首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The short-term effect of a single fire, and the long-term effect of recent fire history and successional stage on total and mineral N concentration, net nitrogen mineralization, and nitrification were evaluated in soils from a steep semi-arid shrubland chronosequence in southeast Spain. A single fire significantly increased soil mineral N availability and net nitrification. Increasing fire frequency in the last few decades was. associated with a sharp decrease in surface soil organic matter and total N concentrations and pools, and with changes in the long-term N dynamic patterns. The surface-soil extractable NH4 +:NO3 ratio increased throughout the chronosequence. All net mineralized N in laboratory incubations from all sites was converted to nitrate, suggesting that allelochemic inhibition of net nitrification is probably not important in this system. Net nitrification in samples during incubation increased through the sere. The maximum rate of net nitrification (kmax) increased through the first three stages of the sere. A linear relationship was found between total soil N and N mineralization, and both kmax and net nitrification for the first three stages of the sere, suggesting that total N and ammonification are likely to be the control mechanisms of nitrification within the sere. The oldest site exhibited the lowest specific kmax and the highest, potential soil respiration rate suggesting that a lower N quality and increasing competition for ammonium might also limit nitrification at least in the long-unburned garrigue site.  相似文献   

2.
Wildfire in California annual grasslands is an important ecological disturbance and ecosystem control. Regional and global climate changes that affect aboveground biomass will alter fire-related nutrient loading and promote increased frequency and severity of fire in these systems. This can have long-term impacts on soil microbial dynamics and nutrient cycling, particularly in N-limited systems such as annual grasslands. We examined the effects of a low-severity fire on microbial biomass and specific microbial lipid biomarkers over 3?years following a fire at the Jasper Ridge Global Change Experiment. We also examined the impact of fire on the abundance of ammonia-oxidizing bacteria (AOB), specifically Nitrosospira Cluster 3a ammonia-oxidizers, and nitrification rates 9?months post-fire. Finally, we examined the interactive effects of fire and three other global change factors (N-deposition, precipitation and CO2) on plant biomass and soil microbial communities for three growing seasons after fire. Our results indicate that a low-severity fire is associated with earlier season primary productivity and higher soil-NH4 + concentrations in the first growing season following fire. Belowground productivity and total microbial biomass were not influenced by fire. Diagnostic microbial lipid biomarkers, including those for Gram-positive bacteria and Gram-negative bacteria, were reduced by fire 9- and 21-months post-fire, respectively. All effects of fire were indiscernible by 33-months post-fire, suggesting that above and belowground responses to fire do not persist in the long-term and that these grassland communities are resilient to fire disturbance. While N-deposition increased soil NH4 +, and thus available NH3, AOB abundance, nitrification rates and Cluster 3a AOB, similar increases in NH3 in the fire plots did not affect AOB or nitrification. We hypothesize that this difference in response to N-addition involves a mediation of P-limitation as a result of fire, possibly enhanced by increased plant competition and arbuscular mycorrhizal fungi–plant associations after fire.  相似文献   

3.
The effect of soil burning on N and P availability and on mineralization and nitrification rates of N in the burned mineral soil was studied by combustion of soils in the laboratory. At a fire temperature of 600°C, there was a complete volatilization of NH4 and a significant increase of pH, from 7.6 in the unburned soil to 11.7 in the burned soil. Under such conditions ammonification and nitrification reactions were inhibited. Less available P was produced immediately after the fire at 600°C, as compared to P amount produced at 250°C. Burning the soils with plants caused a decrease in NH4-N and (NO2+NO3)-N concentrations in the soil as well as a reduction in ammonification and nitrification rates. Combustion of soil with plants contributed additional available P to the burned soil. The existence of a non-burned soil under the burned one played an important role in triggering ammonification and nitrification reactions.  相似文献   

4.
Wildfires have shaped the biogeography of south Chilean Araucaria–Nothofagus rainforest vegetation patterns, but their impact on soil properties and associated nutrient cycling remains unclear. Nitrogen (N) availability shows a site‐specific response to wildfire events indicating the need for an increased understanding of underlying mechanisms that drive changes in soil N cycling. In this study, we selected unburned and burned sites in a large area of the National Park Tolhuaca that was affected by a stand‐replacing wildfire in February 2002. We conducted net N cycling flux measurements (net ammonification, net nitrification and net N mineralization assays) on soils sampled 3 years after fire. In addition, samples were physically fractionated and natural abundance of C and N, and 13C‐NMR analyses were performed. Results indicated that standing inorganic N pools were greater in the burned soil, but that no main differences in net N cycling fluxes were observed between unburned and burned sites. In both sites, net ammonification and net nitrification fluxes were low or negative, indicating N immobilization. Multiple linear regression analyses indicated that soil N cycling could largely be explained by two parameters: light fraction (LF) soil organic matter N content and aromatic Chemical Oxidation Resistant Carbon (CORECarom), a relative measure for char. The LF fraction, a strong NH4+ sink, decreased as a result of fire, while CORECarom increased in the burned soil profile and stimulated NO3 production. The absence of increased total net nitrification might relate to a decrease in heterotrophic nitrification after wildfire. We conclude that (i) wildfire induced a shift in N transformation pathways, but not in total net N mineralization, and (ii) stable isotope measurements are a useful tool to assess post‐fire soil organic matter dynamics.  相似文献   

5.
6.
Combined measurements of nitrification activity and N2O emissions were performed in a lowland and a montane tropical rainforest ecosystem in NE-Australia over a 18 months period from October 2001 until May 2003. At both sites gross nitrification rates, measured by the BaPS technique, showed a strong seasonal pattern with significantly higher rates of gross nitrification during wet season conditions. Nitrification rates at the montane site (1.48?±?0.24–18.75?±?2.38 mg N kg?1 day?1) were found to be significantly higher than at the lowland site (1.65?±?0.21–4.54?±?0.27 mg N kg?1 day?1). The relationship between soil moisture and gross nitrification rates could be described best by O’Neill functions having a soil moisture optimum of nitrification at app. 65% WFPS. At the lowland site, for which continuous measurements of N2O emissions were available, nitrification was positively correlated with N2O emission. Nitrification contributed significantly to N2O formation during dry season (app.85%) but less (app. 30%) during wet season conditions. In average 0.19‰ of the N metabolized by nitrification was released as N2O. The N2O fraction loss for nitrification was positively correlated with changes in soil moisture and varied slightly between 0.15 and 0.22‰. Our results demonstrate that combined N2O emission and microbial N turnover studies covering prolonged observation periods are needed to clarify and quantify the role of the microbial processes nitrification and denitrification for annual N2O emissions from soils of terrestrial ecosystems.  相似文献   

7.

Background

Little is known about the combined impacts of global environmental changes and ecological disturbances on ecosystem functioning, even though such combined impacts might play critical roles in shaping ecosystem processes that can in turn feed back to climate change, such as soil emissions of greenhouse gases.

Methodology/Principal Findings

We took advantage of an accidental, low-severity wildfire that burned part of a long-term global change experiment to investigate the interactive effects of a fire disturbance and increases in CO2 concentration, precipitation and nitrogen supply on soil nitrous oxide (N2O) emissions in a grassland ecosystem. We examined the responses of soil N2O emissions, as well as the responses of the two main microbial processes contributing to soil N2O production – nitrification and denitrification – and of their main drivers. We show that the fire disturbance greatly increased soil N2O emissions over a three-year period, and that elevated CO2 and enhanced nitrogen supply amplified fire effects on soil N2O emissions: emissions increased by a factor of two with fire alone and by a factor of six under the combined influence of fire, elevated CO2 and nitrogen. We also provide evidence that this response was caused by increased microbial denitrification, resulting from increased soil moisture and soil carbon and nitrogen availability in the burned and fertilized plots.

Conclusions/Significance

Our results indicate that the combined effects of fire and global environmental changes can exceed their effects in isolation, thereby creating unexpected feedbacks to soil greenhouse gas emissions. These findings highlight the need to further explore the impacts of ecological disturbances on ecosystem functioning in the context of global change if we wish to be able to model future soil greenhouse gas emissions with greater confidence.  相似文献   

8.
In order to understand the role of nitrification and denitrification in the accumulation of nitrous oxide (N2O) in the hypolimnetic water of brackish Lake Nakaumi, the effects of dissolved oxygen (DO) concentration on these activities were investigated by incubation experiments. N2O was produced during the oxidation of NH4 + to NO2 in nitrification and during the reduction of NO3 to N2 in denitrification. N2O-producing activity by nitrification (N2ON) increased markedly with decreasing concentrations of DO. Low DO (10%–30% saturation) induced high N2ON. In contrast to nitrification, N2O-producing activity by denitrification (N2OD) decreased with decreasing concentrations of DO. Little N2O was accumulated during denitrification under low-level conditions of DO (10%–30%), because of further reduction of N2O to N2. It can therefore be assumed that N2O produced as the by-product of nitrification is concurrently reduced to N2 by denitrification under low-DO conditions. This would result in no substantial accumulation of N2O during active nitrification in the hypolimnetic water of Lake Nakaumi. Received: July 6, 2001 / Accepted: December 10, 2001  相似文献   

9.
Despite increasing interest in the effects of climate change on soil processes, the response of nitrification to elevated CO2 remains unclear. Responses may depend on soil nitrogen (N) status, and inferences may vary depending on the methodological approach used. We investigated the interactive effects of elevated CO2 and inorganic N supply on gross nitrification (using 15N pool dilution) and potential nitrification (using nitrifying enzyme activity assays) in Dactylis glomerata mesocosms. We measured the responses of putative drivers of nitrification (NH 4 + production, NH 4 + consumption, and soil environmental conditions) and of potential denitrification, a process functionally linked to nitrification. Gross nitrification was insensitive to all treatments, whereas potential nitrification was higher in the high N treatment and was further stimulated by elevated CO2 in the high N treatment. Gross mineralization and NH 4 + consumption rates were also significantly increased in response to elevated CO2 in the high N treatment, while potential denitrification showed a significant increase in response to N addition. The discrepancy between the responses of gross and potential nitrification to elevated CO2 and inorganic N supply suggest that these measurements provide different information, and should be used as complementary approaches to understand nitrification response to global change.  相似文献   

10.
Potential rates of nitrification and denitrification were measured in an oligotrophic sediment system. Nitrification potential was estimated using the CO oxidation technique, and potential denitrification was measured by the acetylene blockage technique. The sediments demonstrated both nitrifying and denitrifying activity. Eh, O2, and organic C profiles showed two distinct types of sediment. One type was low in organic C, had high O2 and Eh, and had rates of denitrification 1,000 times lower than the other which had high organic C, low O2, and low Eh. Potential nitrification and denitrification rates were negatively correlated with Eh. This suggests that environmental heterogeneity in denitrifier and nitrifier populations in oligotrophic sediment systems may be assessed using Eh before sampling protocols for nitrification or denitrification rates are established. There was no correlation between denitrification and nitrification rates or between either of these processes and NH4 + or NO3 concentrations. The maximum rate of denitrification was 0.969 nmole N cm–3 hour–1, and the maximum rate of nitrification was 23.6 nmole cm–3 hour–1, suggesting nitrification does not limit denitrification in these oligotrophic sediments. Some sediment cores had mean concentrations of 6.0 mg O2/liter and still showed both nitrification and denitrification activity.  相似文献   

11.
The distribution of nitrification potential (NP) with depth in sediment and season was investigated in a shallow sandy sediment (0.5 m water) and a deeper muddy sediment (17m water). In both sediments, nitrifying bacteria were present in the anoxic strata (oxygen penetration was 5 mm below the surface). The NP at 6–8 cm depth in the sediment was 50% and 10% of the surface NP at the sandy and muddy sediment, respectively. It is suggested that bioturbation and physical disturbance of the sediment were the most likely reasons for this distribution. The NP increased as sediment temperature decreased. This effect was less marked in the muddy sediment. It is concluded that during the summer, the numbers or specific activity of nitrifying bacteria diminished for the following reasons: There was decreased O2 penetration into the sediment and increased competition for O2 by heterotrophs; there was increased competition for NH4 + and there was inhibition by H2S. These effects counteracted the potentially higher growth rates and increased rates of NH4 + production at the elevated summer temperatures. The potential nitrification rates in the upper 1 cm, which were measured at 22°C, were converted to calculated rates at the in situ temperature (Q10=2.5) and in situ oxygen penetration. These calculated rates were shown to closely resemble the measured in situ rates of nitrification. The relationship between the in situ rates of nitrification and the nitrification potential is discussed.  相似文献   

12.
Sediment-reworking macrofauna can stimulate nitrification by increasing the O2 penetration into sediments or it can reduce nitrification by grazing on nitrifying bacteria. We investigated the influence of Chironomus riparius larvae (Insecta: Diptera) on the in situ activity, abundance, and distribution of NH4+-oxidizing (AOB) and NO2-oxidizing bacteria (NOB) in two freshwater sediments with microsensors and fluorescence in situ hybridization. In organic-poor sediment, nitrification activity was reduced by the presence of C. riparius larvae, whereas no such effect was detected in organic-rich sediment. We explain this difference with the variable larval burrowing and grazing behavior in the two sediment types: In organic-poor sediment larval activities were intense and evenly distributed across the whole sediment surface, whereas in organic-rich sediment larval activities were locally restricted to the microenvironment of animal burrows. Surprisingly, the animals did not cause any significant change of the abundance of AOB and NOB. This implies that the observed reduction of nitrification activity was not density-regulated, but rather was due to the lowered metabolic activity of the nitrifiers. Partial digestion and redeposition of particle-associated bacteria by C. riparius larvae are believed to have caused this loss of metabolic activity.This revised version was published online in November 2004 with corrections to Volume 48.  相似文献   

13.
SUMMARY 1. Microcosm experiments were carried out to simulate, in the laboratory, the conditions occurring at the water-sediment interface of a stream draining agricultural land. Constant boundary conditions were attained by passing synthetic 'stream water', saturated with dissolved oxygen and containing 1 mmol NO3?N dm?3 (or 1 mmol Cl? dm?3, control), once only over the sediment surface. 2. Measurements were made of inorganic-N (nitrate, nitrite, ammonium), redox potential, potential denitrification and nitrification activities, and readily mineralizable carbon sediment profiles at three incubation times up to 24 days. The peaks in denitrification and nitrification activity moved down the profile with time in the nitrate-treated sediment, but stayed relatively stationary in the control treatment. Although the zone of nitrification was restricted to the top 2–3 mm of sediment in the control treatment, high fluxes of both dissolved oxygen and NH4?N maintained a high nitrifier activity within this zone for the duration of the experiment. 3. Increases in denitrifier activity immediately below the nitrifier activity peak indicated that a coupled nitrification-denitrification sequence was operating in both the control and nitrate-treated sediment. The greater depth of nitrification when nitrate was present in the ‘stream water’ was attributed to a feedback mechanism in which enhanced denitrification in the sediment reduced the local demand for oxygen and permitted dissolved oxygen to diffuse further into the sediment. The progressively greater depth to which oxygen penetrated caused the contiguous peaks of potential nitrifier and denitrifier enzyme activity to migrate farther from the interface. However, diffusion rates of the reactants limited the depth to which these coupled reactions could extend. 4. The possible effect of this feedback mechanism on the nitrate status of natural sediment-stream water systems is briefly discussed.  相似文献   

14.
Summary Nitrogen mineralization and net nitrification rates were 3–7 times greater in soil incubations from a girdled Liriodendron tulipifera (L.) stand than in a control stand. Neither litter nor root extracts had an inhibitory effect on nitrogen mineralization or nitrification rate. A lack of nitrification inhibitors also was demonstrated by the fact that ammonium added to the control stand was completely converted to nitrate upon incubation. Additions of sucrose increased CO2 evolution and decreased nitrogen mineralization and nitrification rates in the girdled plot soil, suggesting that nitrification could be effectively controlled by competition for NH 4 + supplies by heterotrophic soil organisms. CO2 evolution rates during incubation showed that heterotrophic as well as nitrifier activities were greater in the girdled plot soil than in the ungirdled plot soil, but the ratio of C to N mineralized was lower in the girdled plot soil. These results collectively indicate that nitrification is regulated by the availability of NH 4 + in these stands, and that the latter is strongly regulated by heterotrophic demand for N.Operated by Union Carbide Corporation for the U.S. Department of Energy  相似文献   

15.
Experiments were conducted to examine the effects of long-term fertilization and acute Zn toxicity on the size, nitrification activity and community structure of autotrophic ammonia-oxidizing populations of the β-subgroup of the class Proteobacteria in arable soils. Plots under different long-term fertilization regimes were sampled, and then different concentrations of ZnCl2 were spiked into soil samples for 8 weeks. It was found that long-term fertilization significantly increased nitrification rates and population size, and there was a positive correlation between them. A shift in the composition of AOB was also detected in samples fertilized with mineral N fertilizer (NPK) and organic matter (OM) as compared to unfertilized sample. EC50 values suggested that there was no significant difference in Zn toxicity to nitrification rates among the three fertilization treatments. Long-term fertilization did not improve the resilience of AOB activity to Zn toxicity.  相似文献   

16.
Nitrogen loss from grassland on peat soils through nitrous oxide production   总被引:2,自引:0,他引:2  
Koops  J.G.  van Beusichem  M.L.  Oenema  O. 《Plant and Soil》1997,188(1):119-130
Nitrous oxide (N2O) in soils is produced through nitrification and denitrification. The N2O produced is considered as a nitrogen (N) loss because it will most likely escape from the soil to the atmosphere as N2O or N2. Aim of the study was to quantify N2O production in grassland on peat soils in relation to N input and to determine the relative contribution of nitrification and denitrification to N2O production. Measurements were carried out on a weekly basis in 2 grasslands on peat soil (Peat I and Peat II) for 2 years (1993 and 1994) using intact soil core incubations. In additional experiments distinction between N2O from nitrification and denitrification was made by use of the gaseous nitrification inhibitor methyl fluoride (CH3F).Nitrous oxide production over the 2 year period was on average 34 kg N ha-1 yr-1 for mown treatments that received no N fertiliser and 44 kg N ha-1 yr-1 for mown and N fertilised treatments. Grazing by dairy cattle on Peat I caused additional N2O production to reach 81 kg N ha-1 yr-1. The sub soil (20–40 cm) contributed 25 to 40% of the total N2O production in the 0–40 cm layer. The N2O production:denitrification ratio was on average about 1 in the top soil and 2 in the sub soil indicating that N2O production through nitrification was important. Experiments showed that when ratios were larger than l, nitrification was the major source of N2O. In conclusion, N2O production is a significant N loss mechanism in grassland on peat soil with nitrification as an important N2O producing process.  相似文献   

17.
The source of N2O produced in soil is often uncertain because denitrification and nitrification can occur simultaneously in the same soil aggregate. A technique which exploits the differential sensitivity of these processes to C2H2 inhibition is proposed for distinguishing among gaseous N losses from soils. Denitrification N2O was estimated from 24-h laboratory incubations in which nitrification was inhibited by 10-Pa C2H2. Nitrification N2O was estimated from the difference between N2O production under no C2H2 and that determined for denitrification. Denitrification N2 was estimated from the difference between N2O production under 10-kPa C2H2 and that under 10 Pa. Laboratory estimates of N2O production were significantly correlated with in situ N2O diffusion measurements made during a 10-month period in two forested watersheds. Nitrous oxide production from nitrification was most important on well-drained sites of a disturbed watershed where ambient NO3 was high. In contrast, denitrification N2O was most important on poorly drained sites near the stream of the same watershed. Distinction between N2O production from nitrification and denitrification was corroborated by correlations between denitrification N2O and water-filled pore space and between nitrification N2O and ambient NO3. This technique permits qualitative study of environmental parameters that regulate gaseous N losses via denitrification and nitrification.  相似文献   

18.
Across northern Alberta, Canada, bogs experience periodic wildfire and, in the Fort McMurray region, are exposed to increasing atmospheric N deposition related to oil sands development. As the fire return interval shortens and/or growing season temperatures increase, the regional peatland CO2–C sink across northern Alberta will likely decrease, but the magnitude of the decrease could be diminished if increasing atmospheric N deposition alters N cycling in a way that stimulates post-fire successional development in bogs. We quantified net ammonification, nitrification, and dissolved organic N (DON) production in surface peat along a post-fire chronosequence of five bogs where we also experimentally manipulated N deposition (no water controls plus 0, 10, and 20 kg N ha?1 yr?1 simulated deposition, as NH4NO3). Initial KCl-extractable NH4+–N, NO3?–N and DON averaged 176?±?6, 54?±?0.2, and 3580?±?40 ng N cm?3, respectively, with no consistent changes as a function of time since fire and no consistent effects of experimental N addition. Net ammonification, nitrification, and DON production averaged 3.8?±?0.3, 1.6?±?0.2, and 14.3?±?2.0 ng N cm?3 d?1, also with no consistent changes as a function of time since fire and no consistent effects of experimental N addition. Our hypothesis that N mineralization would be stimulated after fire because root death would create a pulse of labile soil organic C was not supported, most likely because ericaceous plant roots typically are not killed in boreal bog wildfires. The absence of any N mineralization response to experimental N addition is most likely a result of rapid immobilization of added NH4+–N and NO3?–N in peat with a wide C:N ratio. In these boreal bogs, belowground N cycling is likely characterized by large DON pools that turn over relatively slowly and small DIN pools that turn over relatively rapidly. For Alberta bogs that have persisted at historically low N deposition values and begin to receive higher N deposition related to anthropogenic activities, peat N mineralization processes may be largely unaffected until the peat C:N ratio reaches a point that no longer favors immobilization of NH4+–N and NO3?–N.  相似文献   

19.
Abiotic controls on net nitrification rates are well documented, but the potential effects of plants on this important ecosystem process are poorly understood. We evaluated four structural equation models to determine the relative importance of plant community composition, aboveground herbaceous production, and plant species richness on nitrifier abundance and net nitrification following restoration treatments in a ponderosa pine forest. Model selection criteria indicated that species richness was the best predictor of nitrifier abundance, but a model that included community composition effects also had some support in the data. Model results suggest that net nitrification was indirectly related to plant species richness via a positive relationship between species richness and nitrifier abundance. Community composition was indirectly related to nitrifier abundance through its relationship with species richness. Our model indicates that species-rich plant communities dominated by C3 graminoids and legumes are associated with soils that have high abundances of nitrifiers. This study highlights the complexity of deciphering effects of ecological treatments on a system response when multiple interacting factors are simultaneously affected. Our results suggest that plant diversity and composition can both respond to forest thinning, prescribed fire and fuel manipulations, and can be factors that might indirectly influence an ecosystem process such as nitrification. Ecological restoration treatments designed to increase plant diversity and alter community composition may have cascading effects on below-ground processes.  相似文献   

20.
Ammonia (NH3)-oxidizing bacteria (AOB) and thaumarchaea (AOA) co-occupy most soils, yet no short-term growth-independent method exists to determine their relative contributions to nitrification in situ. Microbial monooxygenases differ in their vulnerability to inactivation by aliphatic n-alkynes, and we found that NH3 oxidation by the marine thaumarchaeon Nitrosopumilus maritimus was unaffected during a 24-h exposure to ≤20 μM concentrations of 1-alkynes C8 and C9. In contrast, NH3 oxidation by two AOB (Nitrosomonas europaea and Nitrosospira multiformis) was quickly and irreversibly inactivated by 1 μM C8 (octyne). Evidence that nitrification carried out by soilborne AOA was also insensitive to octyne was obtained. In incubations (21 or 28 days) of two different whole soils, both acetylene and octyne effectively prevented NH4+-stimulated increases in AOB population densities, but octyne did not prevent increases in AOA population densities that were prevented by acetylene. Furthermore, octyne-resistant, NH4+-stimulated net nitrification rates of 2 and 7 μg N/g soil/day persisted throughout the incubation of the two soils. Other evidence that octyne-resistant nitrification was due to AOA included (i) a positive correlation of octyne-resistant nitrification in soil slurries of cropped and noncropped soils with allylthiourea-resistant activity (100 μM) and (ii) the finding that the fraction of octyne-resistant nitrification in soil slurries correlated with the fraction of nitrification that recovered from irreversible acetylene inactivation in the presence of bacterial protein synthesis inhibitors and with the octyne-resistant fraction of NH4+-saturated net nitrification measured in whole soils. Octyne can be useful in short-term assays to discriminate AOA and AOB contributions to soil nitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号