首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Alternative splicing is one of the key mechanisms that generate biological diversity. Even though alternative splicing also occurs in the 5' and 3' untranslated regions (UTRs) of mRNAs, the understanding of the significance and the regulation of these variations is rather limited.  相似文献   

2.
3.

Background  

A P-type transposable element called PdL has been engineered with a doxycycline-inducible promoter directed out through the 3' end of the element. Insertion of PdL near the 5' end of a gene often yields doxycycline-dependent overexpression of that gene and a mutant phenotype. This functional genomics strategy allows for efficient screening of large numbers of genes for overexpression phenotypes.  相似文献   

4.

Background  

Differential polyadenylation is a widespread mechanism in higher eukaryotes producing mRNAs with different 3' ends in different contexts. This involves several alternative polyadenylation sites in the 3' UTR, each with its specific strength. Here, we analyze the vicinity of human polyadenylation signals in search of patterns that would help discriminate strong and weak polyadenylation sites, or true sites from randomly occurring signals.  相似文献   

5.

Background  

The cancer-prone and accelerated aging disease Werner syndrome is caused by loss of function of the WRN gene product that possesses ATPase, 3' to 5' helicase and 3' to 5' exonuclease activities. Although WRN has been most prominently suggested to function in telomere maintenance, resolution of replication blockage and/or recombinational repair, its exact role in DNA metabolism remains unclear. WRN is the only human RecQ family member to possess both helicase and exonuclease activity, but the mechanistic relationship between these activities is unknown. In this study, model single-stranded and 3' overhang DNA substrates of varying length and structure were used to examine potential coordination between the ATPase/helicase and exonuclease activities of WRN.  相似文献   

6.

Background  

We previously described the use of tailed oligonucleotides as a means of reprogramming alternative pre-mRNA splicing in vitro and in vivo. The tailed oligonucleotides that were used interfere with splicing because they contain a portion complementary to sequences immediately upstream of the target 5' splice site combined with a non-hybridizing 5' tail carrying binding sites for the hnRNP A1/A2 proteins.  相似文献   

7.

Background  

Accurate selection of splice sites during the splicing of precursors to messenger RNA requires both relatively well-characterized signals at the splice sites and auxiliary signals in the adjacent exons and introns. We previously described a feature generation algorithm (FGA) that is capable of achieving high classification accuracy on human 3' splice sites. In this paper, we extend the splice-site prediction to 5' splice sites and explore the generated features for biologically meaningful splicing signals.  相似文献   

8.

Background  

All standard methods for cDNA cloning are affected by a potential inability to effectively clone the 5' region of mRNA. The aim of this work was to estimate mRNA open reading frame (ORF) 5' region sequence completeness in the model organism Danio rerio (zebrafish).  相似文献   

9.

Background  

Almost all known nucleic acid polymerases catalyze 5'-3' polymerization by mediating the attack on an incoming nucleotide 5' triphosphate by the 3'OH from the growing polynucleotide chain in a template dependent or independent manner. The only known exception to this rule is the Thg1 RNA polymerase that catalyzes 3'-5' polymerization in vitro and also in vivo as a part of the maturation process of histidinyl tRNA. While the initial reaction catalyzed by Thg1 has been compared to adenylation catalyzed by the aminoacyl tRNA synthetases, the evolutionary relationships of Thg1 and the actual nature of the polymerase reaction catalyzed by it remain unclear.  相似文献   

10.
11.
12.

Background  

Understanding the regulation of the flavonoid pathway is important for maximising the nutritional value of crop plants and possibly enhancing their resistance towards pathogens. The flavonoid 3'5'-hydroxylase (F3'5'H) enzyme functions at an important branch point between flavonol and anthocyanin synthesis, as is evident from studies in petunia (Petunia hybrida), and potato (Solanum tuberosum). The present work involves the identification and characterisation of a F3'5'H gene from tomato (Solanum lycopersicum), and the examination of its putative role in flavonoid metabolism.  相似文献   

13.

Background  

While the current model of pre-mRNA splicing is based on the recognition of four canonical intronic motifs (5' splice site, branchpoint sequence, polypyrimidine (PY) tract and 3' splice site), it is becoming increasingly clear that splicing is regulated by both canonical and non-canonical splicing signals located in the RNA sequence of introns and exons that act to recruit the spliceosome and associated splicing factors. The diversity of human intronic sequences suggests the existence of novel recognition pathways for non-canonical introns. This study addresses the recognition and splicing of human introns that lack a canonical PY tract. The PY tract is a uridine-rich region at the 3' end of introns that acts as a binding site for U2AF65, a key factor in splicing machinery recruitment.  相似文献   

14.

Background  

DICER is an RNase III family endoribonuclease that processes precursor microRNAs (pre-miRNAs) and long double-stranded RNAs, generating microRNA (miRNA) duplexes and short interfering RNA duplexes with 20~23 nucleotides (nts) in length. The typical form of pre-miRNA processed by the Drosha protein is a hairpin RNA with 2-nt 3' overhangs. On the other hand, production of mature miRNA from an endogenous hairpin RNA with 5' overhangs has also been reported, although the mechanism for this process is unknown.  相似文献   

15.

Background  

As in eukaryotes, precursor transfer RNAs in Archaea often contain introns that are removed in tRNA maturation. Two unrelated archaeal species display unique pre-tRNA processing complexity in the form of split tRNA genes, in which two to three segments of tRNAs are transcribed from different loci, then trans-spliced to form a mature tRNA. Another rare type of pre-tRNA, found only in eukaryotic algae, is permuted, where the 3' half is encoded upstream of the 5' half, and must be processed to be functional.  相似文献   

16.
17.

Background  

The Immunoglobulin heavy chain (IgH) 3' Regulatory Region (3'RR), located at the 3' of the constant alpha gene, plays a crucial role in immunoglobulin production. In humans, there are 2 copies of the 3'RR, each composed of 4 main elements: 3 enhancers and a 20 bp tandem repeat. The single mouse 3'RR differs from the two human ones for the presence of 4 more regulative elements with the double copy of one enhancer at the border of a palindromic region.  相似文献   

18.

Background  

Bloom syndrome is one of the most cancer-predisposing disorders and is characterized by genomic instability and a high frequency of sister chromatid exchange. The disorder is caused by loss of function of a 3' to 5' RecQ DNA helicase, BLM. The exact role of BLM in maintaining genomic integrity is not known but the helicase has been found to associate with several DNA repair complexes and some DNA replication foci.  相似文献   

19.

Background  

Virtually all currently available microRNA target site prediction algorithms require the presence of a (conserved) seed match to the 5' end of the microRNA. Recently however, it has been shown that this requirement might be too stringent, leading to a substantial number of missed target sites.  相似文献   

20.

Background  

Wheat (Triticum aestivum L.) O-methyltransferase (TaOMT2) catalyzes the sequential methylation of the flavone, tricetin, to its 3'-methyl- (selgin), 3',5'-dimethyl- (tricin) and 3',4',5'-trimethyl ether derivatives. Tricin, a potential multifunctional nutraceutical, is the major enzyme reaction product. These successive methylations raised the question as to whether they take place in one, or different active sites. We constructed a 3-D model of this protein using the crystal structure of the highly homologous Medicago sativa caffeic acid/5-hydroxyferulic acid O-methyltransferase (MsCOMT) as a template with the aim of proposing a mechanism for multiple methyl transfer reactions in wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号