首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ma H  Lou Y  Lin WH  Xue HW 《Cell research》2006,16(5):466-478
Multiple repeats of membrane occupation and recognition nexus (MORN) motifs were detected in plant phosphatidylinositl monophosphate kinase (PIPK), a key enzyme in PI-signaling pathway. Structural analysis indicates that all the MORN motifs (with varied numbers at ranges of 7-9), which shared high homologies to those of animal ones, were located at N-terminus and sequentially arranged, except those of OsPIPK1 and AtPIPK7, in which the last MORN motif was separated others by an -100 amino-acid "island" region, revealing the presence of two kinds of MORN arrangements in plant PIPKs. Through employing a yeast-based SMET (sequence of membrane-targeting) system, the MORN motifs were shown being able to target the fusion proteins to cell plasma membrane, which were further confirmed by expression of fused MORN-GFP proteins. Further detailed analysis via deletion studies indicated the MORN motifs in OsPIPK 1, together with the 104 amino-acid "island" region are involved in the regulation of differential subcellular localization, i.e. plasma membrane or nucleus, of the fused proteins. Fat Western blot analysis of the recombinant MORN polypeptide, expressed in Escherichia coli, showed that MORN motifs could strongly bind to PA and relatively slightly to PI4P and PI(4,5)P2. These results provide informative hints on mechanisms of subcellular localization, as well as regulation of substrate binding, of plant PIPKs.  相似文献   

2.
Hong F  Attia K  Wei C  Li K  He G  Su W  Zhang Q  Qian X  Yang J 《Bioscience reports》2007,27(4-5):225-234
RNA recognition motifs as important regulators of gene expression are highly conserved in animals and plants. The FCA floral promotion gene in Arabidopsis encodes a protein, containing two RNA recognition motifs (RRM) and a WW protein interaction domain. Here we isolated FCA cDNA from rice. FCA in rice (rFCA) was homologous to FCA-gamma of Arabidopsis and contained conserved domains. To investigate the function of RRM domain, fragment RRM1 and RRM2 of rFCA were introduced into rice subspecies Oryza sativa L. subsp. Indica var. 9311 and another rice subspecies Oryza sativa L. subsp. Japonica var. zhonghua11 transformation. Two transgenic lines exhibited similar phenotypes, flowering time delay, seed size and cell volume of transgenic plants was increased. These results showed that constitutive expression of RRMs could regulate cellular size. The patterns of overexpression of two RRM domains and their similar morphologies indicate they may play a same role.  相似文献   

3.
4.
5.
The type I B family of phosphatidylinositol phosphate kinases (PIPKs) contain a characteristic region of Membrane Occupation and Recognition Nexus (MORN) motifs at the N terminus. These MORN motifs are not found in PIPKs from other eukaryotes. To understand the impact of the additional N-terminal domain on protein function and subcellular distribution, we expressed truncated and full-length versions of AtPIPK1, one member of this family of PIPKs, in Escherichia coli and in tobacco cells grown in suspension culture. Deletion of the N-terminal MORN domain (amino acids 1-251) of AtPIPK1 increased the specific activity of the remaining C-terminal peptide (DeltaMORN) >4-fold and eliminated activation by phosphatidic acid (PtdOH). PtdOH activation could also be eliminated by mutating Pro(396) to Ala (P396A) in the predicted linker region between the MORN and the kinase homology domains. AtPIPK1 is product-activated and the MORN domain binds PtdIns(4,5)P(2). Adding back the MORN peptide to DeltaMORN or to the PtdOH-activated full-length protein increased activity approximately 2-fold. Furthermore, expressing the MORN domain in vivo increased the plasma membrane PtdInsP kinase activity. When cells were exposed to hyperosmotic stress, the MORN peptide redistributed from the plasma membrane to a lower phase or endomembrane fraction. In addition, endogenous PtdInsP kinase activity increased in the endomembrane fraction of hyperosmotically stressed cells. We conclude that the MORN peptide can regulate both the function and distribution of the enzyme in a manner that is sensitive to the lipid environment.  相似文献   

6.
Casein kinases are critical in cell division and differentiation across species. A rice cDNA fragment encoding a putative casein kinase I (CKI) was identified via cDNA macroarray under brassinosteroid (BR) treatment, and a 1939-bp full-length cDNA, OsCKI1, was isolated and found to encode a putative 463-aa protein. RT-PCR and Northern blot analysis indicated that OsCKI1 was constitutively expressed in various rice tissues and upregulated by treatments with BR and abscisic acid (ABA). Enzymatic assay of recombinant OsCKI1 proteins expressed in Escherichia coli showed that the protein was capable of phosphorylating casein. The physiological roles of OsCKI1 were studied through antisense transgenic approaches, and homozygous transgenic plants showed abnormal root development, including fewer lateral and adventitious roots, and shortened primary roots as a result of reduced cell elongation. Treatment of wild-type plants with CKI-7, a specific inhibitor of CKI, also confirmed these functions of OsCKI1. Interestingly, in transgenic and CKI-7-treated plants, exogenously supplied IAA could restore normal root development, and measurement of free IAA content in CKI-deficient primary and adventitious roots revealed altered auxin content, indicating that OsCKI1 is involved in auxin metabolism or that it may affect auxin levels. Transgenic plants were less sensitive than control plants to ABA or BR treatment during germination, suggesting that OsCKI1 may be involved in various hormone-signaling pathways. OsCKI1-GFP fusion studies revealed the localization of OsCKI1 to the nucleus, suggesting a possible involvement in regulation of gene expression. In OsCKI1-deficient plants, differential gene expression was investigated using cDNA chip technology, and results indicated that genes related to signal transduction and hormone metabolism were indeed with altered expression.  相似文献   

7.
8.
为研究水稻基因启动子对外源基因在转基因水稻中表达的影响,构建了由sbe1启动子引导的反义sbe-GUS融合基因。经农杆菌介导,将不同的融合基因导入水稻中,定量测定转基因水稻植株不同组织中的GUS酶活力。结果表明,sbe1启动子可驱动反义sbe-GUS融合基因在转基因水稻植株的胚乳中高效表达,而在颖壳、胚和茎叶等组织中的表达活性较弱。证实sbe1启动子在驱动外源基因的表达上表现有明显的组织特异性。  相似文献   

9.
Rice SPX domain gene, OsSPX1, plays an important role in the phosphate (Pi) signaling network. Our previous work showed that constitutive overexpression of OsSPX1 in tobacco and Arabidopsis plants improved cold tolerance while also decreasing total leaf Pi. In the present study, we generated rice antisense and sense transgenic lines of OsSPX1 and found that down-regulation of OsSPX1 caused high sensitivity to cold and oxidative stresses in rice seedlings. Compared to wild-type and OsSPX1-sense transgenic lines, more hydrogen peroxide accumulated in seedling leaves of OsSPX1-antisense transgenic lines for controls, cold and methyl viologen (MV) treatments. Glutathione as a ROS scavenger could protect the antisense transgenic lines from cold and MV stress. Rice whole genome GeneChip analysis showed that some oxidative-stress marker genes (e.g. glutathione S-transferase and P450s) and Pi-signaling pathway related genes (e.g. OsPHO2) were significantly down-regulated by the antisense of OsSPX1. The microarray results were validated by real-time RT-PCR. Our study indicated that OsSPX1 may be involved in cross-talks between oxidative stress, cold stress and phosphate homeostasis in rice seedling leaves.  相似文献   

10.
11.
水稻bicoid反义基因转基因植株胚胎发育的形态变化   总被引:4,自引:2,他引:2  
Bicoid是调控果蝇胚胎极性及以后分节发生过程的重要基因,这一基因编码的蛋白是一种转录调控因子,对一组早期胚胎发育过程中的多齿基因的表达具有调控作用,并被称为形态发生剂。在以前的工作中,从水稻cDNA文库中分离了一个同果蝇bicoid有相当同源性的克隆-Rb24基因(EMBL登录号:AJ2771380)。为进一步了解它在水稻中功能,将Rb的反义基因片段通过农杆菌的介导转入水稻中。通过Gus活性检测和PCR鉴定所获的抗性植株为转基因植株,转基因植株一个很明显的变化就是大约有50%的种子是败育的。通过石蜡切片观察了转基因水稻幼胚的发育情况,结果表明细胞的组织的分化在胚的发育过程中被阻断了。因此Rb基因同控制水稻胚的发育有关。  相似文献   

12.
分析水稻硝酸还原酶(NR)基因生物信息学的结果显示:水稻基因纽中有2个NR基因成员:一个为NR[NADH](NR1):另一个为NR[NAD(P)H](NR2)。两者的蛋白序列相似性为70%。用RT—PCR技术从水稻cDNA中获得了NR1和NR2的cDNA片段,其大小分别为1086bp和892bp。构建RNA干涉载体(称pRNAi—NR1和pRNAi-NR2)转化水稻愈伤组织后检测转基因后代酶活性的结果表明:两种干涉植株的根叶中的NR活性均大幅度下降,并且根叶中的活性变化呈线性正相关关系。表明2个基因可能均有调控根叶中NR活性的作用。  相似文献   

13.
转基因水稻胚乳中表达铁结合蛋白提高稻米铁含量   总被引:27,自引:0,他引:27  
为提高我国稻米的铁含量,通过农杆菌介导将自行克隆的菜豆(Phaseolus limensis)铁结合蛋白(Ferritin)基因导入了一个高产粳稻(Oryaz sativa L.ssp.japonuica)品种中,获得17个独立的转基因水稻株系。分子检测证明,外源基因在多数转基因水稻植株基因组中有1~3个整合位点,并可稳定遗传。在水稻种子贮存蛋白谷蛋白基因GluB-1启动子的控制下,铁结合蛋白基因可在转基因水稻的种子中高效特异地表达,不同转化子中的表达量有明显不同。在转基因水稻种子中表达铁结合蛋白后对提高精米中的铁含量有明显的效果,相对于未转化对照最多可提高64%,而锌的含量并无明显变化。  相似文献   

14.
The -197 bp promoter of the rice seed storage protein gene, GluB-1, is capable of conferring endosperm-specific gene expression. This proximal 5' flanking region contains four motifs, GCN4, AACA, ACGT and Prolamin-box, which are conserved in many seed storage protein genes. We previously showed that multiple copies of GCN4 conferred endosperm expression pattern when fused to the -46 core promoter of CaMV 35S. In this paper we demonstrate, using a similar approach, that tandem repeated copies of any of the other three motifs are unable to direct expression in seeds as well as other tissues of transgenic rice plants. Mutational analysis of individual motifs in the -197 bp promoter resulted in remarkable reductions in promoter activity. These results indicate that the GCN4 motif acts as an essential element determining endosperm-specific expression and that the AACA, ACGT and Prolamin-box are involved in quantitative regulation of the GluB-1 gene. A set of gain-of-function experiments using transgenic rice showed that either the Prolamin-box or AACA, although often coupled with GCN4 in many genes, is insufficient to form a functional promoter unit with GCN4, whereas a combination of GCN4, AACA and ACGT motifs was found sufficient to confer a detectable level of endosperm expression. Taken together, our results provide direct insight into the importance of combinatorial interplay between cis-elements in regulating the expression of seed storage protein genes.  相似文献   

15.
我们利用RT-PCR方法成功从水稻中克隆了R2R3类MYB转录因子OsDUO1(Oryza sativa duo pollen1)的全长为1032bp的cDNA,该基因编码一个343个氨基酸残基的蛋白。RT-PCR分析结果表明OsDUO1只在水稻的花粉发育后期表达,说明OsDUO1可能对水稻花粉发育具有生物学功能。生物信息学分析表明,OsDUO1在短柄草、高粱、玉米、拟南芥、烟草、葡萄、蓖麻、杨毛果、小立碗藓植物中有相近同源序列,暗示该基因在进化中具有保守的生物学功能。  相似文献   

16.
LeCOP1LIKE基因的克隆、反义构建及微型番茄的转化   总被引:1,自引:0,他引:1  
本文报告利用EST筛选结合RT-PCR的方法从番茄中克隆了LeCOP1LIKE基因的1060bpcDNA片段,并利用其非保守域构建反义RNA表达载体。利用农杆菌介导法.将LeCOP1LIKE基因的反义RNA表达载体转入微型番茄Micro-Tom.获得了10株反义LeCOP1LIKE转基因微型番茄。RT-PCR分析表明其中4个转基因株系中的LeCOP1LIKE表达被显著抑制.并发现抑制LeCOP1LIKE基因的表达导致转基因番茄的株高下降、叶片的叶绿素含量提高、果实中番茄红素含量增加,并且明显抑制转基因种子的发育。这些实验结果证明了LeCOP1LIKE基因为番茄发育过程中光形态建成的抑制因子。  相似文献   

17.
通过表型鉴定、反转录PCR和实时定量PCR方法,利用转基因和非转基因水稻植株,研究由Rxol基因介导的,水稻对细菌性条斑病菌的抗性反应。结果观察到3个涉及过敏性反应的基因由Rxol基因诱导表达,并对其进行了分析。这3个基因参与编码病程相关蛋白,在转基因水稻植株中呈上调表达,表明水杨酸信号转导途径在抗性反应中发挥重要的作用。  相似文献   

18.
为深入探讨水稻对逆境的反应机理并寻找新的植物耐逆基因,采用Affymetrix水稻表达芯片(含51279个转录本)分析了培矮64S全基因组在不同逆境(高温、干旱、低温)胁迫下、不同生育时期叶片和穗中的表达谱,从中筛选出一个受多种逆境诱导表达的基因OsMsr3(Oryza sativa L.multiple stresses responsive gene3,GenBank登陆号为 FJ383169).定量实时PCR分析结果进一步证实了此基因在逆境条件下的诱导表达模式.用 RT-PCR方法扩增获得了包含其完整开放阅读框的cDNA克隆,序列分析表明,其ORF大小为480 bp,编码一个具有160个氨基酸残基的低分子量热激蛋白,推测分子量约为18.0 kD;pI约为6.8.对其编码的蛋白质进行分析,发现其羧基端存在一个HSP20的蛋白保守结构域,与其他植物中的低分子量热激蛋白的相似性介于33.7%~97.5%.对其可能的启动子序列分析,发现6类与逆境反应有关的顺式作用元件.推测该基因在逆境反应中起着重要的作用,进一步的研究正在进行中.  相似文献   

19.
20.
水稻MYB cDNA的克隆和表达分析   总被引:5,自引:0,他引:5  
根据植物MYB类转录因子DNA结合功能域的保守区设计一对简并引物 ,以水稻根、小苗和未成熟种子中的RNA为材料 ,用RT PCR方法扩增出约 180bp的片段。序列分析表明 ,它们与MYB基因的保守区有很好的同源性。以未成熟种子中获得的这一 180bp片段作探针 ,从水稻未成熟种子cDNA文库中分离到 5个新的MYB基因家族成员 ,它们是OsMYB12、13、14、15和5 1。在酵母系统中证实OsMYB13、OsMYB15和Os MYB5 1蛋白具有转录激活功能。Northern印迹分析表明 ,OsMYB5 1主要在未成熟种子中表达 ,在根和小苗中表达水平较低。RT PCR分析表明 ,OsMYB15在根、茎、小穗、叶片和种子中有低水平的表达  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号