首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Human polymorphonuclear granulocytes (PMN) are an essential component in the immunological defense network against a variety of harmful pathogens. We have studied the effects of the airborne pollutant sulfite on the calcium metabolism and respiratory burst of these cells simultaneously. METHODS: A flow cytometric method was developed using the fluochromes Indo-1 and DHR-123. This method allowed us to investigate the real-time kinetics of intracellular free calcium and reactive oxygen intermediates in viable cells with a temporal resolution of 1 s over a time course of 17 min. An additional feature was the possibility to discriminate between reacting and nonreacting cells after treatment with defined stimuli, thus gaining additional insight into the behavior of cell subpopulations. RESULTS: We analyzed the effects of sulfite on PMN before and after stimulation with formyl-Met-Leu-Phe (FMLP). Treatment with sulfite alone (0.001-1 mM) caused a small, nontransient increase in intracellular calcium. Preincubation with sulfite reduced the maximal calcium response elicited by FMLP. A significant increase in steady-state calcium levels after stimulation with FMLP was observed after treatment with sulfite in concentrations of 10 and 100 mM. Regarding the respiratory burst, treatment with sulfite alone in concentrations of 0.001-1 mM induced a significant increase in DHR-123-derived fluorescence, whereas concentrations of 5 and 10 mM caused a significant depression of this fluorescence below baseline values. Sulfite caused a maximal twofold increase of DHR-123-derived fluorescence compared with the FMLP response. Similar results were obtained after preincubation with sulfite before treatment with FMLP, showing that the effect of sulfite on the respiratory burst was additive to the FMLP response. Regarding the fractions of responding cells, treatment with sulfite up to 1 mM induced a concentration-dependent increase of burst-reactive PMN, whereas preincubation before stimulation with FMLP showed no correlation between sulfite concentration and fraction of burst-reacting cells. CONCLUSIONS: By simultaneous registration of [Ca(2+)](i) and [H(2)O(2)](i) of PMN after treatment with FMLP and sulfite, the essential responses were already observed within a short time interval (15 min). Striking differences were found in the response of calcium as second messenger and respiratory burst in PMN treated with sulfite. Until a critical concentration (0. 5-1 mM), sulfite caused a concentration-dependent increase of [H(2)O(2)](i), in addition to the FMLP-induced response. The [Ca(2+)](i) changes induced by sulfite alone, however, were found to be small and showed no correlation with the respiratory burst response.  相似文献   

2.
DPH和N-(3芘)马来酰亚胺标记光敏氧化反应及黄嘌呤/黄嘌呤氧化酶反应生成外源性单线态氧(O_2)和超氧阴离子自由基(O_2)作用人多形核白细胞膜脂及膜蛋白质、荧光激发发射光谱形状、峰位未发生改变,荧光强度减小,其中以N-(3芘)马来酰亚胺标记O_2作用的膜蛋白质更为明显.荧光偏振度增大,相应清除剂L-组氨酸、超氧化物歧化酶和过氧化氢酶有抑制效应.调理的酵母多糖刺激中性粒细胞呼吸爆发产生膜、胞内活性氧损伤膜脂、膜蛋白质,测定荧光参数变化与前者不尽相同,DPH荧先强度显著增加,L-组氨酸,超氧化物歧化酶和过氧化氢酶似无抑制效果.  相似文献   

3.
The adherence of serum-opsonized yeast to neutrophils results in phagocytosis of these particulate stimuli and activation of the respiratory burst. Both events are mediated or modulated in part by the surface receptors for IgG and complement. The link between the binding of complex particulate stimuli to the cell surface, and the triggering of these neutrophil functions, is not completely understood. We have previously described an anti-human neutrophil, murine monoclonal antibody PMN7C3, which specifically inhibits the respiratory burst of neutrophils stimulated with serum-opsonized yeast. In the present study, we show that the antigen recognized by PMN7C3 (PMN7 antigen) is present on a number of neutrophil proteins, including the recently described group of related leukocyte membrane glycoproteins CR3, LFA-1, and p150,95. The PMN-7 antigen differs from other antigens associated with the C3bi receptor complex (MAC 1, MO 1, OKM1, OKM10) in that it is present only on neutrophils among peripheral blood cells. Furthermore, the binding of PMN7C3 to the neutrophil surface inhibits the activation of the respiratory burst by serum opsonized zymosan without affecting phagocytosis of these particulate stimuli. The cross-linking of cell surface PMN7 antigen by multivalent antibody is associated with the capping and internalization of antigen-antibody complexes, and appears to be necessary for the expression of maximum inhibition of opsonized zymosan-triggered respiratory burst activity. PMN7C3 also binds to a group of granule-associated proteins biochemically distinct from CR3, LFA-1, and p150,95. These granule-associated proteins containing PMN7 antigen can be mobilized to the cell surface with secretion. PMN7 antigen-bearing proteins may play a role in modulating the activation of the respiratory burst associated with phagocytosis of serum-opsonize zymosan.  相似文献   

4.
After interaction with so-called priming agents, the respiratory burst in human granulocytes does not become activated, but is enhanced upon subsequent stimulation with the chemoattractant FMLP. Investigating the mechanism of the priming reaction, we found that a transient rise in the cytosolic free calcium concentration [( Ca2+]i) suffices to irreversibly prime human granulocytes. Thus, platelet-activating factor (PAF) induced a transient increase in [Ca2+]i and primed the cells to an enhanced respiratory burst upon subsequent interaction with FMLP. Artificially, the transient rise in [Ca2+]i was mimicked by addition and subsequent removal of the Ca2+ ionophore ionomycin; this treatment too, primed the respiratory burst of the granulocytes. The priming induced by ionomycin was completely abolished when [Ca2+]i changes were buffered during exposure of the cells to the ionophore. The priming induced by PAF was only partially inhibited under [Ca2+]i-buffering conditions during priming, indicating that multiple pathways exist in the priming of granulocytes by PAF.  相似文献   

5.

Background

Insulin-like growth factor binding proteins (IGFBPs) are six related secreted proteins that share IGF-dependent and -independent functions. If the former functions begin to be well described, the latter are somewhat more difficult to investigate and to characterize. At the cellular level, IGFBPs were shown to modulate numerous processes including cell growth, differentiation and apoptosis. However, the molecular mechanisms implicated remain largely unknown. We previously demonstrated that IGFBP-3, but not IGFBP-1 or IGFBP-5, increase intracellular calcium concentration in MCF-7 cells (Ricort J-M et al. (2002) FEBS lett 527: 293–297).

Methodology/Principal Findings

We perform a global analysis in which we studied, by two different approaches, the binding of each IGFBP isoform (i.e., IGFBP-1 to -6) to the surface of two different cellular models, MCF-7 breast adenocarcinoma cells and C2 myoblast proliferative cells, as well as the IGFBP-induced increase of intracellular calcium concentration. Using both confocal fluorescence microscopy and flow cytometry analysis, we showed that all IGFBPs bind to MCF-7 cell surface. By contrast, only four IGFBPs can bind to C2 cell surface since neither IGFBP-2 nor IGFBP-4 were detected. Among the six IGFBPs tested, only IGFBP-1 did not increased intracellular calcium concentration whatever the cellular model studied. By contrast, IGFBP-2, -3, -4 and -6, in MCF-7 cells, and IGFBP-3, -5 and -6, in C2 proliferative cells, induce a rapid and transient increase in intracellular free calcium concentration. Moreover, IGFBP-2 and -3 (in MCF-7 cells) and IGFBP-5 (in C2 cells) increase intracellular free calcium concentration by a pertussis toxin sensitive signaling pathway.

Conclusions

Our results demonstrate that IGFBPs are able to bind to cell surface and increase intracellular calcium concentration. By characterizing the IGFBPs-induced cell responses and intracellular couplings, we highlight the cellular specificity and complexity of the IGF-independent actions of these IGF binding proteins.  相似文献   

6.
We have undertaken a detailed study of the mechanisms of maintenance of intracellular Ca2+ homeostasis in human polymorphonuclear neutrophils (PMN) and its implications for phagocytosis and IgG Fc receptor (FcR) signaling. When PMN were incubated in Ca(2+)-free medium, cytoplasmic calcium concentration ([Ca2+]i) was markedly depressed and intracellular stores were depleted of calcium. [Ca2+]i in these depleted cells increased within 1 min when PMN were placed in medium containing Ca2+ and then decreased to a level close to the normal basal [Ca2+]i, replenishing the intracellular Ca2+ pools. LaCl3 prevented entry of Ca2+ into Ca(2+)-depleted PMN, but the calcium channel blockers nifedipine, diltiazem, and verapamil did not. Nifedipine and diltiazem but not verapamil inhibited the movement of Ca2+ from cytosol to intracellular stores. Nifedipine and diltiazem inhibited the normal increase in [Ca2+]i from aggregated IgG binding to FcR and also prevented formyl-methionyl-leucyl-phenyl-alanine (fMLP)-induced [Ca2+]i rise. Verapamil had no effect on either an fMLP- or IgG-mediated increase in [Ca2+]i. Consistent with this, nifedipine and diltiazem inhibited fMLP-stimulated phagocytosis (which is dependent on an increase in [Ca2+]i) when PMN had repleted intracellular stores. In contrast, LaCl3 inhibited fMLP-stimulated ingestion only in PMN which had intracellular store depleted. None of these compounds had any effect on phorbol dibutyrate-stimulated ingestion (which is independent of a [Ca2+]i rise). In summary, these data show that Ca2+ is in rapid equilibrium between intracellular and extracellular compartments in PMN. Exchange of cytoplasmic Ca2+ with the extracellular space is inhibited by LaCl3, while exchange of Ca2+ between the cytosol and intracellular stores is inhibited by the dihydropyridine nifedipine and the benzothiazepine diltiazem. These data suggest that these drugs, which are known to regulate some plasma membrane Ca2+ channels in excitable cells, can also regulate Ca2+ release from intracellular stores in PMN and that this regulation may have significant effects on PMN function.  相似文献   

7.
《The Journal of cell biology》1990,111(5):2171-2181
The ability of neutrophils (PMN) to undergo a prolonged respiratory burst in response to cytokines such as tumor necrosis factor-alpha (TNF) depends on expression of CD11/CD18 (beta 2) integrins and interaction with matrix protein-coated surfaces (Nathan, C., S. Srimal, C. Farber, E. Sanchez, L. Kabbash, A. Asch, J. Gailit, and S. D. Wright. 1989. J. Cell Biol. 109:1341-1349). We tested the hypothesis that changes in cAMP mediate the joint action of cytokines and integrins. When plated on FBS- or fibrinogen-coated surfaces, PMN responded to TNF with a sustained fall in intracellular cAMP. This did not occur without TNF; in suspended PMN; in PMN treated with anti-CD18 mAb; or in PMN genetically deficient in beta 2 integrins. A preceding fall in cAMP appeared essential for TNF to induce a respiratory burst, because drugs that elevate cAMP blocked the burst if added any time before, but not after, its onset. Adenosine analogues and cytochalasins also block the TNF-induced respiratory burst if added before, but not after, its onset. Both also blocked the TNF-induced fall in cAMP. The effect of cytochalasins led us to examine the relationship between cAMP and actin reorganization. The same conditions that led to a sustained fall in cAMP led at the same time to cell spreading and the assembly of actin filaments. As with the respiratory burst, cAMP-elevating agents inhibited TNF-induced cell spreading and actin filament assembly if added before, but not after, spreading began. Thus, occupation of TNF receptors and engagement of CD18 integrins interact synergistically in PMN to promote a fall in cAMP. The fall in cAMP is closely related to cell spreading and actin reorganization. These changes are necessary for TNF to induce a prolonged respiratory burst. We conclude that integrins can act jointly with cytokines to affect cell shape and function through alterations in the level of a second messenger, cAMP.  相似文献   

8.
The effects of carbobenzyloxy-leucine-tyrosine-chloromethylketone (zLYCK), an inhibitor of chymotrypsin, were investigated on the activation pathways of the human neutrophil respiratory burst. At 10 microM zLYCK, a parallel inhibition was observed of superoxide production stimulated with the chemo-attractant FMLP and of chymotrypsin-like activity of human neutrophils. By contrast, superoxide production induced by PMA was minimally affected by zLYCK. The known transduction pathways triggered by FMLP were analyzed. zLYCK did not affect either the FMLP-induced cytosolic free calcium transient, inositol 1,4,5 trisphosphate formation, nor the PMA-induced phosphorylation of the 47-kDa substrate of protein kinase C. zLYCK did not affect the activity of protein kinase C extracted from neutrophils. In Ca(2+)-depleted cells, in which phosphatidylinositol 4,5-biphosphate breakdown does not occur, zLYCK inhibited the FMLP-induced respiratory burst in cells primed by low doses of PMA. The activity of the NADPH oxidase tested with active membranes from stimulated neutrophils or in a cell-free system was not inhibited by zLYCK. We conclude that: 1) zLYCK inhibits superoxide production through the inhibition of a chymotrypsin-like protease of the neutrophil, 2) zLYCK inhibits FMLP-induced activation of NADPH oxidase through a pathway independent of PtdInsP2 breakdown and cytosolic free calcium, and 3) zLYCK may prove a useful probe for the characterization of its target protease in neutrophil activation.  相似文献   

9.
S Williams  D Johnston 《Neuron》1989,3(5):583-588
The role of intracellular calcium in an APV-insensitive form of long-term potentiation (LTP) has been studied at the hippocampal mossy fiber synapse. Intracellular calcium was buffered by iontophoretic injection of either BAPTA or QUIN-2, into CA3 pyramidal neurons. The slow calcium-dependent after hyperpolarization was used as an indicator of buffering. LTP was elicited in control and in APV-treated cells (6/6 and 4/5 cell, respectively). In contrast, LTP was observed in only 2/9 BAPTA-loaded cells and in 1/4 QUIN-2-loaded cells. The magnitude of LTP for control and APV-treated cells were not significantly different, but both groups showed significantly greater LTP than BAPTA-loaded cells. These results suggest that an increase in postsynaptic calcium is required for the induction of mossy fiber LTP.  相似文献   

10.
Lipoteichoic acid (LTA) from Streptococcus faecalis stimulates the respiratory burst in peripheral blood monocytes (mon), as measured by cytochrome C reduction. The effect of LTA was time and dose dependent. LTA stimulated the respiratory burst in a biphasic manner within a range of 1 to 1000 ng/ml.10(6) mon, with maximal activity at 50 ng/ml. At this concentration LTA increased the activity from 0.97 +/- 0.2 to 4.88 +/- 0.2 nmol.10(6) mon/20 min. The role of calcium ions in the effect of LTA in stimulating respiratory burst was studied by changing the availability of calcium ions in the medium, and by measuring the effect of LTA on 45Ca2+ uptake and on intracellular Ca2+ levels. Removal of extracellular calcium ions in the presence of the calcium chelator EGTA, abolished the LTA-stimulated respiratory burst. LTA (50 ng/ml) was found to increase 45Ca2+ uptake into monocytes within seconds (from 2200 +/- 242 in the untreated cells to 4642 +/- 365 cpm/min in the LTA-treated mon). At this concentration, LTA stimulated an immediate rise in the intracellular free Ca2+ concentration to 155 +/- 15 nM as compared with 120 +/- 14 nM in the unstimulated monocytes. LTA caused a specific release of arachidonic acid indicating the involvement of phospholipase A2 in the transduction signal stimulating the respiratory burst by LTA.  相似文献   

11.
The influence of peplomycin (PLM) on the respiratory burst of peripheral blood polymorphonuclear leukocytes (PMN) was investigated. Short-term (5 min) treatment of human PMN with 0.1μg/ml to 100μg/ml of PLM increased phorbol myristate acetate (PMA)-and formyl-methionyl-leucyl-phenylalanine (FMLP)-induced luminol-dependent chemiluminescence. PMN, as well as alveolar macrophages from rabbits treated with 0.5 to 1.0 mg/kg of peplomycin per day for 5 days, generated more superoxide (O2-) than the cells from untreated rabbits. In both PLM-treated and untreated PMN, chemiluminescence induced by FMLP and PMA was decreased to less than 50% of the control by staurosporine, superoxide dismutase (SOD) and catalase. However, the peak intensity in PLM-untrcated PMN was decreased to about 30% of the control by genislein, while this agent induced a slight decrease in peak intensity in the PLM-treated PMN. Inositol triphosphate and diacyl glycerol levels were not clearly increased by PLM, but an increase of intracellular Ca and a shift of protein kinase C (PKC) to the membrane occurred in PMN within 1 min after PLM treatment. Western blotting revealed that the tyrosine phosphorylation of a 115 kDa protein was upregulated by 5 to 50μg/ml of PLM. While, PLM suppressed SOD activity in alveolar macrophages and PMN. These results seem to indicate that PLM increases the respiratory burst of PMN and macrophages both by way of direct PKC activation and by the upregulation of protein tyrosine phosphorylation. This increased reactive oxygen generation, together with the suppression of SOD activity seems to be tissue-impairing.  相似文献   

12.
Recent studies associate cholesterol excess and atherosclerosis with inflammation. The link between these processes is not understood, but cholesterol is an important component of lipid rafts. Rafts are thought to concentrate membrane signaling molecules and thus regulate cell signaling through G protein-coupled pathways. We used methyl beta-cyclodextrin to deplete cholesterol from polymorphonuclear neutrophil (PMN) rafts and thus study the effects of raft disruption on G protein-coupled Ca(2+) mobilization. Methyl beta-cyclodextrin had no effect on Ca(2+) store depletion by the G protein-coupled agonists platelet-activating factor or fMLP, but abolished agonist-stimulated Ca(2+) entry. Free cholesterol at very low concentrations regulated Ca(2+) entry into PMN via nonspecific Ca(2+) channels in a biphasic fashion. The specificity of cholesterol regulation for Ca(2+) entry was confirmed using thapsigargin studies. Responses to cholesterol appear physiologic because they regulate respiratory burst in a proportional biphasic fashion. Investigating further, we found that free cholesterol accumulated in PMN lipid raft fractions, promoting formation and polarization of membrane rafts. Finally, the transient receptor potential calcium channel protein TRPC1 redistributed to raft fractions in response to cholesterol. The uniformly biphasic relationships between cholesterol availability, Ca(2+) signaling and respiratory burst suggest that Ca(2+) influx and PMN activation are regulated by the quantitative relationships between cholesterol and other environmental lipid raft components. The association between symptomatic cholesterol excess and inflammation may therefore in part reflect free cholesterol- dependent changes in lipid raft structure that regulate immune cell Ca(2+) entry. Ca(2+) entry-dependent responses in other cell types may also reflect cholesterol bioavailability and lipid incorporation into rafts.  相似文献   

13.
4-Chloro-m-cresol (cresol) and caffeine have been shown to be potent activators of the Ca(2+) release mediated by the ryanodine-sensitive Ca(2+) release channel and therefore increase the cytosolic free calcium concentration in skeletal muscles. To distinguish the effects of cresol and caffeine in neurones, the responses of the intracellular ([Ca(2+)](i)) and intraluminal free calcium concentrations to cresol were investigated using bullfrog sympathetic ganglion cells and then compared with those to caffeine. Cresol generated a gradual rise (slow response) with and without a fast transient rise (fast response) in [Ca(2+)](i). A low extracellular Ca(2+) concentration abolished the slow response but not the fast response, thus indicating that the slow response was caused by a Ca(2+) influx across the cell membrane. The fast response was inhibited by ryanodine, thus confirming that the source may therefore be the Ca(2+) release through the ryanodine-sensitive calcium store. Unlike caffeine, the long-term application of cresol did not cause any calcium oscillation; neither did it cause a decrease in the basal calcium levels.  相似文献   

14.
A transient rise in intracellular free Ca2+ concentration ([Ca2+]i) has been implicated in mitogenic induction of cell division. Individual human foreskin fibroblasts in confluent cultures examined with the Ca2+ indicator Fura-2 and a fluorescence microscope-imaging system had a basal [Ca2+]i which varied markedly from cell-to-cell. A transient serum-induced rise in [Ca2+]i was demonstrated the magnitude of which was directly correlated with the basal [Ca2+]i level. In contrast to serum-induced increase in [Ca2+]i, exposure to an elevated level of extracellular Ca2+, which is at least equally mitogenic for fibroblasts, did not alter the basal [Ca2+]i of single subconfluent cells or confluent cells. Elevated extracellular Ca2+ does not exert its mitogenicity via a transient rise in [Ca2+]i.  相似文献   

15.
We examined the effects of 4-chloro-m-cresol (4-CmC, a potent and specific activator of ryanodine receptors) on Ca(2+)-release/influx and respiratory burst in freshly isolated human PMN as well as HL60 cells. 4-CmC induces Ca(2+) store-depletion in a dose-dependent manner at concentrations between 400muM and 3mM, however no dose-dependent effect on Ca(2+)-influx was found. 4-CmC depleted Ca(2+) stores that were shared with the GPC agonists such as fMLP and PAF, and therefore 4-CmC presumably depletes Ca(2+) from ER. Since the authentic ligand for RyR is cyclic ADP-ribose (cADPR), we assessed the functional relevance of RyR in PMN by studying the presence and function of membrane-bound ADP-ribosyl cyclase (CD38) in PMN. First, expression of CD38 was confirmed by RT-PCR using cDNA from HL60 cells. Second, PMN from trauma patients showed significantly enhanced CD38 expression than those from healthy volunteers. In addition, although no chemotaxis effect was detected by 4-CmC, it stimulated respiratory burst in PMN in a dose-dependent manner. Our findings suggest that RyRs exist in human PMN and that RyR pathway may play an active role in inflammatory PMN calcium signaling. 8-Br-cADPR and cyclic 3-deaza-ADP did not have inhibitory effects either on 4-CmC-induced Ca(2+) store-depletion or on respiratory burst, on the other hand, PLC inhibitor, U73122, completely attenuated both 4-CmC-induced Ca(2+) store-depletion and respiratory burst. Although it has been used as a specific activator of RyR, 4-CmC has non-specific effects which cause Ca(2+) store-depletion and respiratory burst at least in human PMN.  相似文献   

16.
The role of the activation of phosphoinositide turnover and of the increase in cytosolic free calcium, [Ca2+]i, in the phagocytosis and associated activation of the respiratory burst was investigated. We report the results obtained on the phagocytosis of yeast cells mediated by Con A in normal and in Ca2+-depleted human neutrophils. In normal neutrophils the phagocytosis was associated with a respiratory burst, a stimulation in the formation of [3H] inositol phosphates and [32P]phosphatidic acid, the release of [3H]arachidonic acid, and a rise in [Ca2+]i. Ca2+-depleted neutrophils are able to perform the phagocytosis of yeast cells mediated by Con A and to activate the respiratory burst without stimulation of [3H]inositol phosphates and [32P]phosphatidic acid formation, [3H]arachidonic acid release, and rise in [Ca2+]i. In both normal and Ca2+-depleted neutrophils the phagocytosis and the associated respiratory burst, 1) were inhibited by cytochalasin B; 2) were insensitive to H-7, an inhibitor of protein kinase C; and 3) did not involve GTP-binding protein sensitive to pertussis toxin. These findings indicate that the activation of phosphoinositide turnover, the liberation of arachidonic acid, the rise in [Ca2+]i, and the activity of protein kinase C are not necessarily required for ingestion of Con A-opsonized particles and for associated activation of the NADPH oxidase, the enzyme responsible for the respiratory burst. The molecular mechanisms of these phosphoinositide and Ca2+-independent responses are discussed.  相似文献   

17.
We show that microinjecting cyclic GMP (cGMP) into unfertilized sea urchin eggs activates them by stimulating a rise in the intracellular free calcium ion concentration ([Ca2+]i). The increase in [Ca2+]i is similar in both magnitude and duration to the transient that activates the egg at fertilization. It is due to mobilization of calcium from intracellular stores but is not prevented by the inositol trisphosphate (InsP3) antagonist heparin. Furthermore, cGMP does not stimulate the eggs Na+/H+ antiport when the [Ca2+]i transient is blocked by the calcium chelator bis-(O-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA), suggesting that cGMP does not activate eggs by interacting with the their phosphoinositide signaling pathway. However, the [Ca2+]i increase and activation are prevented in eggs in which the InsP3-sensitive calcium stores have been emptied by the prior microinjection of the InsP3 analogue inositol 1,4,5-trisphosphorothioate. These data indicate that cGMP activates eggs by stimulating the release of calcium from an InsP3-sensitive calcium store via a novel, though unidentified, route independent of the InsP3 receptor.  相似文献   

18.
In human breast cancer MCF 7 cells, the effect of exogenous histone H1 on intracellular calcium ([Ca2+]i) levels was measured using Fura 2AM. The dose and time dependent assessment revealed significant cell killing effect of histone H1 on MCF 7 cells. Histone H1 induced a sustained concentration dependent increase in [Ca2+]i levels in the presence of calcium in the medium, but the increase was reduced in the absence of extra cellular calcium. The effect of histone H1 on intracellular calcium flux measured using 45Ca radiolabel revealed significant inhibition of calcium uptake in endoplasmic reticulum, whereas the rate of uptake was unaltered in the mitochondria. The activities of phospholipase A2 showed a significant transient increase at 1 minute which by the end of 5 minutes decreased, whereas the activities of phospholipase C which showed a transient increase at the end of 1 minute, was maintained at basal levels in histone H1 treated cells compared to control cells. These findings suggest that histone H1 increases [Ca2+]i in MCF 7 cells by stimulating both extra cellular calcium influx and intracellular calcium release at higher concentrations exhibiting cytotoxic effect.  相似文献   

19.
Mitochondrial damage is the main source of cellular injury upon ischemia–reperfusion, and calcium loading has been implicated in this phenomenon. The use of optical probes for calcium monitoring of the intact heart is hampered by internal filter effects of intracellular hemoproteins, endogenous fluorescence, and their sensitivity to pH.We describe here a method for measurement of intracellular free calcium in isolated myoglobin-deficient perfused mouse hearts under conditions of large intracellular pH fluctuations by simultaneous fluorescence monitoring of the calcium-probe Fura-2 and the pH probe BCECF through dual wavelength excitation of both probes. In myoglobin-containing mouse heart endogenous chromophores interfere with Fura-2 fluorometry.It is shown that a paradoxical decrease in Fura-2 fluorescence occurs during ischemia in isolated mouse hearts. Simultaneous recording of BCECF fluorescence (calibrated against pH measurement with phosphorus NMR) and data reduction based on continual recalculation of the apparent dissociation constant of the calcium-probe complex revealed that a marked increase in intracellular free calcium occurs, and that the Fura-2 fluorescence decrease was caused by an increase in dissociation constant due to intracellular acidification. Intracellular free calcium rose almost linearly during a 20-min period of ischemia and returned to basal values rapidly upon the commencement of perfusion.  相似文献   

20.
To investigate the relationship between different intracellular Ca2+ pools, cytosolic free calcium ([Ca2+]i) was surveyed by means of a Fura-2 fluorescence ratio method on single isolated human leukocytes. Both monocytes and neutrophilic granulocytes (PMN) displayed long lasting spontaneous [Ca2+]i transient changes (1-2 min). In PMN stimulated with the bacterial peptide fMLP we observed transients with shorter duration (10-30 s) and smaller amplitude often superimposed on the long lasting transients. The time course of changes in [Ca2+]i was recorded in a large number (149) of single leukocytes prestimulated for 5 min with fMLP and then challenged with thapsigargin (a blocker of Ca2+ uptake in intracellular pools). Statistical analysis of [Ca2+]i responses revealed that fMLP-sensitive pools contributed to the long lasting [Ca2+]i transients seen in both leukocyte types. However, the existence of fMLP-insensitive calcium pools may explain the superimposed transients seen in PMN. Thapsigargin was also added together with EGTA (to impede contribution from extracellular Ca2+) to 198 fMLP prestimulated and 153 unstimulated PMN. Based on Ca2+ registrations in these cells and a mathematical model (supposing two separate first order responses) the amount of Ca2+ stored in the various pools and their release kinetics were estimated. The results indicate that fMLP-insensitive calcium pools exist in PMN but not in monocytes. Since the digital imaging technique also depicts cellular motility, an additional finding was that the leukocyte's ability to sequestrate the Ca2+ from the cytosol seemed important to locomotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号