首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Human use of land and water resources modifies many streamflow characteristics, which can have significant ecological consequences. Streamflow and invertebrate data collected at 111 sites in the western U.S.A. were analysed to identify streamflow characteristics (magnitude, frequency, duration, timing and variation) that are probably to limit characteristics of benthic invertebrate assemblages (abundance, richness, diversity and evenness, functional feeding groups and individual taxa) and, thus, would be important for freshwater conservation and restoration. Our analysis investigated multiple metrics for each biological and hydrological characteristic, but focuses on 14 invertebrate metrics and 13 streamflow metrics representing the key associations between streamflow and invertebrates. 2. Streamflow is only one of many environmental and biotic factors that influence the characteristics of invertebrate assemblages. Although the central tendency of invertebrate assemblage characteristics may not respond to any one factor across a large region like the western U.S.A., we postulate that streamflow may limit some invertebrates. To assess streamflow characteristics as limiting factors on invertebrate assemblages, we developed a nonparametric screening procedure to identify upper (ceilings) or lower (floors) limits on invertebrate metrics associated with streamflow metrics. Ceilings and floors for selected metrics were then quantified using quantile regression. 3. Invertebrate assemblages had limits associated with all streamflow characteristics that we analysed. Metrics of streamflow variation at daily to inter‐annual scales were among the most common characteristics associated with limits on invertebrate assemblages. Baseflow recession, daily variation and monthly variation, in streamflow were associated with the largest number of invertebrate metrics. Since changes in streamflow variation are often a consequence of hydrologic alteration, they may serve as useful indicators of ecologically significant changes in streamflow and as benchmarks for managing streamflow for ecological objectives. 4. Relative abundance of Plecoptera, richness of non‐insect taxa and relative abundance of intolerant taxa were associated with multiple streamflow metrics. Metrics of sensitive taxa (Ephemeroptera, Plecoptera and Trichoptera), and intolerant taxa generally had ceilings associated with flow metrics while metrics of tolerant taxa, non‐insects, dominance and chironomids generally had floors. Broader characteristics of invertebrate assemblages such as abundance and richness had fewer limits, but these limits were nonetheless associated with a broad range of streamflow characteristics.  相似文献   

2.
Macroinvertebrates are one of the key components of lake ecosystems and are required to be monitored alongside other biological groups to define ecological status according to European Union legislation. Macroinvertebrate communities are highly variable and complex and respond to a diverse series of environmental conditions. The purpose of this study was to examine the relative importance of environmental variables in explaining macroinvertebrate abundance. A total of 45 sub-alpine lakes were sampled for macroinvertebrates in the shallow sublittoral. Environmental variables were grouped into four types: (1) aquatic physical and chemical parameters, (2) littoral and riparian habitat, (3) lake morphometric parameters and (4) sediment chemical characteristics. Nonparametric multiplicative regression (NPMR) was used to model the abundance of individual macroinvertebrate taxa. Significant models were produced for nine out of the 24 taxa examined. Sediment characteristics were the group most frequently included in models and also the factors to which taxa abundance was the most sensitive. Aquatic physical and chemical variables were the next group most frequently included in models although chlorophyll a was not included in any of the models and total phosphorus in only one. This indicates that many taxa may not show a direct easily interpretable response to eutrophication pressure. Lake morphometric factors were included in several of the models although the sensitivity of macroinvertebrate abundance tended to be lower than for sediment and aquatic physical and chemical factors. Habitat factors were only included in three models although riparian vegetation was found to have a significant influence on the abundance of Ephemera danica indicating that ecotone integrity is likely to play a role in its ecology. Overall, the models tended to be specific for species with limited commonality across taxa. Models produced by NPMR indicate that the response of macroinvertebrates to environmental variables can be successfully described but further research is required focussing in more detail on the response of key taxa to relevant environmental parameters and anthropogenic pressures.  相似文献   

3.
Various factors, such as habitat availability, competition for space, predation, temperature, nutrient supplies, presence of waterfalls, flow variability and water quality, control the abundance, distribution and productivity of stream-dwelling organisms. Each of these factors can influence the response of the density of organisms to a specific environmental gradient, inflating variability and making difficult to understand the possible causal relationship. In our study, we used quantile regression mixed models and Akaike’s information criterion as an indicator of goodness to examine two different datasets, one belonging to Italy and one belonging to Finland, and to detect the limiting action of selected environmental variables. In the Italian dataset, we studied the relationships among five macroinvertebrate families and three physical habitat characteristics (water velocity, depth and substratum size); in the Finnish dataset the relationships between taxa richness and 16 environmental characteristics (chemical and physical). We found limiting relationships in both datasets and validated all of them on different datasets. These relationships are quantitative and can be used to predict the range of macroinvertebrate densities or taxa richness as a function of environmental characteristics. They can be a tool for management purposes, providing the basis for habitat-based models and for the development of ecological indices.  相似文献   

4.
Current knowledge regarding the flow preferences of benthic stream invertebrates is mostly based on qualitative data or expert knowledge and literature analysis. These established flow preferences are difficult to use in predictions of the effects of global change on aquatic biota. To complement the existing categories, we performed a large-scale analysis on the distribution of stream invertebrates at stream monitoring sites in order to determine their responses to various hydrological conditions.We used 325 invertebrate surveys from environmental agencies at 238 sites paired to 217 gauges across Germany covering a broad range of hydrological conditions. Based on these data, we modelled the respective probabilities of occurrences for 120 benthic invertebrate taxa within this hydrological range using hierarchical logistic regression models.Our analyses revealed that more than one-third of the taxa (18–40%) can be considered as ubiquitous and having a broad hydrological tolerance. Furthermore, 22–41% of the taxa responded to specific ranges of flow conditions with detectable optima. “Duration high flow event” represented the flow parameter that correlated best with the abundance of individual taxa, followed by “rate of change average event”, with 41 and 38% of the taxa showing a peak in their probability of occurrence at specific ranges of these metrics, respectively. The habitat suitability for these taxa may be potentially affected by global change-induced hydrological changes.Quantified hydrological traits of individual taxa might therefore support stream management and enable the prediction of taxa responses to flow alteration. The hydrological traits of stream benthic invertebrates may be used in forecasting studies in central Europe, and the methods used in this study are suitable for application in other regions with different flow regimes.  相似文献   

5.
Vegetation gradients developing around water sources (i.e. piospheres) are important features of arid and semi-arid ecosystems. Studied extensively in pastoral areas, piospheres have rarely been investigated in areas hosting rich herbivore diversity. We studied piospheres in woody cover assessed through remote-sensing in Hwange National Park, Zimbabwe, which has one of the world's largest elephant populations. As no preferred statistical model for piosphere studies has emerged, we first contrasted results from ordinary least-square (OLS) regressions on raw data with those from other statistical models (OLS on aggregated data and simultaneous autoregressive models on raw data), and selected the most parsimonious, unbiased, model to study the influence of artificial and natural waterholes, and the abundance of elephants, others browsers, and grazers on piospheres. OLS models provided unbiased parameter estimates, despite the strong spatial autocorrelation present in woody cover data, whereas other statistical models had important drawbacks. Using an OLS framework we showed that despite an important negative non-linear mean effect, distance-to-water was a poor predictor of woody cover at any location. Woody cover was on average more reduced in the vicinity of water at artificial waterholes than at natural waterholes. Elephant abundance was not consistently associated with lower woody cover, and poorly explained woody cover heterogeneity, as did all other herbivore-related variables. Our study indicates that piospheres may develop differently in pastoral and protected areas, suggesting the importance of herbivore diversity in ecosystem functioning. Our results also show that heterogeneity in woody cover persists within piospheres, calling for further investigation on the origin and role of this heterogeneity in the maintenance of ecological processes and biodiversity within these key-areas of the landscape.  相似文献   

6.
1. Due to climate change, contemporary climate scenarios forecast an increase in extreme weather, which may have considerable impacts on the world's riverine ecosystems. Because the flow regime is a primary determinant of the structure and function of lotic ecosystems, changes in the weather could fundamentally alter these ecosystems through changes in hydrologic disturbance regimes. 2. In this paper, we use the abundance/biomass comparison (ABC) method, based on r/K selection theory, and event probability distribution to characterise the responses of macroinvertebrates in Taiwan mountain streams to extreme floods. 3. Severe impacts on macroinvertebrates, resulting in a large shift in community structure toward r‐selected taxa, usually were observed the year after extreme floods. 4. Macroinvertebrate communities dominated by K‐selected taxa had more individuals with traits conferring resistance to flooding disturbance, while those dominated byr‐selected taxa had more individuals with traits conferring resilience. 5. This relationship between the changes in flow regime and the ecological response of r‐ and K‐selected taxa may be exploited to understand the potential effects of flood extremes in the future, and to keep decision makers informed about the ecological consequences of climate‐mediated changes to hydrological regimes.  相似文献   

7.
Much recent work on patch-occupancy dynamics has been concentrated in terrestrial ecosystems, with few examples evident from soft-sediment marine habitats. Seagrass landscapes have recently been recognised to be potentially ideal marine models for the study of such ecological concepts. Infaunal macroinvertebrate assemblages of two patch sizes of the seagrass Zostera marina were compared: small (<15 m diameter) and large (>30 m diameter), using an unreplicated random block design. Further comparison was made between infaunal assemblage composition at the edge and centre of each patch. Univariate statistical analysis of data indicated significantly greater total numbers of taxa in samples from large patches than in small. Multivariate analyses indicated significant differences in assemblage composition due to both patch size and in-patch location, and revealed that differences were due to small changes in the relative abundances of many taxa. Possible mechanisms underlying the observed variations of assemblage composition with patch size and in-patch location are discussed. Although the present results support some of the theories relating to the control of infaunal assemblage composition, explanations are not applicable across all taxonomic groups. At the scale of the present study, seagrass patch size and edge-effects appear to be less significant than 'regional' factors, which relate to relatively small variation in environmental parameters, for the structuring of infaunal macroinvertebrate assemblages.  相似文献   

8.
回归模型可用于预测森林生态系统地上生物量,其中最为常用的是最小二乘回归模型。在预测灌木,尤其是多茎灌木的地上生物量 时,最小二乘法与贝叶斯方法的比较很少被研究。我们开发了小叶锦鸡儿(Caragana microphylla Lam.)生物量预测模型。小叶锦鸡儿是科尔 沁沙地广泛分布的多茎灌木,对减少风蚀、固定沙丘具有重要作用。本研究建立6种表征生物量的异速增长模型,并基于统计标准选择 在预测生物量方面表现最佳的1种,然后分别用最小二乘法与贝叶斯方法对模型中的参数进行估计。参数估计过程中用自助法考察样本量大 小的影响,同时区分测试集与训练集。最后,我们比较了最小二乘法与贝叶斯方法在小叶锦鸡儿地上生物量预测中的表现。异速增长的6个 模型均达到显著水平,其中幂指数为1的模型表现最佳。研究结果表明,采用无先验信息与有先验信息的贝叶斯方法进行估计,得到的均 方误差在测试集上低于最小二乘法。另外,基径作为预测变量在最小二乘法与贝叶斯方法中均不显著,表明在生物量预测模型中应谨慎选 择合适变量。本研究强调贝叶斯方法、自助法和异速增长模型相结合能够提升沙地灌木生物量预测模型的准确度。  相似文献   

9.
The environmental legislation of many countries increasingly requires the continuous monitoring of fish assemblages to evaluate the success of river and stream restorations. Predicting species–environment relationships on the basis of monitoring data is central in the evaluation of ecological integrity and planning of rehabilitation strategies. Monitoring data are, however, often plagued by a substantial proportion of zeros (no catch at single sampling points) which are caused by relevant ecological processes, but complicate the use of commonly used statistical methods. This study compares mere count regression models, mixture and hurdle models based on Poisson and negative binomial distribution and logistic regressions with respect to their ability to cope with large zero-inflated data sets obtained by point abundance sampling of young-of-the-year fish from three large German rivers. Only mixture and hurdle models based on negative binomial distribution could satisfactorily be fitted to the zero-inflated and overdispersed count data. The logistic regression models applied to transliterated catch data simplified the computational procedure and yielded qualitative similar results to the count regression models indicating that the use of more complex count data did not generally provide better predictions. Therefore, presence/absence sampling may be a suitable and less costly alternative to abundance surveys for identifying environmental factors which affect the spatial distribution of fish populations at least if information on subtly abundance fluctuations is not needed. Mixture or hurdle models are particularly worth the additional effort if it is reasonable to distinguish between those environmental factors influencing the occurrence probability and others affecting the abundance. All models showed low sensitivity to rare guilds pointing to the need for a further development of statistical models for rare species whose management is a matter of growing environmental concern.  相似文献   

10.
11.
Alteration of natural flow regime is considered a major threat to biodiversity in river floodplain ecosystems. Measurements of quantitative relationships between flow regime change and biodiversity are, however, incomplete and inconclusive. This hampers the assessment of human impact on riverine floodplain wetlands in global biodiversity evaluations. We systematically reviewed the scientific literature and extracted information from existing data sets for a meta-analysis to unravel a general quantitative understanding of the ecological consequences of altered flow regimes. From 28 studies we retrieved both ecological and hydrological data. Relative mean abundance of original species (mean species abundance, MSA) and relative species richness were used as effect size measures of biodiversity intactness. The meta-analysis showed that alteration of a natural flow regime reduces the MSA by more than 50 % on average, and species richness by more than 25 %. Impact on species richness and abundance tends to be related to the degree of hydrological alteration. These results can be used in strategic quantitative assessments by incorporating the relationships into global models on environmental change and biodiversity such as GLOBIO-aquatic.  相似文献   

12.
Taxonomic level, trophic biology and the regulation of local abundance   总被引:2,自引:0,他引:2  
  • 1 Taxocenes — monophyletic ecological assemblages — are a key focus of macroecology. Abundance (individuals per area) is a basic property of taxocenes but has received less attention than diversity, although the two are probably related. Abundance reflects a taxocene’s ability to harvest and sequester available energy and divide it among individuals. This paper explores how two properties of all taxocenes — trophic makeup and taxonomic level (e.g. genus, tribe, subfamily, family … ) — may contribute to patterns of local abundance at geographical scales.
  • 2 Forty‐nine ground ant taxocenes, in habitats ranging from New World deserts to rain forests, were surveyed along a three‐orders of magnitude productivity gradient using transects of 30 1‐m2 quadrats at each site. Abundance — the number of nests per transect — varied over two orders of magnitude.
  • 3 Over 80% of the genera collected were omnivores. However, herbivore, omnivore, and predator taxa were added to ant taxocenes in roughly 1 order of magnitude steps up the productivity gradient. Specialist detritivores were added last.
  • 4 Net primary productivity and mean monthly temperature both consistently entered regression models predicting abundance. However, while productivity was the dominant predictor of abundance for higher taxa (families, subfamilies), temperature was the dominant predictor of abundance for lower taxa (tribes, genera). The answer to the question ‘What regulates the abundance of a taxocene?’ is thus sensitive to the taxonomic level of analysis.
  • 5 These data support the following scenario. Lower taxa are abiotic specialists given the insufficient number of genomes and generations required for the exploration of the entire abiotic envelope. Higher taxa, in contrast, consist of suites of abiotic specialists arrayed along the entire productivity gradient, with access to productivity everywhere the taxon occurs. If this scenario is true, individual species may respond to global changes in temperature; the higher taxa they belong to may most respond to global changes in productivity.
  相似文献   

13.
Climate change has had well‐documented impacts on the distribution and phenology of species across many taxa, but impacts on species’ abundance, which relates closely to extinction risk and ecosystem function, have not been assessed across taxa. In the most comprehensive multi‐taxa comparison to date, we modelled variation in national population indices of 501 mammal, bird, aphid, butterfly and moth species as a function of annual variation in weather variables, which through time allowed us to identify a component of species’ population growth that can be associated with post‐1970s climate trends. We found evidence that these climate trends have significantly affected population trends of 15.8% of species, including eight with extreme (> 30% decline per decade) negative trends consistent with detrimental impacts of climate change. The modelled effect of climate change could explain 48% of the significant across‐species population decline in moths and 63% of the population increase in winged aphids. The other taxa did not have significant across‐species population trends or consistent climate change responses. Population declines in species of conservation concern were linked to both climatic and non‐climatic factors respectively accounting for 42 and 58% of the decline. Evident differential impacts of climate change between trophic levels may signal the potential for future ecosystem disruption. Climate change has therefore already driven large‐scale population changes of some species, had significant impacts on the overall abundance of some key invertebrate groups and may already have altered biological communities and ecosystems in Great Britain.  相似文献   

14.
高慧淋  董利虎  李凤日 《生态学杂志》2016,27(11):3420-3426
基于东北地区378块固定样地和415块临时样地的调查数据和Reineke方程,利用线性分位数回归技术建立了不同分位点(τ=0.90、0.95、0.99)下的长白落叶松人工林最大林分密度与林木平均胸径的关系模型,选出拟合长白落叶松人工林最大密度线的最优模型. 利用人为选取最大的拟合数据,采用最小二乘(OLS)和最大似然(ML)回归同时建立最大密度线模型. 采用极值统计理论的广义Pareto模型推算现实林分特定径阶的极限最大株数,进一步建立极限密度线模型. 将线性分位数回归模型与其他方法进行对比.结果表明: 在全部径阶范围内选取5个最大数据点拟合的方法能够得到现实林分的最大密度线,选取的样点过多会使模拟结果偏离最大密度线,且ML法要优于OLS法. 分位点为0.99的线性分位数回归模型能够取得与ML接近的拟合结果,但分位数回归模型参数的估计结果更稳定. 人为选取拟合数据具有一定的人为性,最终选取分位点为0.99的分位数回归模型为拟合最大密度线的最优模型,参数估计结果为k=11.790、β=-1.586,极限密度线模型的参数估计结果为k=11.820、β=-1.594. 所确定的极限密度线位置略高于最大密度线,但二者差异不明显. 由固定样地数据的验证结果可知,所建立的最大林分密度线及极限密度线能够对现实林分的最大密度及极限密度进行预测,为长白落叶松人工林的合理经营提供依据.  相似文献   

15.
Beta diversity represents a powerful indicator of ecological conditions because of its intrinsic relation with environmental gradients. In this view, remote sensing may be profitably used to derive models characterizing or estimating species turnover over an area. While several examples exist using spectral variability to estimate species diversity at several spatial scales, most of these have relied on standard correlation or regression approaches like the common Ordinary Least Square (OLS) regression which are problematic with noisy data. Moreover, very few attempts were made to derive beta diversity characterization models at different taxonomic ranks. In this paper, we performed quantile regression to test if spectral distance represents a good proxy of beta diversity considering different data thresholds and taxonomic ranks. We used plant distribution data from the North and South Carolina including 146 counties and covering a variety of vegetation formations. The dissimilarity in species composition at different taxonomic ranks (using Sørensen distance) among pairs of counties was compared with their distance in NDVI values derived from 23 yearly MODIS images. Our results indicate that (i) spectral variability represents a good proxy of beta diversity when appropriate statistics are applied and (ii) a lower taxonomic rank is important when changes in species composition are examined spatially using remotely sensed data.  相似文献   

16.
Ecosystem biomass, soil conditions and the diversity of different taxa are often interrelated. These relationships could originate from biogeographic affinity (varying species pools) or from direct ecological effects within local communities. Disentangling regional and local causes is challenging as the former might mask the latter in natural ecosystems with varying habitat conditions. However, when the species pool contribution is considered in statistics, local ecological effects might be detected. In this study we disentangle the indirect effects of the species pool and direct ecological effects on the complex relationships among wood volume, soil conditions and diversities of different plant and fungal groups in 100 old‐growth forest sites (10 × 10 m) at the border of boreal and nemoral zones in northern Europe. We recorded all species for different vegetation groups: woody and herbaceous vascular plants, terricolous and epiphytic bryophytes and lichens. Fungal communities were detected by DNA‐based analyses from soil samples. Above‐ground wood volume was used as a proxy of biomass. We measured soil pH and nutrient content and obtained modelled climate parameters for each site. Species pool effect was considered by dividing sites into boreal and nemoral groups based on community composition. In order to disentangle direct and indirect effects, we applied variation partitioning, and raw and partial correlations. We found many significant positive relationships among studied variables. Many of these relationships were associated to boreal and nemoral species pools, thus indicating that biogeographic affinity of interacting plants and fungi largely defines forest diversity and functioning. At the same time, several relationships were significant also after considering biogeography: woody plant and ectomycorrhizal fungi diversities with wood volume, many plant and fungal groups with each other, or with soil conditions. These direct ecological interactions could be considered in forestry practices to achieve both economic gain and maintenance of biodiversity.  相似文献   

17.
The persistence of species taxa within fragmented habitats is dependent on the source–sink metapopulation processes, and forest patch size and isolation are key factors. Unveiling species–patch area and/or species–patch isolation relationships may help provide crucial information for species and landscape management. In this study, relationship between forest patch size and isolation with abundance and occupancy probability of forest-dependent birds was investigated. This study was based within a coastal landscape that faces deleterious human activities such as clearing for agriculture. The study aimed to answer the question of whether the size and extent of isolation of forest patches influence abundance and/or occupancy probability of forest-specialist and generalist birds. Two bird species, namely Tiny Greenbul Phyllastrephus debilis subsp. rabai and Yellow-bellied Greenbul Chlorocichla flaviventris, were used as models. Birds were surveyed using distance sampling methods, and spatial metrics were measured from satellite imagery. Focal forest size and distance between forest patches were the most influential metrics whereby abundance and occupancy probabilities increased with increasing patch size, but were negatively influenced by increasing gaps between patches. These findings provide evidence of the existence of patch size/ isolation–occupancy relationships characterised by higher occupancy rate of large patches and distance-dependent dispersal, which decreased with increasing gaps between patches. Controlling deleterious human activities that reduce forest size should be a priority for the long-term conservation of forest-dependent birds.  相似文献   

18.
Cities are growing rapidly worldwide, yet a mechanistic understanding of the impact of urbanization on biodiversity is lacking. We assessed the impact of urbanization on arthropod diversity (species richness and evenness) and abundance in a study of six cities and nearby intensively managed agricultural areas. Within the urban ecosystem, we disentangled the relative importance of two key landscape factors affecting biodiversity, namely the amount of vegetated area and patch isolation. To do so, we a priori selected sites that independently varied in the amount of vegetated area in the surrounding landscape at the 500‐m scale and patch isolation at the 100‐m scale, and we hold local patch characteristics constant. As indicator groups, we used bugs, beetles, leafhoppers, and spiders. Compared to intensively managed agricultural ecosystems, urban ecosystems supported a higher abundance of most indicator groups, a higher number of bug species, and a lower evenness of bug and beetle species. Within cities, a high amount of vegetated area increased species richness and abundance of most arthropod groups, whereas evenness showed no clear pattern. Patch isolation played only a limited role in urban ecosystems, which contrasts findings from agro‐ecological studies. Our results show that urban areas can harbor a similar arthropod diversity and abundance compared to intensively managed agricultural ecosystems. Further, negative consequences of urbanization on arthropod diversity can be mitigated by providing sufficient vegetated space in the urban area, while patch connectivity is less important in an urban context. This highlights the need for applying a landscape ecological approach to understand the mechanisms shaping urban biodiversity and underlines the potential of appropriate urban planning for mitigating biodiversity loss.  相似文献   

19.
Physiological and ecological allometries often pose linear regression problems characterized by (1) noncausal, phylogenetically autocorrelated independent (x) and dependent (y) variables (characters); (2) random variation in both variables; and (3) a focus on regression slopes (allometric exponents). Remedies for the phylogenetic autocorrelation of species values (phylogenetically independent contrasts) and variance structure of the data (reduced major axis [RMA] regression) have been developed, but most functional allometries are reported as ordinary least squares (OLS) regression without use of phylogenetically independent contrasts. We simulated Brownian diffusive evolution of functionally related characters and examined the importance of regression methodologies and phylogenetic contrasts in estimating regression slopes for phylogenetically constrained data. Simulations showed that both OLS and RMA regressions exhibit serious bias in estimated regression slopes under different circumstances but that a modified orthogonal (least squares variance-oriented residual [LSVOR]) regression was less biased than either OLS or RMA regressions. For strongly phylogenetically structured data, failure to use phylogenetic contrasts as regression data resulted in overestimation of the strength of the regression relationship and a significant increase in the variance of the slope estimate. Censoring of data sets by simulated extinction of taxa did not affect the importance of appropriate regression models or the use of phylogenetic contrasts.  相似文献   

20.
Theory predicts that dispersal throughout metapopulations has a variety of consequences for the abundance and distribution of species. Immigration is predicted to increase abundance and habitat patch occupancy, but gene flow can have both positive and negative demographic consequences. Here, we address the eco‐evolutionary effects of dispersal in a wild metapopulation of the stick insect Timema cristinae, which exhibits variable degrees of local adaptation throughout a heterogeneous habitat patch network of two host‐plant species. To disentangle the ecological and evolutionary contributions of dispersal to habitat patch occupancy and abundance, we contrasted the effects of connectivity to populations inhabiting conspecific host plants and those inhabiting the alternate host plant. Both types of connectivity should increase patch occupancy and abundance through increased immigration and sharing of beneficial alleles through gene flow. However, connectivity to populations inhabiting the alternate host‐plant species may uniquely cause maladaptive gene flow that counters the positive demographic effects of immigration. Supporting these predictions, we find the relationship between patch occupancy and alternate‐host connectivity to be significantly smaller in slope than the relationship between patch occupancy and conspecific‐host connectivity. Our findings illustrate the ecological and evolutionary roles of dispersal in driving the distribution and abundance of species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号