首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Streptococcus mutans JC 2 produced mainly lactate as a fermentation product when grown in nitrogen-limited continuous culture in the presence of an excess of glucose and produced formate, acetate, and ethanol, but no lactate, under glucose-limited conditions. The levels of lactate dehydrogenase (LDH) in these cultures were of the same order of magnitude, and the activity of LDH was completely dependent on fructose-1,6-diphosphate (FDP). The intracellular level of FDP was high and the level of phosphoenolpyruvate (PEP) was low under the glucose-excess conditions. In the glucose-limited cultures, all glycolytic intermediates studied, except PEP, were low. S. mutans FIL, which had an FDP-independent LDH and similar levels of glycolytic intermediates as S. mutans JC2, produced mainly lactate under glucose-excess or under glucose-limited conditions. LDH of Streptococcus bovis ATCC 9809 was dependent on FDP for activity at a low concentration of pyruvate but had a significant activity without FDP at a high concentration of pyruvate. This strain also produced mainly lactate both under glucose-excess and glucose-limited conditions. The levels and characteristics of these LDHs were not changed by the culture conditions. These results indicate that changes in the intracellular level of FDP regulate LDH activity, which in turn influences the type of fermentation products produced by streptococci. PEP, adenosine 5'-monophosphate, adenosine 5'-diphosphate, and inorganic phosphate significantly inhibited LDH activity from S. mutans JC 2 and may also participate in the regulation of LDH activity in other streptococci.  相似文献   

2.
The effect of anaerobiosis of wheat seedling roots during 6 consecutive days on contents of ethanol, lactate and glucose in roots and shoots and on the exudation of ethanol from roots to the medium was examined. Activities of alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH) were determined. After 36 h of anaerobiosis the concentration of ethanol in roots increased temporarily about 6 times and after 6 days it decreased to the level of control plants. The exudation of ethanol from roots to the medium showed similar pattern. The content of lactate was unaffected by anaerobiosis. In contrast, the content of glucose in roots of seedlings increased already after 1 day of anaerobiosis about 2 times and this higher level of glucose was noticed during consecutive 5 days. Anaerobiosis of roots caused an increase in the activity of ADH in both roots and shoots but the increase was not related to the content of ethanol in tissues, or exudated to the medium. The activity of LDH was unaffected by this factor. The results are discussed in relation to the limitation of energy supply of plants grown under root anaerobiosis.  相似文献   

3.
Rivoal J  Hanson AD 《Plant physiology》1994,106(3):1179-1185
Roots of all plants examined so far have the potential for both ethanol and lactate fermentation. A short burst of lactate fermentation usually occurs when plant tissues are transferred from normoxic to anoxic conditions. According to the Davies-Roberts hypothesis, the consequent pH drop both initiates ethanol fermentation and blocks further production of lactate by inhibiting lactate dehydrogenase (LDH). However, the role of LDH in this pH control mechanism is still a matter of debate. To perturb the control system in a defined way, a barley LDH cDNA under the control of the cauliflower mosaic virus 35S promoter was introduced into tomato (Lycopersicon esculentum Mill. cv VFMT) using Agrobacterium rhizogenes. The transgenic root clones expressed up to 50 times the LDH activity of controls. The fermentative metabolism of these clones was compared using roots grown previously in normoxic conditions or roots given a 3-d hypoxic pretreatment. During the transition from normoxia to anoxia, lactate accumulation was no faster and no more extensive in transgenic roots than in controls. Similarly, during prolonged anoxia the flux of 14C from [U-14C] glucose to lactate and ethanol was not modified by the expression of the transgene. However, in both transgenic and control roots, hypoxic pretreatment increased the flux to lactate and promoted lactate export to the medium. These results show that LDH has a very low flux control coefficient for lactate fermentation, consistent with the Davies-Roberts hypothesis. Moreover, they suggest that lactate secretion exerts major control over long-term lactate glycolysis in vivo.  相似文献   

4.
Wild-type Bacillus subtilis ferments 20 g/liter glucose in 48 h, producing lactate and butanediol, but not ethanol or acetate. To construct an ethanologenic B. subtilis strain, homologous recombination was used to disrupt the native lactate dehydrogenase (LDH) gene (ldh) by chromosomal insertion of the Zymomonas mobilis pyruvate decarboxylase gene (pdc) and alcohol dehydrogenase II gene (adhB) under the control of the ldh native promoter. The values of the intracellular PDC and ADHII enzymatic activities of the engineered B. subtilis BS35 strain were similar to those found in an ethanologenic Escherichia coli strain. BS35 produced ethanol and butanediol; however, the cell growth and glucose consumption rates were reduced by 70 and 65%, respectively, in comparison to those in the progenitor strain. To eliminate butanediol production, the acetolactate synthase gene (alsS) was inactivated. In the BS36 strain (BS35 delta alsS), ethanol production was enhanced, with a high yield (89% of the theoretical); however, the cell growth and glucose consumption rates remained low. Interestingly, kinetic characterization of LDH from B. subtilis showed that it is able to oxidize NADH and NADPH. The expression of the transhydrogenase encoded by udhA from E. coli allowed a partial recovery of the cell growth rate and an early onset of ethanol production. Beyond pyruvate-to-lactate conversion and NADH oxidation, an additional key physiological role of LDH for glucose consumption under fermentative conditions is suggested. Long-term cultivation showed that 8.9 g/liter of ethanol can be obtained using strain BS37 (BS35 delta alsS udhA+). As far as we know, this is the highest ethanol titer and yield reported with a B. subtilis strain.  相似文献   

5.
We have investigated whether central nitrogen metabolism may influence the triggering of ethanol fermentation in Saccharomyces cerevisiae strain CEN.PK122 grown in the presence of different N-sources (ammonia, glutamate, or glutamine) under conditions in which the carbon to nitrogen (C : N) ratio was varied. An exhaustive quantitative evaluation of yeast physiology and metabolic behavior through metabolic flux analysis (MFA) was undertaken. It is shown that ethanol fermentation is triggered at dilution rates, D (growth rate), significantly lower (D=0.070 and 0.074 h(-1) for glutamate and glutamine, respectively, and D=0.109 h(-1) for ammonia) under N- than C-limitation (approximately 0.18 h(-1) for all N-sources). A characteristic specific rate of glucose influx, q(Glc), for each N-source at Dc, i.e., just before the onset of respirofermentative metabolism, was determined (approximately 2.0, 1.5, and 2.5, for ammonia, glutamate, and glutamine, respectively). This q(Glc) was independent of the nutritional limitation though dependent on the nature of the N-source. The onset of fermentation occurs when this "threshold q(Glc)" is overcome. The saturation of respiratory activity appears not to be associated with the onset of fermentation since q(O(2)) continued to increase after Dc. It was remarkable that under respirofermentative conditions in C-limited chemostat cultures, the glucose consumed was almost completely fermented with biomass being synthesized from glutamate through gluconeogenesis. The results obtained show that the enzyme activities involved in central nitrogen metabolism do not appear to participate in the control of the overflow in carbon catabolism, which is driven toward ethanol production. The role of nitrogen metabolism in the onset of ethanol fermentation would rather be realized through its involvement in setting the anabolic fluxes directed to nitrogenous macromolecules. It seems that nitrogen-related anabolic fluxes would determine when the threshold glucose consumption rate is achieved after which ethanol fermentation is triggered.  相似文献   

6.
The metabolic pattern and cell culture kinetics of high-cell-density perfusion cultures were compared under two different oxygen transfer conditions: oxygen limiting and not limiting. When oxygen was a limiting factor during perfusion culture, both specific glucose uptake and lactate production rates increased, compared to non-oxygen-limited condition, by about 60% and 30%, respectively. The specific glutamine uptake rate under oxygen-limited conditions was almost 4.0 times higher than that under non-oxygen-limited conditions. The activity of lactate dehydrogenase (LDH) released into the medium by the dead cells can be used as an indicator for the metabolic and physiological conditions related to oxygen limitation. There was a 3.2 times higher specific rate of LDH activity released by dead cells in oxygen-limited cultures than those in non-oxygen-limited cultures. The specific production rate of monoclonal antibody was not significantly affected by the oxygen transfer conditions during the rapid cell growth period, but it rapidly increased toward the end of perfusion cultures. The higher perfusion rate may have limited further cell growth during high-cell-density perfusion culture, because cell damage was caused by the hydrodynamic shear within a hollow fiber microfiltration cartridge installed to withdraw the spent medium and the waste metabolites. (c) 1993 John Wiley & Sons, Inc.  相似文献   

7.
Microbial conversion of renewable raw materials to useful products is an important objective in industrial biotechnology. Pichia stipitis, a yeast that naturally ferments xylose, was genetically engineered for l-(+)-lactate production. We constructed a P. stipitis strain that expressed the l-lactate dehydrogenase (LDH) from Lactobacillus helveticus under the control of the P. stipitis fermentative ADH1 promoter. Xylose, glucose, or a mixture of the two sugars was used as the carbon source for lactate production. The constructed P. stipitis strain produced a higher level of lactate and a higher yield on xylose than on glucose. Lactate accumulated as the main product in xylose-containing medium, with 58 g/liter lactate produced from 100 g/liter xylose. Relatively efficient lactate production also occurred on glucose medium, with 41 g/liter lactate produced from 94 g/liter glucose. In the presence of both sugars, xylose and glucose were consumed simultaneously and converted predominantly to lactate. Lactate was produced at the expense of ethanol, whose production decreased to approximately 15 to 30% of the wild-type level on xylose-containing medium and to 70 to 80% of the wild-type level on glucose-containing medium. Thus, LDH competed efficiently with the ethanol pathway for pyruvate, even though the pathway from pyruvate to ethanol was intact. Our results show, for the first time, that lactate production from xylose by a yeast species is feasible and efficient. This is encouraging for further development of yeast-based bioprocesses to produce lactate from lignocellulosic raw material.  相似文献   

8.
D Acosta  C P Li 《In vitro》1979,15(11):929-934
Primary cultures of rat heart endothelial cells were subjected to simulated conditions of ischemia: hyposia and glucose deprivation for 4 and 24 hr. Cellular injury was evaluated by measuring changes in viability, total protein, cellular morphology, and leakage of cytoplasmic enzymes from the cells into the culture medium. Deprivation of oxygen and glucose for 4 or 24 hr did not lethally injure the cells as noted by no change in cell viability, morphology, and total protein when compared to controls. However, reversible or non-lethal cellular injury was produced as reflected by a significant release of lactate dehydrogenase (LDH) from the cells into the medium after treatment with hypoxia and glucose deprivation for 4 or 24 hr. When the cultures were deprived of glucose, but were oxygenated, cellular injury was not evident after 24 hr. Deprivation of oxygen but not glucose resulted in significant loss of LDH after 4 or 24 hr. When the cultures were allowed to recover after oxygen and glucose deprivation in complete medium containing 1000 mg glucose per 1 and a normal atmosphere of 20% O2, they had levels of LDH leakage comparable to those of control cultures.  相似文献   

9.
We developed a metabolically engineered yeast which produces lactic acid efficiently. In this recombinant strain, the coding region for pyruvate decarboxylase 1 (PDC1) on chromosome XII is substituted for that of the l-lactate dehydrogenase gene (LDH) through homologous recombination. The expression of mRNA for the genome-integrated LDH is regulated under the control of the native PDC1 promoter, while PDC1 is completely disrupted. Using this method, we constructed a diploid yeast transformant, with each haploid genome having a single insertion of bovine LDH. Yeast cells expressing LDH were observed to convert glucose to both lactate (55.6 g/liter) and ethanol (16.9 g/liter), with up to 62.2% of the glucose being transformed into lactic acid under neutralizing conditions. This transgenic strain, which expresses bovine LDH under the control of the PDC1 promoter, also showed high lactic acid production (50.2 g/liter) under nonneutralizing conditions. The differences in lactic acid production were compared among four different recombinants expressing a heterologous LDH gene (i.e., either the bovine LDH gene or the Bifidobacterium longum LDH gene): two transgenic strains with 2microm plasmid-based vectors and two genome-integrated strains.  相似文献   

10.
Summary The relative contributions of lactate inhibition and the generation of sterile (undividing) cells to the low xylose utilisation rate of Lactococcus lactis IO-1 was investigated. The lactate inhibition constant of xylose grown cells was shown to be 9.3 times more than that of glucose grown cells. However, the sterile cell production rate and LDH inactivation rate of the xylose cultures were at least 10 times less than the glucose cultures. Thus, it is suggested that the slower substrate consumption rate in xylose medium is caused mainly by the large inhibition constant for the end product.  相似文献   

11.
Wild-type Bacillus subtilis ferments 20 g/liter glucose in 48 h, producing lactate and butanediol, but not ethanol or acetate. To construct an ethanologenic B. subtilis strain, homologous recombination was used to disrupt the native lactate dehydrogenase (LDH) gene (ldh) by chromosomal insertion of the Zymomonas mobilis pyruvate decarboxylase gene (pdc) and alcohol dehydrogenase II gene (adhB) under the control of the ldh native promoter. The values of the intracellular PDC and ADHII enzymatic activities of the engineered B. subtilis BS35 strain were similar to those found in an ethanologenic Escherichia coli strain. BS35 produced ethanol and butanediol; however, the cell growth and glucose consumption rates were reduced by 70 and 65%, respectively, in comparison to those in the progenitor strain. To eliminate butanediol production, the acetolactate synthase gene (alsS) was inactivated. In the BS36 strain (BS35 ΔalsS), ethanol production was enhanced, with a high yield (89% of the theoretical); however, the cell growth and glucose consumption rates remained low. Interestingly, kinetic characterization of LDH from B. subtilis showed that it is able to oxidize NADH and NADPH. The expression of the transhydrogenase encoded by udhA from E. coli allowed a partial recovery of the cell growth rate and an early onset of ethanol production. Beyond pyruvate-to-lactate conversion and NADH oxidation, an additional key physiological role of LDH for glucose consumption under fermentative conditions is suggested. Long-term cultivation showed that 8.9 g/liter of ethanol can be obtained using strain BS37 (BS35 ΔalsS udhA+). As far as we know, this is the highest ethanol titer and yield reported with a B. subtilis strain.  相似文献   

12.
A rapid and simple technique to follow CO2 release during fermentation of glucose by heterofermentative bacteria or yeasts was used in order to evaluate ethanol and lactate production in pure and mixed cultures of yeast and bacteria. In pure cultures, good correlations were found between gas pressure variations (deltaP) and ethanol or lactate production by yeasts or heterofermentative bacteria, and ratios between deltaP and ethanol or lactate produced could be established. In mixed cultures, ratios between maximal deltaP and total amount of glucose consumed were determined. It was thus possible to evaluate the amount of glucose that was consumed by each strain and then deduce the bacterial lactate production. Good results were obtained for mixed cultures of yeast and homofermentative bacteria. This technique may be useful to evaluate the activity of strains in mixed cultures of yeast and lactic acid bacteria.  相似文献   

13.
The aim of this work was to investigate the effect of decreased activity of lactate dehydrogenase (EC 1.1.1.27; LDH) on lactate metabolism in potato tubers. By expressing a cDNA‐encoding potato tuber LDH in the antisense orientation, we generated transgenic potato plants with a preferential decrease in two of the five isozymes of LDH. Surprisingly, transgenic tubers grown under normoxic conditions did not contain less lactate, but rather instead contained approximately two‐fold more lactate than control tubers. This result is explicable if the decreased isozymes of LDH are responsible for the oxidation of lactate to pyruvate in vivo. This was confirmed by measurements of the rate of metabolism of lactate supplied to tuber discs: the rate in transgenic tubers was approximately half that of control tubers. The decrease in LDH activity had no measurable effect on the accumulation of lactate in cold‐stored tubers under anoxia, nor during the subsequent utilization of this lactate upon return to normoxia. In both control and transgenic tubers, the accumulation of lactate during anoxia was not accompanied by an induction of LDH activity or a change in isozyme distribution. In contrast, the metabolism of lactate after a period of anoxia was accompanied by a two‐fold increase in LDH activity and the induction of two isozymes that were distinct from those which had been decreased in the transgenic plants.  相似文献   

14.
Abstract: The effect of acute and chronic ethanol exposure on excitotoxicity in cultured rat cerebral cortical neurons was examined. Neuronal death was quantitated by measuring the accumulation of lactate dehydrogenase (LDH) in the culture media 20 h after exposure to NMDA. Addition of NMDA (25–100 μ M ) to the culture dishes for 25 min in Mg2+-free buffer resulted in a dose-dependent increase in LDH accumulation. Phase-contrast microscopy revealed obvious signs of cellular injury as evidenced by granulation and disintegration of cell bodies and neuritic processes. Chronic exposure of neuronal cultures to ethanol (100 m M ) for 96 h followed by its removal before NMDA exposure, significantly increased NMDA-stimulated LDH release by 36 and 22% in response to 25 μ M and 50 μ M NMDA, respectively. Neither basal LDH release nor that in response to maximal NMDA (100 μ M ) stimulation was altered by chronic alcohol exposure. In contrast to the effects of chronic ethanol on NMDA neurotoxicity, inclusion of ethanol (100 m M ) only during the NMDA exposure period significantly reduced LDH release by ∼ 50% in both control and chronically treated dishes. This reduction by acute ethanol was also observed under phase-contrast microscopy as a lack of development of granulation and a sparing of disintegration of neuritic processes. These results indicate that chronic exposure of ethanol to cerebral cortical neurons in culture can sensitize neurons to excitotoxic NMDA receptor activation.  相似文献   

15.
Bifidobacterium breve NCFB 2257 was grown in glucose-limited and nitrogen (N)-limited chemostats at dilution rates (D) from 0.04 to 0.60 h–1, to study the effect of nutrient availability on carbohydrate metabolism. The results showed that D had little effect on fermentation product formation, irrespective of the form of nutrient limitation. However, marked differeces were observed in the distribution of fermentation products, that were attributable to glucose availability. In glucose-limited cultures, formate and acetate were the principal end-products of metabolism. Lactate was never detected under these growth conditions. In contrast, lactate and acetate were mainly formed when glucose was in excess, and formate was not produced. These results are explained by the metabolic fate of pyruvate, which can be dissimilated by either phosphoroclastic cleavage to acetyl phosphate and formate, or alternatively, it may be reduced to lactate. Enzymic studies were made to establish the mechanisms that regulated pyruvate metabolism. The data demonstrated that control was not exercised through regulation of the synthesis and activity of lactate dehydrogenase (LDH), phosphofructokinase or alcohol dehydrogenase. It is possible however, that there was competition for pyruvate by LDH and the phosphoroclastic enzyme, which would determine the levels of lactate and formate produced respectively. These results demonstrate the metabolic flexibility of B. breve, which preferentially uses lactate as an electron sink during N-limited growth, whereas under energy-limitation, carbon flow is directed towards acetyl phosphate to maximise ATP synthesis. Correspondence to: B. A. Degnan  相似文献   

16.
The concentration of carbon sources has a significant influence on the growth, carbohydrate uptake and metabolite distribution in Clostridium thermohydrosulfuricum. The growing concentrations of glucose or starch increase the production of ethanol and lactate, the intracellular fructose-1,6-diphosphate (FDP) and the specific activity of lactate dehydrogenase (LDH), but decrease the ethanol/lactate ratio.  相似文献   

17.
Summary This study examined the role of odd and even short-chain fatty acid substrates on aerobic and glycolytic metabolism in well-aerated primary cultures of rabbit renal proximal tubule cells (RPTC). Increasing oxygen delivery to primary cultures of RPTC by shaking the dishes (SHAKE) reduced total lactate levels and lactate dehydrogenase (LDH) activity and reduced net glucose consumption compared to RPTC cultured under standard conditions (STILL). The addition of butyrate, valerate, heptanoate, or octanoate to SHAKE RPTC produced variable effects on glycolytic metabolism. Although butyrate and heptanoate further reduced total lactate levels and net glucose consumption during short-term culture (<24 h), no fatty acid tested further reduced total lactate levels, net glucose consumption, or LDH activity during long-term culture (7 days). During the first 12 h of culture, maintenance of aerobic metabolism in SHAKE RPTC was dependent on medium supplementation with fatty acid substrates (2 mM). However, by 24 h, SHAKE RPTC did not require fatty acid substrates to maintain levels of aerobic metabolism equivalent to freshly isolated proximal tubules and greater than STILL RPTC. This suggests that SHAKE RPTC undergo adaptive changes between 12 and 24 h of culture, which give RPTC the ability to utilize other substrates for mitochondrial oxidation, therefore allowing greater expression of mitochondrial oxidative potential in SHAKE RPTC than in STILL RPTC.  相似文献   

18.
Summary An in vitro model of myocardial ischemia has been established with primary monolayer cultures of postnatal rat myocardial cells. Ischemic conditions were simulated in vitro by subjecting the myocardial cell cultures to various levels of oxygen and glucose deprivation. The experimental protocol consisted of treatment with 20% or 0% O2 and 1000, 500 or 0 mg glucose per 1 of medium for 4 or 24 hr. Control cultures were treated with 20% O2 and 1000 mg glucose. After the ischemic treatments, cultures of beating muscle (M) cells were evaluated for signs of injury, i.e. leakage of cytoplasmic enzymes into the culture medium. Differences were found in leakage of lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) from the cultures that were exposed to partial ischemia of glucose deprivation and from those cultures that were exposed to total ischemia of oxygen and glucose deprivation. Glucose deprivation alone resulted in a slight-to-moderate loss of LDH and CPK from the cells, whereas total ischemia resulted in a significant release of the two cytoplasmic enzymes. When the cultures were allowed to recover after ischemic treatment in complete medium (1000 mg glucose) and a normal atmosphere of 20% O2, they had levels of LDH leakage comparable to those of control cultures. Cell viability and total protein content of the ischemic cultures did not differ significantly from controls. This study was supported by Research Grant HL 18647 from the National Heart, Lung, and Blood Institute.  相似文献   

19.
Sertoli cells actively metabolize glucose that is converted into lactate, which is used by developing germ cells for their energy metabolism. Androgens and oestrogens have general metabolic roles that reach far beyond reproductive processes. Hence, the main purpose of this study was to examine the effect of sex hormones on metabolite secretion/consumption in primary cultures of rat Sertoli cells. Sertoli cell-enriched cultures were maintained in a defined medium for 50?h. Glucose and pyruvate consumption, and lactate and alanine secretion were determined, by 1H-NMR (proton NMR) spectra analysis, in the presence or absence of 100?nM E2 (17β-oestradiol) or 100?nM 5α-DHT (dihydrotestosterone). Cells cultured in the absence (control) or presence of E2 consumed the same amount of glucose (29±2?pmol/cell) at similar rates during the 50?h. After 25?h of treatment with DHT, glucose consumption and glucose consumption rate significantly increased. Control and E2-treated cells secreted similar amounts of lactate during the 50?h, while the amount of lactate secreted by DHT-treated cells was significantly lower. Such a decrease was concomitant with a significant decrease in LDH A [LDH (lactate dehydrogenase) chain A] and MCT4 [MCT (monocarboxylate transporter) isoform 4] mRNA levels after 50?h treatment in hormonally treated groups, being more pronounced in DHT-treated groups. Finally, alanine production was significantly increased in E2-treated cells after 25?h treatment, which indicated a lower redox/higher oxidative state for the cells in those conditions. Together, these results support the existence of a relation between sex hormones action and energy metabolism, providing an important assessment of androgens and oestrogens as metabolic modulators in rat Sertoli cells.  相似文献   

20.
The effects of metronidazole, CO, methanogens, and CO(2) on the fermentation of glucose by the anaerobic fungus Neocallimastix sp. strain L2 were investigated. Both metronidazole and CO caused a shift in the fermentation products from predominantly H(2), acetate, and formate to lactate as the major product and caused a lower glucose consumption rate and cell protein yield. An increased lactate dehydrogenase activity and a decreased hydrogenase activity were observed in cells grown under both culture conditions. In metronidazole-grown cells, the amount of hydrogenase protein was decreased compared with the amount in cells grown in the absence of metronidazole. When Neocallimastix sp. strain L2 was cocultured with the methanogenic bacterium Methanobrevibacter smithii, the fermentation pattern changed in the opposite direction: H(2) and acetate production increased at the expense of the electron sink products lactate, succinate, and ethanol. A concomitant decrease in the enzyme activities leading to these electron sink products was observed, as well as an increase in the glucose consumption rate and cell protein yield, compared with those of pure cultures of the fungus. Low levels of CO(2) in the gas phase resulted in increased H(2) and lactate formation and decreased production of formate, acetate, succinate, and ethanol, a decreased glucose consumption rate and cell protein yield, and a decrease in most of the hydrogenosomal enzyme activities. None of the tested culture conditions resulted in changed quantities of hydrogenosomal proteins. The results indicate that manipulation of the pattern of fermentation in Neocallimastix sp. strain L2 results in changes in enzyme activities but not in the proliferation or disappearance of hydrogenosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号