首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以2种杜氏藻即巴氏杜氏藻和盐生杜氏藻为实验材料,在不同NaCl胁迫和光照(紫外线和高光照强度)进行培养的结果表明,细胞生长的最适盐度是2.0mol·L-1,高产β-胡萝卜素的最适盐度是3.5mol·L-1;紫外线下诱导的藻株环境适应能力较强,β-胡萝卜素含量较高;高光照强度(1080μmol·m-2·s-1)下诱导的杜氏藻β-胡萝卜素含量高;二步法培养的β-胡萝卜素含量比正常培养的提高2倍以上。  相似文献   

2.
研究外源茉莉酸甲酯(MeJA)对盐生杜氏藻细胞β-胡萝卜素含量、叶绿素含量、过氧化物酶(POD)活性和超氧化物歧化酶(SOD)活性的影响。结果表明,当外源MeJA浓度为0~100μmol/L时,随着MeJA浓度的升高,β-胡萝卜素和叶绿素含量呈上升趋势,当MeJA浓度为100μmol/L时,盐生杜氏藻β-胡萝卜素和叶绿素含量最高,当MeJA处理浓度大于100μmol/L时,盐生杜氏藻β-胡萝卜素和叶绿素含量逐渐降低。生理生化结果分析表明,外源MeJA处理可提高盐生杜氏藻POD酶和SOD酶活性,随着MeJA浓度的增加,SOD酶活性呈逐渐上升的趋势,POD酶活性呈先上升后下降的趋势,与β-胡萝卜素含量、叶绿素含量的变化趋势基本一致,说明外源MeJA处理可诱导盐生杜氏藻β-胡萝卜素积累可能与叶绿素含量、过氧化物酶(POD)活性和超氧化物歧化酶(SOD)活性有关。  相似文献   

3.
朱帅旗  龚一富  章丽  俞凯  王何瑜  严小军 《遗传》2017,39(2):156-165
β-胡萝卜素羟化酶(β-carotenoid hydroxylase, CHYB)是植物类胡萝卜素生物合成途径中的一个重要限速酶。本研究对绿色杜氏藻转录组测序数据进行分析,获得2条β-胡萝卜素羟化酶家族基因chyb1chyb2。采用染色体步移法分别克隆并获得了绿色杜氏藻chyb1chyb2基因的启动子序列,全长分别为1080 bp(GenBank登录号:KY012338)和1155 bp (GenBank登录号:KY012339)。利用Plantcare软件分析两个启动子的顺式作用元件,结果表明绿色杜氏藻chyb1基因启动子含有与甲基茉莉酸、花生四烯酸、水杨酸等非生物胁迫相关的顺式作用元件,而绿色杜氏藻chyb2基因启动子含有与光照相关的顺式作用元件。通过qRT-PCR分析了绿色杜氏藻CHYB基因家族在不同胁迫下的基因表达水平,结果表明该基因家族的基因表达水平与启动子调控相关,且不同的家族基因应答不同的胁迫。  相似文献   

4.
分离鉴定杜氏盐藻(Dunaliella salina)β-酮脂酰-ACP合酶Ⅲ(β-ketoacyl-ACP synthase Ⅲ,DsKASⅢ)基因并解析其编码蛋白理化特征及功能。依据同源克隆,分离杜氏盐藻DsKASⅢ基因编码序列,采用生物信息学方法解析DsKASⅢ编码蛋白的理化特性及功能,qRT-PCR检测缺氮条件下DsKASⅢ的表达谱,并检测细胞总油脂和β-胡萝卜素含量的变化。结果表明,杜氏盐藻KASⅢ基因含有9个外显子,ORF为960 bp,编码蛋白为319 aa。DsKASⅢ蛋白理论等电点pI为6.21,分子量为33.3 kD。亚细胞定位预测DsKASⅢ蛋白呈镶嵌状锚定在叶绿体内膜上,这种构象有助于利用能量高效率催化生化反应。DsKASⅢ蛋白二级结构主要由α-螺旋(35.11%)、β片层(25.71%)和无规则卷曲(27.90%)组成。三维模拟显示,DsKASⅢ蛋白以同源二聚体形式发挥催化功能的。系统发育分析表明,DsKASⅢ蛋白与莱茵衣藻KASⅢ蛋白亲缘关系最近,暗示其可能有共同的进化来源。qRT-PCR分析揭示,氮胁迫培养条件下,DsKASⅢ基因的表达显著升高,且在缺氮第3天时,表达量达峰值,比正常氮充足培养高1.1倍。氮胁迫培养的藻细胞总脂含量和β-胡萝卜素含量分别比正常氮充足培养的藻细胞提高49.05%和33.20%。氮胁迫能诱导DsKASⅢ基因的上调表达,进而促进杜氏盐藻细胞合成和积累高量油脂和β-胡萝卜素。研究为全面阐明氮胁迫条件下杜氏盐藻油脂及β-胡萝卜素合成及调控机制提供了科学依据。  相似文献   

5.
以NaNO3、CO(NH_2)_2、NaNO2、NH4Cl作为氮源,并设无氮处理,研究杜氏盐藻(Dunaliella salina)生长及其PSⅡ对不同氮源的响应特征,以明确杜氏盐藻对不同氮源的利用情况,为盐藻培养基的优化和营养盐的筛选提供理论依据。结果表明:(1)杜氏盐藻在CO(NH_2)_2环境中具更高的比增长速率[μmax,(0.482±0.032)/d]。(2)NaNO2、NaNO3、CO(NH_2)_2作氮源时,杜氏盐藻快速光响应曲线的初始斜率(α)、最大光量子产率(Fv/Fm)及反应活性中心所捕获的光能(ABS/RC)、反应活性中心捕获的激发能用于还原QA的能量(TR0/RC)、最大光化学效率(φP0)、t=0时捕获的激子将电子传递到电子传递链中超过QA的其他电子受体的概率(ψ0)和t=0时用于电子传递的量子产额(φE0)在处理间均差异不显著(P0.05),但三者与无氮和NH4Cl处理组相比均具有显著差异。(3)与NaNO2、NaNO3、CO(NH_2)_2处理组相比,无氮环境使得盐藻相对可变荧光(Vj)显著升高,盐藻光合电子从QA-到QB的传递受阻,导致QA-大量积累;而NH4Cl做氮源时,杜氏盐藻叶绿素荧光动力学曲线的K相出现,使得其PSⅡ放氧复合体(OEC)受损。研究认为,杜氏盐藻在NaNO3、CO(NH_2)_2、NaNO2作为唯一氮源时均可良好生长,并在CO(NH_2)_2环境中生长得更快;缺氮胁迫使得盐藻生长受到显著抑制,PSⅡ反应活性中心的数量降低,电子传递受阻;而NH4Cl对杜氏盐藻的毒性效应使得其PSⅡ放氧复合体(OEC)受损,藻体在短期内开始死亡。  相似文献   

6.
锌对盐藻生长与物质积累的调控作用   总被引:1,自引:0,他引:1  
实验研究了不同浓度的锌对盐藻细胞生长与物质积累的调控作用。结果表明,培养液中供给锌过多或过少都不利于盐藻细胞的生长与物质积累。以培养基中6 mg/L的锌浓度对盐藻细胞生长、蛋白质合成与β-胡萝卜素积累的促进作用最大。这一锌浓度可用于盐藻的生产性培养。当培养液中锌浓度较高(8 mg/L)或较低(2 mg/L)时,单个盐藻细胞中的蛋白质与β-胡萝卜素含量较高。但此时,因培养液中细胞密度较低,盐藻细胞积累的物质总量仍然较少。在锌浓度较高或较低的逆境条件下,盐藻可能通过适应性反应形成了逆境蛋白质与胡萝卜素等。  相似文献   

7.
通过UV辐照和NTG诱变处理杜氏盐藻野生型藻株得到一株杜氏盐藻高产玉米黄素突变株Zea1,以此突变藻株为实验材料,系统研究了光照强度、盐浓度、碳源、氮源、磷源等对Zea1生长和玉米黄素积累合成的影响。葡萄糖在10mmol/L时既适合Zea1生长,又有利于其玉米黄素的积累。KNO3浓度为1mmol/L时最适合突变株藻细胞生长,而(NH4)2SO4浓度为1mmol/L最有利于藻细胞内玉米黄素的积累。综合来看,1mmol/L(NH4)2SO4为最优氮源。KH2PO4浓度为0.1mmol/L时Zea1藻细胞积累玉米黄素含量最高,同时在此浓度下也最适宜藻细胞的生长。讨论了此结果的机理和意义,为利用杜氏盐藻大规模生产玉米黄素提供了理论依据。  相似文献   

8.
酮脂酰-ACP合成酶Ⅱ(KASⅡ)是催化棕榈酸(16∶0-ACP)延伸为硬脂酸(18∶0-ACP)的关键酶,其活性强弱决定着18碳脂肪酸含量的高低。本文以杜氏盐藻(Dunaliella salina)为试材,分离鉴定杜氏盐藻DsKASⅡ基因编码序列,采用生物信息学工具解析DsKASⅡ酶蛋白的亚细胞定位、高级结构、理化性质及系统发育等特性。检测氮胁迫下的DsKASⅡ表达量,以及藻细胞脂肪酸、叶绿素和β-胡萝卜素的含量。结果表明,DsKASⅡ编码的酶蛋白长度为476 aa,pI为6. 99,含叶绿体靶向肽和较多亲水区。二级结构主要由α-螺旋(22. 48%),β-片层(22. 06%)和无规则卷曲(55. 46%)组成。三级结构预测表明该蛋白整体呈紧密的心形结构,活性酶蛋白为同源二聚体。系统发育分析表明,DsKASⅡ氨基酸序列与莱茵衣藻CrKASⅡ同源性达99%,可能二者有着共同的进化祖先。qRT-PCR揭示,与正常培养的杜氏盐藻相比,DsKASⅡ在氮胁迫条件下的表达量明显上调,第3天时的表达量比正常培养的高4. 5倍。氮胁迫下藻细胞总油脂、油酸(C18∶1)和类胡萝卜素含量显著提高,然而棕榈酸(C16∶0)和叶绿素的含量明显降低。这表明,氮胁迫诱导杜氏盐藻DsKASⅡ基因上调表达,将更多的棕榈酸催化为硬脂酸,进而提高了单不饱和油酸的富集以及类胡萝卜素的积累。本研究为后续进一步解析杜氏盐藻氮胁迫条件下,油脂与胡萝卜素合成积累及藻细胞响应胁迫机制和优质富油藻种培育提供了科学参考。  相似文献   

9.
杜氏藻(Dunaliella)是一类独特的嗜盐单细胞真核微藻,为对该藻不同地理来源各品系间的特征进行总结及分类鉴定,挖掘特色品系,研究搜集国内外20株不同品系的杜氏藻,利用PCR扩增内部转录间隔区(ITS)和细胞色素C氧化酶(cox2-3)基因,生物信息学软件构建系统发育树对其进行分子鉴定;形态学方法对其显微结构进行观察,利用生理生化研究方法对杜氏藻盐胁迫下的4个代表性指标(最大光合效率、中性脂含量、β-胡萝卜素含量和3-磷酸甘油磷酸酶活性)进行了测定。结果表明, 20株供试藻均属杜氏藻属, ITS和cox2-3的系统发育结果相似,均聚为两大簇,各品系间亲缘关系较为接近;成熟期的D13细胞最大, D14细胞最小并呈长颈形,颜色以绿色或黄绿色为主,鞭毛和眼点各异; D6和D10生长周期短, D18耐盐性最强; D7最大光合效率最高, D6和D18中性脂干重最高, D11的β-胡萝卜含量最高, D7的3-磷酸甘油磷酸酶活性最强。研究结果可为国内外杜氏藻资源的分类鉴定、特色资源的保护、开发与利用奠定基础。  相似文献   

10.
四种维生素对杜氏盐藻生长的影响   总被引:1,自引:0,他引:1  
杜氏盐藻,简称盐藻,属绿藻门、绿藻纲、团藻目、盐藻科、杜氏藻属[1],广泛分布于海洋、盐湖等盐度较高区域,富含蛋白质、多不饱和脂肪酸、多糖、β-胡萝卜素等,在食品、医药保健、化工和养殖业中具有独特经济价值.  相似文献   

11.
李可文  宋涛  程小莲 《生态科学》2014,33(6):1147-1154
探讨了不同浓度碳源、氮源(N/P)、无机磷源、脲及卤虫干粉(或发酵液)卤水培养基对极端嗜盐杜氏藻生长的影响, 以期为更好地开发杜氏藻资源提供全面、系统的资料。结果表明: 通过物理方式直接通入CO2 补充极端嗜盐杜氏藻培养基, 能有效的保障极端嗜盐杜氏藻生长所需的碳源; 采用尿素作为藻培养基氮源效果较好, 无机磷浓度应维持较低水平; 卤虫发酵液较卤虫干粉能有效延长藻细胞高密度生长期, 极端嗜盐杜氏藻适宜培育浓度范围: 尿素浓度为30.00 mg·L–1-90.00 mg·L–1, N/P 维持在25 左右, NaH2PO4 浓度为2.71 mg·L–1-12.00 mg·L–1, 3.50 mg·L–1 最优; 卤虫发酵液浓度应在250.00 mg·L–1 以上。  相似文献   

12.
盐藻细胞生长和积累β-胡萝卜素的最佳条件存在差异,通过正交实验获得盐藻生长最适浓度C、N、P的分别为15、2.0、0.2mmol/L,累积β-胡萝卜素最适浓度分别为15、1.0,0.1mmol/L。比较了一次添加型、分次添加型、不完全更换型和完全更换型4种培养方法对生长和累积β-胡萝卜素的影响,发现完全更换型培养方式有利于β-胡萝卜素的积累。中途补给10mmol/L NaHCO3也有利于藻细胞积累β-胡萝卜素。在实验最佳条件下藻液中的β-胡萝卜素含量是对照的1.43倍。可采用先快速培养盐藻细胞、后更换培养基、添加NaHCO3分段培养方式以促进细胞大量合成β-胡萝卜素。  相似文献   

13.
吴春  段舜山 《生态科学》2006,25(2):135-138,142
以盐生杜氏藻为实验材料,采用f/2培养基,设置了8个盐度(15、20、25、30、50、70、90、110)处理,分盐度改变前(A)和盐度改变后(B)两个实验阶段,研究了盐生杜氏藻在不同盐度处理下的生长情况,测定了藻液的OD值、叶绿素a、β-胡萝卜素、可溶性蛋白质和可溶性糖含量等指标。结果表明,A阶段,几个较低盐度(15、20、25和30)处理生长状况较好,其中又以盐度20的处理最好;余下的处理,盐度越高,其生长所受的影响越大。B阶段,盐生杜氏藻的生长进入平台期后,50、70、90、110几个盐度较高处理的细胞密度、叶绿素a、β-胡萝卜素含量均显著超过了作为对照的盐度20的处理。且B阶段末期,先前盐度15的处理蛋白质、糖的积累量,与A阶段末期相比都有了不同程度的增加,而其余盐度处理组的蛋白质、糖含量则分别产生了不同程度的下降。  相似文献   

14.
盐生杜氏藻生长及β-胡萝卜素累积的动力学过程   总被引:3,自引:0,他引:3  
国内外学者多注重研究环境因子对盐生杜氏藻生长和β-胡萝卜素累积的影响,为此,作者从温度和盐浓度对盐生杜氏藻生长的动力学及盐度与β-胡萝卜素累积的关系作了初步探讨。    相似文献   

15.
研究了有机碳、氮源及 B族维生素对紫球藻生长的影响。葡萄糖促生长作用最佳 ,添加 2 % (W/V)葡萄糖时 ,藻细胞生长速度比对照组明显提高 ,培养 10 d收获的生物量增加 92 .6 % ,培养液中的溶解氧含量和藻体叶绿素 a含量也有变化。有机氮源的利用率低 ,仅蛋白胨、酵母汁可被利用。维生素 B2 和 B12 也有促长作用。  相似文献   

16.
盐藻与β—胡萝卜素   总被引:1,自引:0,他引:1  
微藻生物技术是近年来新兴的生物技术之一,至今有三种微藻已大规模生产,包括小球藻、螺旋藻与盐生杜氏藻(简称盐藻)。由于盐藻能生产出干重高达10%的β-胡萝卜素,现已成为微藻中占有最大市场的种类。关于盐藻养殖生物学、盐藻β-胡萝卜素的生产及应用,已成为各国科学家研究的焦点。1983年召开的第十一届国际海藻会议将盐藻及β-胡萝卜素列入大会的专题讨论,1990年世界营养学会的主题是β-胡萝卜素,1991年美联社将β-胡萝卜素的作用选为世界十大科技新成就之一。  相似文献   

17.
研究了短小芽孢杆菌(Bacillus pumilus)对盐藻空间诱变株系SZ-05(Dunaliella salina SZ-05)的生物量及β-胡萝卜素积累的影响。结果表明,短小芽孢杆菌显著提高了盐藻SZ-05的生物量和β-胡萝卜素的产量,明显降低了培养体系中的溶解氧和胞外多糖的含量。溶解氧的减少,使得藻细胞的光呼吸作用下降,光合作用速率提高,使藻细胞生物量增加。胞外多糖具有抗氧化作用,胞外多糖的减少可能进一步增加了β-胡萝卜素的合成,从而使β-胡萝卜素在胁迫条件下大幅度增加。  相似文献   

18.
以真眼点藻纲8株微藻(类波氏真眼点藻(Eustigmatos cf. polyphem)、大真眼点藻(Eustigmatos magnus)、波氏真眼点藻(Eustigmatos polyphem)、魏氏真眼点藻(Eustigmatos vischeri)、斧形魏氏藻(Vischeria helvetica)、点状魏氏藻(Vischeria punctata)、星形魏氏藻(Vischeria stellata)和眼点拟微绿球藻(Nan-nochloropsis oculata))为研究材料, 用3种氮源(硝酸钠、碳酸氢铵或尿素)和4种氮浓度(18、9、6和3 mmol) 在改良的BG-11培养基中对藻细胞进行培养。比较分析这8株微藻在不同培养条件下的藻液pH、生物量、油脂含量、脂肪酸组成的差异, 从而筛选出适合该类微藻生长和油脂积累的最适氮源与最佳氮浓度。结果表明, 这8株微藻均能在3种氮源中生长, 但是随着培养时间延长, 以碳酸氢铵和尿素为氮源时藻液pH逐渐降低, 其变化范围为5.0—6.0, 而以硝酸钠为氮源时藻液pH保持在7.0—8.0, 变化不大。当以尿素为氮源培养时, 能获得较高的生物量, 但是不同藻株在不同尿素浓度时达到最高生物量。最高生物量是波氏真眼点藻(E. polyphem)在9 mmol时达到, 为10.96 g/L。总脂含量分析发现, 在低氮浓度下均能促进8株微藻油脂的积累, 真眼点藻属中的魏氏真眼点藻(E. vischeri)在8株藻中获得最高油脂含量, 达到59.24%。进一步对脂肪酸分析发现, 8株微藻总脂肪酸含量为细胞干重的50%—58%, 主要脂肪酸组成为豆蔻酸(C14鲶0)、棕榈酸(C16鲶0)、棕榈油酸(C16鲶1)、油酸(C18鲶1)和二十碳五烯酸(C20鲶5), 其中拟微绿球藻(N. oculata)细胞中棕榈酸的含量最高占总脂肪酸50%左右; 其他7株微藻细胞中棕榈油酸的含量较高, 其占总脂肪酸含量范围在40%—60%。8株微藻均表现出较高的生物量与油脂积累能力, 以尿素为氮源, 氮浓度为6 mmol时更有利于该类微藻生物量和油脂的积累。总体来说, 真眼点藻纲的微藻是一类极具潜力适合于微藻生物燃料生产的微藻, 而真眼点藻属藻株表现更为明显的优势。  相似文献   

19.
为了掌握不同氮源对塔玛亚历山大藻(Alexandrium tamarense)生长和毒性的影响,实验选定硝酸钠、氯化铵、尿素和甘氨酸作为4种氮源,在温度和光强分别为20℃和200μmol photons·m-2·s-1的培养箱中,采用人工海水一次性培养藻细胞,培养基N和P浓度分别以F/20加富,并收集对数期细胞用于斑马鱼胚胎48 h急性毒理实验。结果表明:4种氮源都可以支持细胞生长,但不同氮源培养的藻细胞生长速率不同,表现为铵氮(0.25 d~(-1))硝氮(0.20 d~(-1))尿素=甘氨酸(0.12 d~(-1));4种氮源对细胞色素的含量无显著影响;与对照组(胚胎培养液)相比,在细胞密度为2×10~4cells·mL~(-1)时,塔玛亚历山大藻细胞粗提液对斑马鱼胚胎表现出显著的毒性作用,可造成胚胎的凝固、发育迟缓、卵黄膜破裂、卵黄囊水肿及尾巴弯曲等;当细胞密度增加到8×10~4cells·mL-1时,毒性进一步增加,且4种氮源对毒性的影响出现显著差异,表现为硝氮尿素=甘氨酸铵氮。综上所述,塔玛亚历山大藻的生长和毒性对氮源的响应机制存在差异,但4种氮源都支持生长,因此,在环境变化和水体营养盐结构复杂化的情况下,塔玛亚历山大藻仍可维持生长并持续爆发藻华,对生态环境造成威胁。  相似文献   

20.
在氮浓度为1.4、14、和140 mg·L-1下,对杜氏盐藻(Dunaliella salina)和亚心形扁藻(Platymonas subcordiformis)进行细胞接种比例为10:0、7:3、5:5、3:7和0:10的培养试验,研究不同海洋经济微藻种间混合培养的细胞群体生长效应。结果表明,杜氏盐藻与亚心形扁藻细胞群体的生长随着氮浓度的增加而提高;两种藻在氮浓度分别为14和140mg·L-1时混合培养的细胞群体生长明显优于单独培养。中、高氮下杜氏盐藻与亚心形扁藻以7:3的接种比例混合时,微藻的细胞群体生物量和胞内物质含量相比单独培养和其他比例均有显著提高,如叶绿素a含量比单独培养分别提高1.17倍和7.77倍;蛋白质含量比单独培养分别提高19.1%和195.3%等。而低氮浓度下,藻的生长受到氮浓度的限制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号