 3 and domain 9. Previous studies have shown that these two sites are distinct with respect to carbohydrate specificity. In addition, expression of truncated forms of the CI-MPR demonstrated that domain 9 can be expressed as an isolated domain, retaining high affinity (Kd approximately 1 nm) carbohydrate binding, whereas expression of domain 3 alone resulted in a protein capable of only low affinity binding (Kd approximately 1 microm) toward a lysosomal enzyme. In the current report the crystal structure of the N-terminal 432 residues of the CI-MPR, encompassing domains 1-3, was solved in the presence of bound mannose 6-phosphate. The structure reveals the unique architecture of this carbohydrate binding pocket and provides insight into the ability of this site to recognize a variety of mannose-containing sugars.  相似文献   

3.
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) plays an essential role in the biogenesis of lysosomes by delivering newly synthesized lysosomal enzymes from the trans Golgi network to the endosomal system. The CI-MPR is expressed in most eukaryotes, with Saccharomyces cerevisiae and Caenorhabditis elegans being notable exceptions. Although the repertoire of glycans recognized by the bovine receptor has been studied extensively, little is known concerning the ligand-binding properties of the CI-MPR from non-mammalian species. To assess the evolutionary conservation of the CI-MPR, surface plasmon resonance analyses using lysosomal enzymes with defined N-glycans were carried out to probe the glycan-binding specificity of the Danio rerio CI-MPR. The results demonstrate that the D. rerio CI-MPR harbors three glycan-binding sites that, like the bovine CI-MPR, map to domains 3, 5 and 9 of its 15-domain-containing extracytoplasmic region. Analyses on a phosphorylated glycan microarray further demonstrated the unique binding properties of each of the three sites and showed that, similar to the bovine CI-MPR, only domain 5 of the D. rerio CI-MPR is capable of recognizing Man-P-GlcNAc-containing glycans.  相似文献   

4.
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR), which contains multiple mannose 6-phosphate (Man-6-P) binding sites that map to domains 3, 5, and 9 within its 15-domain extracytoplasmic region, functions as an efficient carrier of Man-6-P-containing lysosomal enzymes. To determine the types of phosphorylated N-glycans recognized by each of the three carbohydrate binding sites of the CI-MPR, a phosphorylated glycan microarray was probed with truncated forms of the CI-MPR. Surface plasmon resonance analyses using lysosomal enzymes with defined N-glycans were performed to evaluate whether multiple domains are needed to form a stable, high affinity carbohydrate binding pocket. Like domain 3, adjacent domains increase the affinity of domain 5 for phosphomannosyl residues, with domain 5 exhibiting ∼60-fold higher affinity for lysosomal enzymes containing the phosphodiester Man-P-GlcNAc when in the context of a construct encoding domains 5–9. In contrast, domain 9 does not require additional domains for high affinity binding. The three sites differ in their glycan specificity, with only domain 5 being capable of recognizing Man-P-GlcNAc. In addition, domain 9, unlike domains 1–3, interacts with Man8GlcNAc2 and Man9GlcNAc2 oligosaccharides containing a single phosphomonoester. Together, these data indicate that the assembly of three unique carbohydrate binding sites allows the CI-MPR to interact with the structurally diverse phosphorylated N-glycans it encounters on newly synthesized lysosomal enzymes.  相似文献   

5.
We have isolated and sequenced cDNA clones encoding the entire sequence of the bovine cation-independent mannose 6-phosphate receptor. The deduced 2499-amino acid precursor has a calculated molecular mass of 275 kDa. Analysis of the sequence indicates that the protein has a 44-residue amino-terminal signal sequence, a 2269-residue extracytoplasmic region, a single 23-residue transmembrane region, and a 163-residue carboxyl-terminal cytoplasmic region. The extra-cytoplasmic region consists of 15 contiguous repeating domains, one of which contains a 43-residue insertion that is similar to the type II repeat of fibronectin. The 15 domains have an average size of 147 amino acids and a distinctive pattern of 8 cysteine residues. Alignment of the 15 domains and the extracytoplasmic domain of the cation-dependent mannose 6-phosphate receptor shows that all have sequence similarities and suggests that all are homologous.  相似文献   

6.
The urokinase-type plasminogen activator receptor (uPAR) plays an important role on the cell surface in mediating extracellular degradative processes and formation of active TGF-β, and in nonproteolytic events such as cell adhesion, migration, and transmembrane signaling. We have searched for mechanisms that determine the cellular location of uPAR and may participate in its disposal. When using purified receptor preparations, we find that uPAR binds to the cation-independent, mannose 6-phosphate/insulin-like growth factor–II (IGF-II) receptor (CIMPR) with an affinity in the low micromolar range, but not to the 46-kD, cation-dependent, mannose 6-phosphate receptor (CDMPR). The binding is not perturbed by uPA and appears to involve domains DII + DIII of the uPAR protein moiety, but not the glycosylphosphatidylinositol anchor. The binding occurs at site(s) on the CIMPR different from those engaged in binding of mannose 6-phosphate epitopes or IGF-II. To evaluate the significance of the binding, immunofluorescence and immunoelectron microscopy studies were performed in transfected cells, and the results show that wild-type CIMPR, but not CIMPR lacking an intact sorting signal, modulates the subcellular distribution of uPAR and is capable of directing it to lysosomes. We conclude that a site within CIMPR, distinct from its previously known ligand binding sites, binds uPAR and modulates its subcellular distribution.  相似文献   

7.
Urokinase-type plasminogen activator receptor (uPAR) binding by the mannose 6-phosphate/insulin-like growth factor II receptor (Man-6-P/IGF2R) is considered important to Man-6-P/IGF2R tumor suppressor function via regulation of cell surface proteolytic activity. Our goal was to map the uPAR binding site of the Man-6-P/IGF2R by analyzing the uPAR binding characteristics of a panel of minireceptors containing different regions of the Man-6-P/IGF2R extracytoplasmic domain. Coimmunoprecipitation assays revealed that soluble recombinant uPAR (suPAR) bound the Man-6-P/IGF2R at two distinct sites, one localized to the amino-terminal end of the Man-6-P/IGF2R extracytoplasmic domain (repeats 1-3) and the other to the more carboxyl-terminal end (repeats 7-9). These sites correspond with the positions of the two Man-6-P binding domains of Man-6-P/IGF2R. Indeed, the suPAR-Man-6-P/IGF2R interaction was inhibited by Man-6-P, and binding-competent su-PAR species represented a minor percentage (8-30%) of the suPAR present. In contrast, Man-6-P/IGF2R binding of endogenous, full-length uPAR solubilized from plasma membranes of the prostate cancer cell line, PC-3, was not inhibited by Man-6-P. Further studies showed that very little (<5%) endogenous uPAR was Man-6-P/IGF2R binding-competent. We conclude that, contrary to previous reports, the interaction between uPAR and Man-6-P/IGF2R is a low percentage binding event and that suPAR and full-length uPAR bind the Man-6-P/IGF2R by different mechanisms.  相似文献   

8.
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) and the 46-kDa cation-dependent MPR (CD-MPR) are type I integral membrane glycoproteins that play a critical role in the intracellular delivery of newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases to the lysosome. The extracytoplasmic region of the CI-MPR contains 15 contiguous domains, and the two high affinity ( approximately 1 nm) Man-6-P-binding sites have been mapped to domains 1-3 and 9, with essential residues localized to domains 3 and 9. Domain 5 of the CI-MPR exhibits significant sequence homology to domains 3 and 9 as well as to the CD-MPR. A structure-based sequence alignment was performed that predicts that domain 5 contains the four conserved key residues (Gln, Arg, Glu, and Tyr) identified as essential for carbohydrate recognition by the CD-MPR and domains 3 and 9 of the CI-MPR, but lacks two cysteine residues predicted to form a disulfide bond within the binding pocket. To determine whether domain 5 harbors a carbohydrate-binding site, a construct that encodes domain 5 alone (Dom5His) was expressed in Pichia pastoris. Microarray analysis using 30 different oligosaccharides demonstrated that Dom5His bound specifically to a Man-6-P-containing oligosaccharide (pentamannosyl 6-phosphate). Frontal affinity chromatography showed that the affinity of Dom5His for Man-6-P was approximately 300-fold lower (K(i) = 5.3 mm) than that observed for domains 1-3 and 9. The interaction affinity for the lysosomal enzyme beta-glucuronidase was also much lower (K(d) = 54 microm) as determined by surface plasmon resonance analysis. Taken together, these results demonstrate that the CI-MPR contains a third Man-6-P recognition site that is located in domain 5 and that exhibits lower affinity than the carbohydrate-binding sites present in domains 1-3 and 9.  相似文献   

9.
Dahms NM  Olson LJ  Kim JJ 《Glycobiology》2008,18(9):664-678
The two members of the P-type lectin family, the 46 kDa cation-dependent mannose 6-phosphate receptor (CD-MPR) and the 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR), are ubiquitously expressed throughout the animal kingdom and are distinguished from all other lectins by their ability to recognize phosphorylated mannose residues. The best-characterized function of the MPRs is their ability to direct the delivery of approximately 60 different newly synthesized soluble lysosomal enzymes bearing mannose 6-phosphate (Man-6-P) on their N-linked oligosaccharides to the lysosome. In addition to its intracellular role in lysosome biogenesis, the CI-MPR, but not the CD-MPR, participates in a number of other biological processes by interacting with various molecules at the cell surface. The list of extracellular ligands recognized by this multifunctional receptor has grown to include a diverse spectrum of Man-6-P-containing proteins as well as several non-Man-6-P-containing ligands. Recent structural studies have given us a clearer view of how these two receptors use related, but yet distinct, approaches in the recognition of phosphomannosyl residues.  相似文献   

10.
The insulin-like growth factor II/mannose 6-phosphate receptor is a multifunctional receptor that binds to a diverse array of mannose 6-phosphate (Man-6-P) modified proteins as well as nonglycosylated ligands. Previous studies have mapped its two Man-6-P binding sites to a minimum of three domains, 1-3 and 7-9, within its 15-domain extracytoplasmic region. Since the primary amino acid determinants of carbohydrate recognition by the insulin-like growth factor II/mannose 6-phosphate receptor are predicted by sequence alignment to the cation-dependent mannose 6-phosphate receptor to reside within domains 3 and 9, constructs encoding either domain 3 alone or domain 9 alone were expressed in a Pichia pastoris expression system and tested for their ability to bind several carbohydrate ligands, including Man-6-P, pentamannosyl phosphate, the lysosomal enzyme, beta-glucuronidase, and the carbohydrate modifications (mannose 6-sulfate and Man-6-P methyl ester) found on Dictyostelium discoideum lysosomal enzymes. Although both constructs were functional in ligand binding and dissociation, these studies demonstrate the ability of domain 9 alone to fold into a high affinity (K(d) = 0.3 +/- 0.1 nm) carbohydrate-recognition domain whereas the domain 3 alone construct is capable of only low affinity binding (K(d) approximately 500 nm) toward beta-glucuronidase, suggesting that residues in adjacent domains (domains 1 and/or 2) are important, either directly or indirectly, for optimal binding by domain 3.  相似文献   

11.
The human colon adenocarcinoma cell lines SW 948, SW 1116, and SW 1222 were tested for their ability to sort and internalize lysosomal enzymes. The biosynthesis of the lysosomal enzymes cathepsin B, arylsulfatase A, and beta-hexosaminidase in these cell lines exhibits no significant differences to that in human fibroblasts. The intracellular targeting of newly synthesized hydrolases to the lysosomes relies in colon carcinoma cells on the mannose 6-phosphate receptor system. Both the cation-independent mannose 6-phosphate receptor (CI-MPR) and the cation-dependent mannose 6-phosphate receptor are expressed in all colon carcinoma cell lines investigated. Endocytosis of lysosomal enzymes via mannose 6-phosphate receptors is reduced in colon carcinoma cells as compared with human fibroblasts. SW 1116 cells were shown to be deficient in receptor-mediated endocytosis of mannose 6-phosphate containing ligands. Ligands of other endocytic receptors as well as the fluid-phase marker horseradish peroxidase were internalized at normal rates. While antibodies against CI-MPR bind to the surface of SW 1116 cells, these antibodies cannot be internalized. These data suggest that the cycling of CI-MPR is specifically impaired in SW 1116 cells.  相似文献   

12.
In higher eukaryotes, the transport of soluble lysosomal enzymes involves the recognition of their mannose 6-phosphate signal by two receptors: the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor (CI-MPR) and the cation-dependent mannose 6-phosphate receptor (CD-MPR). It is not known why these two different proteins are present in most cell types. To investigate their relative function in lysosomal enzyme targeting, we created cell lines that lack either or both MPRs. This was accomplished by mating CD-MPR-deficient mice with Thp mice that carry a CI-MPR deleted allele. Fibroblasts prepared from embryos that lack the two receptors exhibit a massive missorting of multiple lysosomal enzymes and accumulate undigested material in their endocytic compartments. Fibroblasts that lack the CI-MPR, like those lacking the CD-MPR, exhibit a milder phenotype and are only partially impaired in sorting. This demonstrates that both receptors are required for efficient intracellular targeting of lysosomal enzymes. More importantly, comparison of the phosphorylated proteins secreted by the different cell types indicates that the two receptors may interact in vivo with different subgroups of hydrolases. This observation may provide a rational explanation for the existence of two distinct mannose 6-phosphate binding proteins in mammalian cells.  相似文献   

13.
Thyroglobulin has been shown to be phosphorylated and to carry the mannose 6-phosphate (M6P) signal in terminal position. In order to investigate whether the cation-independent mannose 6-phosphate receptor (CI-MPR) can possibly play a role in the transport of thyroglobulin the localization of the receptor was analyzed in thyroid follicle cells. The immunocytochemical observations showed that the CI-MPR is primarily located in elements of the endocytic pathway such as coated pits and endosomes. This localization of the CI-MPR in thyrocytes differs from the receptor sites in other cell types by the rare occurrence of the CI-MPR in cisternae of the Golgi complex. The observations are interpreted as an indication that the relatively small amount of receptor in the Golgi complex might be occupied primarily by lysosomal hydrolases. The CI-MPR in thyrocytes might, therefore, be unable to bind and to convey thyroglobulin efficiently. The receptor is, however, a binding site for thyroglobulin at the apical plasma membrane and may, therefore, be involved in the binding of thyroglobulin and its transfer from the follicle lumen to lysosomes.  相似文献   

14.
The multifunctional mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) is considered a tumor suppressor. We report here that RNA interference with M6P/IGF2R expression in urokinase-type plasminogen activator (uPA)/urokinase-type plasminogen activator receptor (uPAR) expressing human cancer and endothelial cells resulted in increased pericellular plasminogen activation, cell adhesion, and higher invasive potential through matrigel. M6P/IGF2R silencing led also to the cell surface accumulation of urokinase and plasminogen and enhanced expression of αV integrins. Genetic rescue experiments and inhibitor studies revealed that the enhanced plasminogen activation was due to a direct effect of M6P/IGF2R on uPAR, whereas increased cell adhesion to vitronectin was dependent on αV integrin expression and not uPAR. Increased cell invasion of M6P/IGF2R knockdown cells was rescued by cosilencing both uPAR and αV integrin. Furthermore, we found that M6P/IGF2R expression accelerates the cleavage of uPAR. M6P/IGF2R silencing resulted in an increased ratio of full-length uPAR to the truncated D2D3 fragment, incapable of binding most uPAR ligands. We conclude that M6P/IGF2R controls cell invasion by regulating αV integrin expression and by accelerating uPAR cleavage, leading to the loss of the urokinase/vitronectin/integrin-binding site on uPAR.  相似文献   

15.
The extracytoplasmic region of the 270-kDa mannose 6-phosphate/IGF-II receptor is composed of 15 repeating domains and is capable of binding 2 mol of mannose 6-phosphate (Man-6-P). To localize the Man-6-P binding domains, bovine receptor was subjected to partial proteolysis with subtilisin followed by affinity chromatography on pentamannosyl phosphate-agarose. Eleven proteolytic fragments ranging in apparent molecular mass from 53 to 206 kDa were isolated. Sequence analysis of six of the fragments localized their amino termini to either the beginning of domain 1 at the amino terminus of the molecule or the beginning of domain 7, according to the alignment of Lobel et al. (Lobel, P., Dahms, N. M., and Kornfeld, S. (1988) J. Biol. Chem. 263, 2563-2570). The smallest fragment, with an apparent molecular mass of 53 kDa, is predicted to encompass domains 1-3. Another fragment, with an apparent molecular mass of 82 kDa, is predicted to encompass domains 7-10 or 7-11. The Man-6-P binding site contained within domains 1-3 was further defined by expressing truncated forms of the receptor in Xenopus laevis oocytes and assaying their ability to bind phosphomannosyl residues. A soluble polypeptide containing domains 1-3 exhibited binding activity, whereas a polypeptide containing domains 1 and 2 did not. This indicates that domain 3 is a necessary component of one of the Man-6-P binding sites of the receptor.  相似文献   

16.
The insulin-like growth factor II/mannose 6-phosphate receptor (IGF2R) interacts with lysosomal enzymes through two binding domains in its extracytoplasmic domain. We report in the accompanying article (Byrd, J. C., and MacDonald, R. G. (2000) J. Biol. Chem. 275, 18638-18646) that only one of the two extracytoplasmic mannose 6-phosphate (Man-6-P) binding domains is necessary for high affinity Man-6-P ligand binding, suggesting that, like the cation-dependent Man-6-P receptor, oligomerization of the IGF2R contributes to high affinity interaction with lysosomal enzymes. In the present study, we have directly characterized both naturally occurring and engineered forms of the IGF2R for their ability to form oligomeric structures. Whereas gel filtration chromatography suggested that purified bovine IGF2R species exist in a monomeric form, native gel electrophoresis allowed for the separation of dimeric and monomeric forms of the receptors with distinct phosphomannosyl ligand binding characteristics. The ability of the IGF2R to form oligomeric complexes was confirmed and localized to the extracytoplasmic domain through the use of epitope-tagged soluble IGF2R constructs bearing deletions of the transmembrane and cytoplasmic domains. Finally, chimeric receptors were engineered containing the extracytoplasmic and transmembrane domains of the IGF2R fused to the cytoplasmic domain of the epidermal growth factor receptor with which dimerization of the chimeras could be monitored by measuring autophosphorylation. Collectively, these results show that the IGF2R is capable of forming oligomeric complexes, most likely dimers, in the absence of Man-6-P ligands.  相似文献   

17.
Trafficking of lysosomal enzymes   总被引:37,自引:0,他引:37  
S Kornfeld 《FASEB journal》1987,1(6):462-468
The targeting of lysosomal enzymes from their site of synthesis in the rough endoplasmic reticulum (RER) to their final destination in lysosomes is directed by a series of protein and carbohydrate recognition signals on the enzymes. Lysosomal enzymes, along with secretory and plasma membrane proteins, contain amino-terminal signal sequences that direct the vectorial discharge of the nascent proteins into the lumen of the RER. The three classes of proteins also share a common peptide signal for asparagine glycosylation. The next signal is unique to lysosomal enzymes and permits their high-affinity binding to a specific phosphotransferase that catalyzes the formation of the mannose 6-phosphate recognition marker. This carbohydrate determinant allows binding to specific receptors that translocate the lysosomal enzymes from the Golgi complex to an acidified prelysosomal compartment. There the lysosomal enzymes are discharged for final packaging into lysosomes. Two distinct mannose 6-phosphate receptors have been identified, and cDNAs encoding their entire sequences have been cloned. An analysis of the deduced amino acid sequences of the receptors shows that each is composed of four structural domains: a signal sequence, an extracytoplasmic amino-terminal domain, a hydrophobic membrane-spanning region, and a cytoplasmic domain. The entire extracytoplasmic region of the small receptor is homologous to the 15 repeating domains that constitute the extracytoplasmic portion of the large receptor.  相似文献   

18.
A series of chemically synthesized oligomannosides that contain mannose 6-phosphate residues were utilized as inhibitors of the binding of beta-galactosidase to high (CI-MPR, 215 kDa) and low (CD-MPR, 41-46 kDa) molecular mass mannose 6-phosphate receptor from bovine testes in order to probe the specificity of each receptor. Mannobioside phosphorylated in the terminal position and linked alpha(1,2) was a 6-fold better inhibitor than the corresponding alpha(1,3)- and alpha (1,6)-linked isomers. Inhibition observed with a monophosphorylated alpha(1,2)-linked mannotrioside was approximately 6-fold greater than that with the corresponding mannobioside. Penultimate glycosidic linkages of the oligomannosides played little or no role in the inhibition of binding of ligand to the receptors. Monophosphorylated oligomannosides containing phosphomonoester groups on penultimate mannose residues were not inhibitors. Binding inhibition observed for biantennary oligomannosides with phosphate on terminal mannose residues of either alpha(1,3) or alpha(1,6) chains closely approximated the values obtained with analogous trimannosides. A biantennary oligomannoside on which each antennary chain contained a terminal phosphate exhibited approximately an 8-fold greater inhibition than monophosphorylated compounds. Although the receptors exhibited similar relative specificities for phosphomonoesters, phosphodiesters did not inhibit binding of ligand to CD-MPR and only weakly inhibited binding to CI-MPR.  相似文献   

19.
The rat insulin-like growth factor II (IGF-II) receptor develops transmembrane signaling functions by directly coupling to a guanine nucleotide-binding protein (G protein) having a 40-kDa alpha subunit, Gi-2, whereas recent studies have indicated that the IGF-II receptor is a molecule identical to the cation-independent mannose 6-phosphate receptor (CI-MPR), a receptor implicated in lysosomal enzyme sorting. In this study, by using vesicles reconstituted with the clonal human CI-MPR and G proteins, we indicated that the CI-MPR could stimulate guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) binding and GTPase activities of Gi proteins in response to IGF-II. The stimulatory effect of IGF-II on Gi-2 depended on the reconstituted amount of the CI-MPR; it could not be found in vesicles reconstituted with Gi-2 alone; and it was also observed on Gi-1 reconstituted with the CI-MPR in phospholipid vesicles. Of interest, such stimulatory effect was not reproduced by Man-6-P in CI-MPR vesicles reconstituted with either G protein. Furthermore, the affinity for Man-6-P-mediated beta-glucuronidase binding to several kinds of native cell membranes was not reduced by 100 microM GTP gamma S. Instead, however, Man-6-P dose-dependently inhibited IGF-II-induced Gi-2 activation with an IC50 of 6 microM in vesicles reconstituted with the CI-MPR and Gi-2. The action of 100 nM IGF-II was completely abolished by 1 mM Man-6-P. Such an inhibitory effect of Man-6-P was reproduced by 4000 times lower concentrations of beta-glucuronidase or similar concentrations of fructose 1-phosphate, but not by mannose or glucose 6-phosphate. These results indicate that the human CI-MPR has two distinct signaling functions that positively or negatively regulate the activity of Gi-2 in response to the binding of IGF-II or Man-6-P.  相似文献   

20.
Endo180, also known as the urokinase plasminogen activator receptor (uPAR)-associated protein (uPARAP), is one of the four members of the mannose receptor family, and is implicated in extracellular-matrix remodelling through its interactions with collagens, sugars and uPAR. The extracellular portion of Endo180 contains an amino-terminal cysteine-rich domain, a single fibronectin type II domain and eight C-type lectin-like domains. We have purified a soluble version of Endo180 and analysed it by single-particle electron microscopy to obtain a three-dimensional structure of the N-terminal part of the protein at a resolution of 17 Å and reveal, for the first time, the interactions between non-adjacent domains in the mannose receptor family. We show that for Endo180, the cysteine-rich domain contacts the second C-type lectin-like domain, thus providing structural insight into how modulation of its several ligand interactions may regulate Endo180 receptor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号