首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on morphological and morphogenetic characters alone, the sibling species Stylonychia lemnae and Stylonychia mytilus, members of the Stylonychia mytilus complex, can hardly be distinguished. However, biochemical investigations of the isoenzyme pattern of different enzymes showed a distinct differentiation between these two species. In the last few years, fluorescence in situ hybridization (FISH) techniques have become a suitable and reliable tool for identification and differentiation of closely related species of protozoa, such as ciliates. To distinguish the sibling species, a set of specific oligonucleotide probes were developed. In the present study, the SSU rDNA of 7 clones of Stylonychia lemnae and 13 clones of Stylonychia mytilus, isolated from different geographic regions, were sequenced. Comparing all SSU rDNA sequences of both species, only one single difference within the whole gene was detected. Based on this difference, a set of two oligonucleotide probes, targeting the SSU rRNA of each species (Stylonychia mytilus and Stylonychia lemnae) was designed. These probes were successfully tested by applying the FISH techniques on preserved cells of different clones of both species.  相似文献   

2.
3.
Many scuticociliatid ciliates are regarded as devastating pathogens in aquaculture. Among these, Pseudocohnilembus persalinus is a facultative pathogen that often results in refractory diseases of mariculture fish. Although traditional silver staining methods have been successfully used to identify these ciliates, their identification is hampered by their small size and their morphological similarity to closely related species. We designed an alternative method of identification of P. persalinus using an SSU-rDNA targeted oligonucleotide probe labeled with a fluorochrome, and optimized in a fluorescence in situ hybridization (FISH) protocol. The assay results in a clear identification by strong fluorescence signals from the oligonucleotide probe. The method can be used for quick and early detection of P. persalinus infections on host fish, as well as other susceptible organisms in aquiculture water. It may also be used in studies of the geographical distribution of this scuticociliate.  相似文献   

4.
A new protocol for taxon specific probe based fluorescent in situ hybridization was developed for the identification and quantification of ciliates in microbial communities. Various fixatives and experimental parameters were evaluated and optimized with respect to cell permeability and morphological preservation. Optimum results were adaption by obatined of a modified fixation method using Bouin's solution. Furthermore, conventional staining procedures such as different Protargol stain techniques and a silver nitrate impregnation method were modified and can now be applied in combination with fluorescence in situ hybridization. The new protocol allows a rapid and reliable identification as well as quantification of ciliates based upon classical morphological aspects and rRNA based phylogenetic relationships performed in one experiment. Furthermore, a set of specific probes targeting different regions of the 18S rRNA was designed for Glaucoma scintillans Ehrenberg, 1830 and tested by applying this new approach of combining in situ cell hybridization with conventional staining techniques.  相似文献   

5.
Dehalococcoides ethenogenes is the only known cultivated organism capable of complete dehalogenation of tetrachloroethene (PCE) to ethene. The prevalence of Dehalococcoides species in the environment and their association with complete dehalogenation of chloroethenes suggest that they play an important role in natural attenuation of chloroethenes and are promising candidates for engineered bioremediation of these contaminants. Both natural attenuation and bioremediation require reliable and sensitive methods to monitor the presence, distribution, and fate of the organisms of interest. Here we report the development of 16S rRNA-targeted oligonucleotide probes for Dehalococcoides species. The two designed probes together encompass 28 sequences of 16S rRNA genes retrieved from the public database. Except D. ethenogenes and CBDB1, all the others are environmental clones obtained from sites contaminated with chlorinated ethenes. They are all closely related and form a unique cluster of Dehalococcoides species. In situ hybridization of probe Dhe1259t with D. ethenogenes strain 195 and two enrichment cultures demonstrated the applicability of the probe to monitoring the abundance of active Dehalococcoides species in these enrichment samples.  相似文献   

6.
Many scuticociliates are facultative parasites of aquatic organisms and are among the most problematic ciliate taxa regarding their systematic relationships. The main reason is that most species, especially taxa in the order Thigmotrichida have similar morphology and have not been studied yet using molecular methods. In the present work, two scuticociliate genera, represented by two rare parasitic species, Philasterides armatalis (order Philasterida) and Boveria subcylindrica (order Thigmotrichida), were studied, and phylogenetic trees concerning these two genera were constructed based on their 18 S rRNA gene sequences. The results indicate that: 1) Philasterides forms a sister group with Philaster, supporting the classification that these two genera belong to the family Philasteridae; 2) it is confirmed that the nominal species, Philasterides dicentrarchi Dragesco et al., 1995 should be a junior synonym of Miamiensis avidus as revealed by both previous investigations and the data revealed in the present work; and 3) the poorly known form B. subcylindrica, the only member in the order Thigmotrichida, of which molecular data are available so far, always clusters with Cyclidium glaucoma, a highly specialized scuticociliate, indicating a sister relationship between the orders Thigmotrichida and Pleuronematida.  相似文献   

7.
The aim of the investigation was to quantify selected dominant bacterial groups in the chicken intestinal tract. Conventional production was used as model and the effect of the supplement with Salinomycin was evaluated. Hybridization conditions were optimized for published probes with respect to a panel of reference bacteria. In chicken intestinal samples bacteria were quantified by fluorescence in situ hybridization with 16S rRNA oligonucleotides directed towards bacteria related to Lactobacillus, Bacillus, Enterococcus-Streptococcus-Lactococcus, Enterobacteriaceae, Bacteroides, Clostridium and the domain Bacteria in lumen of ileum and cecum as well as on the intestinal wall including mucus of four individuals. Salinomycin in feed reduced counts of the Lactobacillus-, Enterobacteriaceae- and Clostridium-like bacteria in lumen of ileum compared to the conventional control. Increased or decreased bacterial counts were registered by Salinomycin in the ceca compared to the control. Relatively higher counts of Bacteroides- and Clostridium-like bacteria were found on the intestinal wall including mucus compared to lumen. The increase in numbers of some bacterial groups as well as the expected reduction by Salinomycin and the observed difference in the relative distribution of bacteria between lumen and intestinal wall are new observations that will need further investigation.  相似文献   

8.
9.
We studied the microbial diversity in the sediment from the Kongsfjorden, Svalbard, Arctic, in the summer of 2005 based on the analysis of 16S rRNA and 18S rRNA gene clone libraries. The sequences of the cloned 16S rRNA and 18S rRNA gene inserts were used to determine the species identity or closest relatives by comparison with sequences of known species. Compared to the other samples acquired in Arctic and Antarctic, which are different from that of ours, the microbial diversity in our sediment is much higher. The bacterial sequences were grouped into 11 major lineages of the domain Bacteria: Proteobacteria (include α-, β-, γ-, δ-, and ε-Proteobacteria); Bacteroidetes; Fusobacteria; Firmicutes; Chloroflexi; Chlamydiae; Acidobacteria; Actinobacteria; Planctomycetes; Verrucomicrobiae and Lentisphaerae. Crenarchaeota were dominant in the archaeal clones containing inserts. In addition, six groups from eukaryotes including Cercozoa, Fungi, Telonema, Stramenopiles, Alveolata, and Metazoa were identified. Remarkably, the novel group Lentisphaerae was reported in Arctic sediment at the first time. Our study suggested that Arctic sediment as a unique habitat may contain substantial microbial diversity and novel species will be discovered.  相似文献   

10.
Sequencing of the complete 26S rRNA genes of all Dekkera/Brettanomyces species colonizing different beverages revealed the potential for a specific primer and probe design to support diagnostic PCR approaches and FISH. By analysis of the complete 26S rRNA genes of all five currently known Dekkera/Brettanomyces species (Dekkera bruxellensis, D. anomala, Brettanomyces custersianus, B. nanus and B. naardenensis), several regions with high nucleotide sequence variability yet distinct from the D1/D2 domains were identified. FISH species-specific probes targeting the 26S rRNA gene's most variable regions were designed. Accessibility of probe targets for hybridization was facilitated by the construction of partially complementary 'side'-labeled probes, based on secondary structure models of the rRNA sequences. The specificity and routine applicability of the FISH-based method for yeast identification were tested by analyzing different wine isolates. Investigation of the prevalence of Dekkera/Brettanomyces yeasts in the German viticultural regions Wonnegau, Nierstein and Bingen (Rhinehesse, Rhineland-Palatinate) resulted in the isolation of 37 D. bruxellensis strains from 291 wine samples.  相似文献   

11.
Bacteria of the family of Geodermatophilaceae are actively involved in the decay processes [Urzì, C. and Realini, M. (1998) Int Biodeterior Biodegrad 42: 45-54; Urzì, C., Salamone, P., Schumann, P., and Stackebrandt, E. (2000) Int J Syst Evol Microbiol 50: 529-536] of stone monuments. Characterization of isolates includes phenotypic, chemotaxonomic and genetic analysis often requiring long-term procedures. The use of specific probes for members of Geodermatophilaceae family could be useful for the easy detection of those strains colonizing rock surfaces and involved in the biodeterioration. Two 16S rRNA-targeted oligonucleotide probes were designed for the specific detection of members of the family Geodermatophilaceae using fluorescence in situ hybridization (FISH); one probe specific for members of the two genera Geodermatophilus/Blastococcus and the second for members of the genus Modestobacter.  相似文献   

12.
The morphology, morphogenesis, and phylogeny of Diophrys parappendiculata n. sp., a large marine ciliate isolated from the coastal waters of Daya Bay, southern China, were investigated. This new species is characterized by a combination of its large size, appendiculata-pattern of ciliature, and bipartite adoral zone of membranelles. The main stages of morphogenesis during binary fission were also recorded and described. Comparisons of morphological characteristics with similar congeners support the validity of the new species. The small subunit rRNA gene sequence of D. parappendiculata is 96.3-99.94% similar to those of four other congeners; it differs in four nucleotides from that of Diophrys appendiculata (i.e. structural similarity was 99.94%). Phylogenetic analysis indicates that D. parappendiculata n. sp. falls into the Diophrys clade and is most closely related to the well-known D. appendiculata.  相似文献   

13.
The increasing significance of members of the genus Sphingomonas in biotechnological applications has led to an increased interest in the diversity, abundance and ecophysiological potential of this group of Gram-negative bacteria. This general focus provides a challenge to improve means for identification of sphingomonads; eg molecular genetic methods for rapid and specific detection could facilitate screening of new isolates. Here, fluorescently labeled oligonucleotide probes targeted against 16S rRNA were used to typify strains previously assigned to the genus. All 46 sphingomonads tested including type strains of 21 Sphingomonasspecies could be detected with a probe originally designed for the genus and all but one with a probe designed for the alpha-4 subgroup of the Proteobacteria. The two probes are suitable for direct detection of sphingomonads in pure and mixed cultures as well as in environmental samples of unknown composition. The probes were used to identify sphingomonads in situ in activated sludge samples. Sphingomonads were rather abundant accounting for about 5–10% of the total cells in municipal sludges. Distinct patterns in aggregation of the cells suggest that these organisms could be involved in the formation process of sludge flocs. Received 27 May 1999/ Accepted in revised form 22 August 1999  相似文献   

14.
Heterosigma akashiwo (Hada) is a fragile, fish-killing alga. Efforts to understand and prevent blooms due to this harmful species to mitigate the impact on aquaculture require the development of methods for rapid and precise identification and quantification, so that adequate warning of a harmful algal bloom may be given. Here, we report the development and application of rRNA and rDNA-targeted oligonucleotide probes for fluorescence in situ hybridization (FISH) to aid in the detection and enumeration of H. akashiwo. The designed probes were species specific, showing no cross-reactivity with four common HAB causative species: Prorocentrum micans Ehrenberg, P. minimum (Pavillard) Schiller, Alexandrium tarmarense (Lebour) Balech, and Skeletonema costatum (Greville) Cleve, or with four other microalgae, including Gymnodinium sp. Stein, Platy-monas cordiformis (Karter) Korsch, Skeletonema sp.1 Greville and Skeletonema sp.2. The rRNA-targeted probe hybridized to cytoplasmic rRNA, showing strong green fluorescence throughout the whole cell, while cells labeled by rDNA-targeted probe exhibited exclusively fluorescent nucleus. The detection protocols were optimized and could be completed within an hour. For rRNA and rDNA probes, about a corresponding 80% and 70% of targeted cells could be identified and quantified during the whole growth circle, despite the inapparent variability in the average probe reactivity. The established FISH was proved promising for specific, rapid, precise, and quantitative detection of H. akashiwo.  相似文献   

15.
Two 16S rRNA-targeted oligonucleotide probes, Mcell-1026 and Mcell-181, were developed for specific detection of the acidophilic methanotroph Methylocella palustris using fluorescence in situ hybridization (FISH). The fluorescence signal of probe Mcell-181 was enhanced by its combined application with the oligonucleotide helper probe H158. Mcell-1026 and Mcell-181, as well as 16S rRNA oligonucleotide probes with reported group specificity for either type I methanotrophs (probes M-84 and M-705) or the Methylosinus/Methylocystis group of type II methanotrophs (probes MA-221 and M-450), were used in FISH to determine the abundance of distinct methanotroph groups in a Sphagnum peat sample of pH 4.2. M. palustris was enumerated at greater than 10(6) cells per g of peat (wet weight), while the detectable population size of type I methanotrophs was three orders of magnitude below the population level of M. palustris. The cell counts with probe MA-221 suggested that only 10(4) type II methanotrophs per g of peat (wet weight) were present, while the use of probe M-450 revealed more than 10(6) type II methanotroph cells per g of the same samples. This discrepancy was due to the fact that probe M-450 targets almost all currently known strains of Methylosinus and Methylocystis, whereas probe MA-221, originally described as group specific, does not detect a large proportion of Methylocystis strains. The total number of methanotrophic bacteria detected by FISH was 3.0 (+/-0.2) x 10(6) cells per g (wet weight) of peat. This was about 0.8% of the total bacterial cell number. Thus, our study clearly suggests that M. palustris and a defined population of Methylocystis spp. were the predominant methanotrophs detectable by FISH in an acidic Sphagnum peat bog.  相似文献   

16.
17.
A fluorescence in situ hybridization (FISH) technique based on binding of a rhodamine-labelled oligonucleotide probe to 16S rRNA was used to estimate the numbers of ribosome-rich bacteria in soil samples. Such bacteria, which have high cellular rRNA contents, were assumed to be active (and growing) in the soil. Hybridization to an rRNA probe, EUB338, for the domain Bacteria was performed with a soil slurry, and this was followed by collection of the bacteria by membrane filtration (pore size, 0.2 micrometer). A nonsense probe, NONEUB338 (which has a nucleotide sequence complementary to the nucleotide sequence of probe EUB338), was used as a control for nonspecific staining. Counting and size classification into groups of small, medium, and large bacteria were performed by fluorescence microscopy. To compensate for a difference in the relative staining intensities of the probes and for binding by the rhodamine part of the probe, control experiments in which excess unlabelled probe was added were performed. This resulted in lower counts with EUB338 but not with NONEUB338, indicating that nonspecific staining was due to binding of rhodamine to the bacteria. A value of 4.8 x 10(8) active bacteria per g of dry soil was obtained for bulk soil incubated for 2 days with 0.3% glucose. In comparison, a value of 3.8 x 10(8) active bacteria per g of dry soil was obtained for soil which had been air dried and subsequently rewetted. In both soils, the majority (68 to 77%) of actively growing bacteria were members of the smallest size class (cell width, 0.25 to 0.5 micrometer), but the active (and growing) bacteria still represented only approximately 5% of the total bacterial population determined by DAPI (4', 6-diamidino-2-phenylindole) staining. The FISH technique in which slurry hybridization is used holds great promise for use with phylogenetic probes and for automatic counting of soil bacteria.  相似文献   

18.
Morphogenesis during the binary fission of the stichotrich ciliate Pseudoamphisiella alveolata, isolated from Jiaozhou Bay near Qingdao, China, was investigated using protargol silver impregnation. The process is characterized as follows: (1) in the proter, only the posterior part of the parental adoral zone of membranelles is renewed, where the membranelles dedifferentiate and then rebuild the UM-anlage and the missing membranelles, (2) the oral primordium in the opisthe and the FVT-anlagen in both dividers are formed de novo on the cell surface, (3) an "extra" anlage, which is generated on the right of the right marginal anlage, develops into three or four "extra" marginal cirri that connect the caudal cirri with the marginal rows, (4) the right marginal anlage is formed within the old structure, (5) the FVT-cirri develop in a primary mode, and (6) unlike most stichotrichs, the right marginal anlagen in both dividers generate closely together. As an additional contribution, the diversity of morphogenetic patterns within the genus Pseudoamphisiella is discussed. Based on both morphogenetic and SS rRNA gene sequencing data, the systematic position of the genus Pseudoamphisiella as well as the family Pseudoamphisiellidae Song et al. 1997 is briefly analyzed. The results indicate that they should very possibly represent a higher evolved group in the order Urostylida.  相似文献   

19.
AIMS: Pseudomonas spp. are considered the most important milk spoilage organisms. Here we describe development of a fluorescence in situ hybridization (FISH) probe specific for detection and enumeration of Pseudomonas spp. in milk. METHODS AND RESULTS: 16S rRNA sequences were analysed to develop specific oligonucleotide probe for the genus Pseudomonas. Twenty different Pseudomonas spp. and 23 bacterial species from genera other than Pseudomonas (as negative controls) were tested. All tested Pseudomonas spp. yielded a positive FISH reaction, whereas negative controls showed no FISH reaction except for Burkholderia cepacia that showed a relatively weak FISH reaction. The FISH assay specifically stains Pseudomonas in milk when the milk contains a mixture of other bacterial species. The FISH assay takes 2 h and compares favourably with current culturing methods, which take a minimum of 48 h. Specificity of the probe was validated using polymerase chain reaction to selectively amplifying the Pseudomonas rDNA gene and sequencing the gene products. CONCLUSIONS: The method presented in this study allows simultaneously detection, identification and enumeration of Pseudomonas spp. in milk. SIGNIFICANCE AND IMPACT OF THE STUDY: Rapid and accurate enumeration of Pseudomonas facilitates the identification of specific contamination sources in dairy plants, the accurate validation of pasteurization treatments and the prediction of shelf life of processed milk.  相似文献   

20.
We describe two new species and redescribe one in the polychaete genus Amphicorina Claparède, 1864 (Sabellidae) from Hokkaido, Japan. Amphicorina ascidicolasp. n. differs from its 38 congeners chiefly in the reduction of the collar, but also in having three pairs of radioles, one pair of ventral radiolar appendages, a bifurcate ventral lobe on the anterior peristomial ring, six abdominal chaetigers, and a large anterior tooth on the abdominal uncini. Amphicorina ezoensissp. n. has a crenulated collar, three pairs of radioles, and more than eight (12) abdominal chaetigers; Amphicorina ezoensis shares these character states with Amphicorina anneae (Rouse, 1994), Amphicorina eimeri (Langerhans, 1880), and Amphicorina persinosa (Ben-Eliahu, 1975), but differs from them in having two pairs of ventral radiolar appendages and a non-oblique collar. Amphicorina mobilis (Rouse, 1990) was previously known only from the type locality (New South Wales, Australia), but we identify our Japanese material as conspecific on the basis of morphological and molecular similarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号