首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Treatment of cultured human hepatoma HepG2 cells with the protein kinase C (PKC) activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), results in an increase in tyrosine phosphorylation of several proteins, including the focal adhesion kinase (FAK) and paxillin using anti-phosphotyrosine Western blotting and immunoprecipitation. However, when cells are in suspension or in the presence of cytochalasin D which disrupts the intracellular network of actin microfilaments, TPA loses its ability to stimulate tyrosine phosphorylation of FAK and paxillin but it still activates mitogen-activated protein kinase (MAPK) and induces PKC translocation from cytosol to the membrane in HepG2 cells. On the other hand, PD98059, a specific inhibitor of mitogen-activated protein kinase kinase, blocks TPA-induced MAPK activation but has no effect on TPA-induced tyrosine phosphorylation. Our findings suggest that TPA-induced tyrosine phosphorylation of FAK and paxillin in human hepatoma cells is PKC dependent and requires the integrity of the cell cytoskeleton but is uncoupled to the signal transduction pathway of PKC leading to the translocation of PKC and MAPK activation.  相似文献   

2.
Cyclic AMP stimulates taurocholate (TC) uptake and sodium taurocholate co-transporting polypeptide (Ntcp) translocation in hepatocytes via the phosphoinositide-3 kinase (PI3K) signaling pathway. The aim of the present study was to determine whether protein kinase (PK) Czeta, one of the downstream mediators of the PI3K signaling pathway, is involved in cAMP-mediated stimulation of TC uptake. Studies were conducted in isolated rat hepatocytes and in HuH-7 cells stably transfected with rat liver Ntcp (HuH-Ntcp cells). Studies in hepatocytes showed that cAMP activates PKCzeta in a PI3K-dependent manner without inducing translocation of PKCzeta to the plasma membrane. Inhibition of cAMP-induced PKCzeta activity by myristoylated PKC (zeta/lambda) pseudosubstrate, a specific inhibitor of PKCzeta, and G? 6850, a PKC inhibitor, resulted in inhibition of cAMP-induced increases in TC uptake and Ntcp translocation. Studies in HuH-Ntcp cells showed that inhibition of cAMP-induced PKCzeta activation by dominant-negative (DN) PKCzeta resulted in inhibition of cAMP-induced increases in TC uptake and Ntcp translocation. DN PKCzeta also inhibited wild-type PKCzeta-induced increases in PKCzeta activity, TC uptake, and Ntcp translocation. Myristoylated PKC (zeta/lambda) pseudosubstrate and DN PKCzeta also inhibited cAMP-induced activation of PKB in hepatocytes and HuH-Ntcp cells, respectively. Neither DN PKB nor constitutively active PKB affected cAMP-induced activation of PKCzeta, and wild-type PKCzeta did not activate PKB. Taken together, these results suggest that cAMP-induced activation of PKB is dependent on cAMP-induced stimulation of PKCzeta. It is proposed that cAMP-induced Ntcp translocation involves the activation of the PI3K/PKCzeta signaling pathway followed by the activation of the PI3K/PKB signaling pathway.  相似文献   

3.
Bryostatin, a potent agonist of protein kinase C (PKC), when administered to Hermissenda was found to affect acquisition of an associative learning paradigm. Low bryostatin concentrations (0.1 to 0.5 ng/ml) enhanced memory acquisition, while concentrations higher than 1.0 ng/ml down-regulated the pathway and no recall of the associative training was exhibited. The extent of enhancement depended upon the conditioning regime used and the memory stage normally fostered by that regime. The effects of two training events (TEs) with paired conditioned and unconditioned stimuli, which standardly evoked only short-term memory (STM) lasting 7 min, were--when bryostatin was added concurrently--enhanced to a long-term memory (LTM) that lasted about 20 h. The effects of both 4- and 6-paired TEs (which by themselves did not generate LTM), were also enhanced by bryostatin to induce a consolidated memory (CM) that lasted at least 5 days. The standard positive 9-TE regime typically produced a CM lasting at least 6 days. Low concentrations of bryostatin (<0.5 ng/ml) elicited no demonstrable enhancement of CM from 9-TEs. However, animals exposed to bryostatin concentrations higher than 1.0 ng/ml exhibited no behavioral learning. Sharp-electrode intracellular recordings of type-B photoreceptors in the eyes from animals conditioned in vivo with bryostatin revealed changes in input resistance and an enhanced long-lasting depolarization (LLD) in response to light. Likewise, quantitative immunocytochemical measurements using an antibody specific for the PKC-activated Ca2+/GTP-binding protein calexcitin showed enhanced antibody labeling with bryostatin. Animals exposed to the PKC inhibitor bisindolylmaleimide-XI (Ro-32-0432) administered by immersion prior to 9-TE conditioning showed no training-induced changes with or without bryostatin exposure. However, if animals received bryostatin before Ro-32, the enhanced acquisition and demonstrated recall still occurred. Therefore, pathways responsible for the enhancement effects induced by bryostatin were putatively mediated by PKC. Overall, the data indicated that PKC activation occurred and calexcitin levels were raised during the acquisition phases of associative conditioning and memory initiation, and subsequently returned to baseline levels within 24 and 48 h, respectively. Therefore, the protracted recall measured by the testing regime used was probably due to bryostatin-induced changes during the acquisition and facilitated storage of memory, and not necessarily to enhanced recall of the stored memory when tested many days after training.  相似文献   

4.
We recently reported that IGF-II binding to the IGF-II/mannose-6-phosphate (M6P) receptor activates the ERK1/2 cascade by triggering sphingosine kinase 1 (SK1)-dependent transactivation of G protein-coupled sphingosine 1-phosphate (S1P) receptors. Here, we investigated the mechanism of IGF-II/M6P receptor-dependent sphingosine kinase 1 (SK1) activation in human embryonic kidney 293 cells. Pretreating cells with protein kinase C (PKC) inhibitor, bisindolylmaleimide-I, abolished IGF-II-stimulated translocation of green fluorescent protein (GFP)-tagged SK1 to the plasma membrane and activation of endogenous SK1, implicating PKC as an upstream regulator of SK1. Using confocal microscopy to examine membrane translocation of GFP-tagged PKCα, β1, β2, δ, and ζ, we found that IGF-II induced rapid, transient, and isoform-specific translocation of GFP-PKCβ2 to the plasma membrane. Immunoblotting of endogenous PKC phosphorylation confirmed PKCβ2 activation in response to IGF-II. Similarly, IGF-II stimulation caused persistent membrane translocation of the kinase-deficient GFP-PKCβ2 (K371R) mutant, which does not dissociate from the membrane after translocation. IGF-II stimulation increased diacylglycerol (DAG) levels, the established activator of classical PKC. Interestingly, the polyunsaturated fraction of DAG was increased, indicating involvement of phosphatidyl inositol/phospholipase C (PLC). Pretreating cells with the PLC inhibitor, U73122, attenuated IGF-II-dependent DAG production and PKCβ2 phosphorylation, blocked membrane translocation of the kinase-deficient GFP-PKCβ2 (K371R) mutant, and reduced sphingosine 1-phosphate production, suggesting that PLC/PKCβ2 are upstream regulators of SK1 in the pathway. Taken together, these data provide evidence that activation of PLC and PKCβ2 by the IGF-II/M6P receptor are required for the activation of SK1.  相似文献   

5.
Our laboratory showed previously that estrogen activates ERK in neocortical cultures. To further elucidate the precise signaling sequelae that lead to estrogen-induced ERK activity, we evaluated the involvement of protein kinase C (PKC). We found that neocortical explants expressed primarily PKC gamma and PKC epsilon. Consistent with the involvement of PKC in mediating estrogen-induced ERK phosphorylation, we found that estrogen treatment induced translocation of these PKC isoforms to the plasma membrane. Importantly, inhibition of these isoforms abolished the ability of estrogen to phosphorylate ERK. While direct activation of PKC mimicked the effect of estrogen on ERK, both in pattern of activation and resulting intraneuronal distribution of ERK, PKC-induced ERK phosphorylation required the activity of MEK but not B-Raf. Collectively, these data suggest a critical role for PKC in mediating estrogen induction of ERK activation in the developing brain via a MEK-dependent but B-Raf-independent pathway.  相似文献   

6.
7.
Human alveolar macrophages respond to endotoxin (LPS) by activation of a number of mitogen-activated protein kinase pathways, including the p42/44 (extracellular signal-related kinase (ERK)) kinase pathway. In this study, we evaluated the role of the atypical protein kinase C (PKC) isoform, PKC zeta, in LPS-induced activation of the ERK kinase pathway. Kinase activity assays showed that LPS activates PKC zeta, mitogen-activated protein/ERK kinase (MEK, the upstream activator of ERK), and ERK. LPS did not activate Raf-1, the classic activator of MEK. Pseudosubstrate-specific peptides with attached myristic acid are cell permeable and can be used to block the activity of specific PKC isoforms in vivo. We found that a peptide specific for PKC zeta partially blocked activation of both MEK and ERK by LPS. We also found that this peptide blocked in vivo phosphorylation of MEK after LPS treatment. In addition, we found that LPS caused PKC zeta to bind to MEK in vivo. These observations suggest that MEK is an LPS-directed target of PKC zeta. PKC zeta has been shown in other systems to be phosphorylated by phosphatidylinositol (PI) 3-kinase-dependent kinase. We found that LPS activates PI 3-kinase and causes the formation of a PKC zeta/PI 3-kinase-dependent kinase complex. These data implicate the PI 3-kinase pathway as an integral part of the LPS-induced PKC zeta activation. Taken as a whole, these studies suggest that LPS activates ERK kinase, in part, through activation of an atypical PKC isoform, PKC zeta.  相似文献   

8.
The mitogen‐activated protein kinase (MAPK) cascade is an important contributor to synaptic plasticity and learning in both vertebrates and invertebrates. In the nudibranch mollusk Hermissenda, phosphorylation and activation of the extracellular signal‐regulated protein kinase (ERK), a key member of a MAPK cascade, is produced by one‐trial and multitrial Pavlovian conditioning. Several signal transduction pathways that are activated by 5‐hydroxytryptamine (5‐HT) and may contribute to conditioning have been identified in type B photoreceptors. However, the regulation of ERK activity by ‘upstream’ signaling molecules has not been previously investigated in Hermissenda. In the present study we examined the role of protein kinase C (PKC) in the serotonin (5‐HT) activation of the ERK pathway. The phorbol ester TPA produced an increase in ERK phosphorylation that was blocked by the PKC inhibitors GF109203X or Gö6976. TPA‐dependent ERK phosphorylation was also blocked by the MEK1 inhibitors PD098059 or U0126. The increased phosphorylation of ERK by 5‐HT was reduced but not blocked by pretreatment with the calcium chelator BAPTA‐AM or pretreatment with Gö6976 or GF109203X. These results indicate that Ca2+‐dependent PKC activation contributes to ERK phosphorylation, although a PKC‐independent pathway is also involved in 5‐HT‐dependent ERK phosphorylation and activation.  相似文献   

9.
A series of studies on Hermissenda classical conditioning has lead to a discovery that the biophysical events (accumulation of Ca2+ and depolarization in B cell) found during memory acquisition are clearly distinct from those (suppression of K-currents, IA and ICa2+K+) detected in the retention phase of memory. Biochemical analysis of eyes isolated shortly after (a few hours) training revealed increased phosphorylation of a 20,000 M.W. protein which is very likely one of the substrates for both Ca/CaM-dependent protein kinase and C-kinase and possibly a locus of convergence for conditioned stimulus and unconditioned stimulus pathways. Furthermore, conditioning-specific changes in the two K+ currents have been reproduced by simultaneous activation of the CaM-kinase pathway (via iontophoretic injection of CaM-kinase II plus Ca2+-load or IP3 injection) and the C-kinase pathway (via bath application of phorbol-ester or diacylglycerol analog plus Ca2+-load). Therefore, synergistic interaction between the two Ca2+-dependent phosphorylation systems in the identified B cell is considered to be critically important for acquisition of associative memory. Evidence also has been obtained for similar biophysical changes and molecular mechanisms during retention of classical conditioning in the mammalian brain. Further work will be needed to uncover the biochemical mechanism(s) responsible for transforming short-term into long-lasting memory.  相似文献   

10.
The concanavalin A (Con A)-induced proliferation of lymph node lymphocytes is dependent on the presence of macrophages. When lymphocytes are depleted of macrophages, Con A is no longer mitogenic. Either 12-0-tetradecanoylphorbol-13-acetate (TPA), interleukin 1 (IL1), or macrophages in combination with Con A can restore proliferation. To establish where the proliferation process is blocked in the absence of macrophages, an early step in the signalling pathway, the activation of protein kinase C, was examined. It was found that although Con A caused translocation of protein kinase C from the cytosol to the membrane of lymph node cells, when the lymph node cells were depleted of macrophages and exposed to Con A, this translocation of protein kinase C did not occur. Instead, protein kinase C activity decreased in the membrane fraction and increased in the cytosol. On the other hand, TPA caused translocation of protein kinase C (PKC) from the cytosol to the membrane regardless of the presence of macrophages. However, the macrophage product, IL1, alone or in combination with Con A did not cause translocation of protein kinase C. In a reconstitution experiment, in which lymph node cells were depleted of macrophages and then macrophages were added back, the addition of Con A again lead to translocation of protein kinase C from the cytosol to the membrane. This combination also restored cell proliferation. Therefore, the Con A induced PKC translocation in T lymphocytes is macrophage mediated. TPA overcomes the macrophage requirement by directly activating PKC, while IL1 appears to act at a different step in proliferation.  相似文献   

11.
Protein kinase D (PKD) is a serine/threonine protein kinase activated by G protein-coupled receptor (GPCR) agonists through an incompletely characterized mechanism that includes its reversible plasma membrane translocation and activation loop phosphorylation via a protein kinase C (PKC)-dependent pathway. To gain a better understanding of the mechanism regulating the activation of PKD in response to GPCR stimulation, we investigated the role of its rapid plasma membrane translocation on its activation loop phosphorylation and identified the endogenous PKC isozyme that mediates that event in vivo. We had found that the activation loop of a PKD mutant, with reduced affinity for diacylglycerol and phorbol esters, was only phosphorylated upon its plasma membrane association. We also found that the activation loop phosphorylation and rapid plasma membrane dissociation of PKD were inhibited either by preventing the plasma membrane translocation of PKCepsilon, through abolition of its interaction with receptor for activated C kinase, or by suppressing the expression of PKCepsilon via specific small interfering RNAs. Thus, this study demonstrates that the plasma membrane translocation of PKD, in response to GPCR stimulation, is necessary for the PKCepsilon-mediated phosphorylation of the activation loop of PKD and that this event requires the translocation of both kinases to the plasma membrane. Based on these and previous results, we propose a model of GPCR-mediated PKD regulation that integrates its changes in distribution, catalytic activity, and multisite phosphorylation.  相似文献   

12.
Human PBL activated with anti-TCR/CD3 mAb express high affinity receptors for IL-2, synthesize IL-2, and subsequently proliferate. In contrast, lymphocytes activated by dioctanoylglycerol (DiC8) and ionomycin express high affinity receptors; however, no IL-2 synthesis is detectable. Anti-TCR/CD3 antibodies, as well as DiC8 cause translocation of protein kinase C (PKC) from the cytosol to the plasma membrane. In DiC8-stimulated cells translocation of PKC is detectable after 15 min, then it declines to control levels. In lymphocytes activated by antiTCR/CD3 mAb translocation of PKC is detectable after 15 min, then it declines to control levels, followed by a second, long lasting activation of the enzyme up to 4 h. Addition of polyunsaturated fatty acids to DiC8 + ionomycin-treated cells leads to IL-2 synthesis and proliferation. Incorporation of poly-unsaturated fatty acids into plasma membrane phospholipids results in long term activation of PKC. The results suggest that elevated incorporation of polyunsaturated fatty acids and thus continuous activation and translocation of PKC represents a necessary early signal for IL-2 synthesis and proliferation in human lymphocytes.  相似文献   

13.
Li XY 《生理学报》2001,53(6):414-418
实验旨在研究糖皮质激素快速、非基因组作用的细胞内信号传导机制。Western分析研究结果表明,皮质酮可快速激活PC12细胞中p38丝列原激活的蛋白激酶(mitogen-activated protein kinase,MAPK),时间、浓度曲线均为钟形,最大激活为10^-9mol/L和15min。糖皮质激素受体阻断剂RU38486不能阻断此作用,而小牛血清白蛋白耦联的皮质酮也能快速激活p38。受体酪氨酸激酶阻断剂genistein对此作用无影响,表明此快速作用不涉及受体酪氨酸激酶活性。此作用能被蛋白激酶C(protein kinase C,PKC)激动剂PMA模拟,而被PKC阻断剂Goe6976所阻断。结果表明,皮质酮可能通过推测的膜受体以PKC依赖的方式快速激活p38 MAPK。  相似文献   

14.
Cyclic AMP stimulates translocation of Na(+)/taurocholate cotransporting polypeptide (NTCP) from the cytosol to the sinusoidal membrane and multidrug resistance-associated protein 2 (MRP2) to the canalicular membrane. A recent study suggested that protein kinase Cδ (PKCδ) may mediate cAMP-induced translocation of Ntcp and Mrp2. In addition, cAMP has been shown to stimulate NTCP translocation in part via Rab4. The aim of this study was to determine whether cAMP-induced translocation of NTCP and MRP2 require kinase activity of PKCδ and to test the hypothesis that cAMP-induced activation of Rab4 is mediated via PKCδ. Studies were conducted in HuH-NTCP cells (HuH-7 cells stably transfected with NTCP). Transfection of cells with wild-type PKCδ increased plasma membrane PKCδ and NTCP and increased Rab4 activity. Paradoxically, overexpression of kinase-dead dominant-negative PKCδ also increased plasma membrane PKCδ and NTCP as well as Rab4 activity. Similar results were obtained in PKCδ knockdown experiments, despite a decrease in total PKCδ. These results raised the possibility that plasma membrane localization rather than kinase activity of PKCδ is necessary for NTCP translocation and Rab4 activity. This hypothesis was supported by results showing that rottlerin, which has previously been shown to inhibit cAMP-induced membrane translocation of PKCδ and NTCP, inhibited cAMP-induced Rab4 activity. In addition, LY294002 (a phosphoinositide-3-kinase inhibitor), which has been shown to inhibit cAMP-induced NTCP translocation, also inhibited cAMP-induced PKCδ translocation. In contrast to the results with NTCP, cAMP-induced MRP2 translocation was inhibited in cells transfected with DN-PKCδ and small interfering RNA PKCδ. Taken together, these results suggest that the plasma membrane localization rather than kinase activity of PKCδ plays an important role in cAMP-induced NTCP translocation and Rab4 activity, whereas the kinase activity of PKCδ is necessary for cAMP-induced MRP2 translocation.  相似文献   

15.
The signaling routes linking G-protein-coupled receptors to mitogen-activated protein kinase (MAPK) may involve tyrosine kinases, phosphoinositide 3-kinase gamma (PI3Kgamma), and protein kinase C (PKC). To characterize the mitogenic pathway of bradykinin (BK), COS-7 cells were transiently cotransfected with the human bradykinin B(2) receptor and hemagglutinin-tagged MAPK. We demonstrate that BK-induced activation of MAPK is mediated via the alpha subunits of a G(q/11) protein. Both activation of Raf-1 and activation of MAPK in response to BK were blocked by inhibitors of PKC as well as of the epidermal growth factor (EGF) receptor. Furthermore, in PKC-depleted COS-7 cells, the effect of BK on MAPK was clearly reduced. Inhibition of PI3-Kgamma or Src kinase failed to diminish MAPK activation by BK. BK-induced translocation and overexpression of PKC isoforms as well as coexpression of inactive or constitutively active mutants of different PKC isozymes provided evidence for a role of the diacylglycerol-sensitive PKCs alpha and epsilon in BK signaling toward MAPK. In addition to PKC activation, BK also induced tyrosine phosphorylation of EGF receptor (transactivation) in COS-7 cells. Inhibition of PKC did not alter BK-induced transactivation, and blockade of EGF receptor did not affect BK-stimulated phosphatidylinositol turnover or BK-induced PKC translocation, suggesting that PKC acts neither upstream nor downstream of the EGF receptor. Comparison of the kinetics of PKC activation and EGF receptor transactivation in response to BK also suggests simultaneous rather than consecutive signaling. We conclude that in COS-7 cells, BK activates MAPK via a permanent dual signaling pathway involving the independent activation of the PKC isoforms alpha and epsilon and transactivation of the EGF receptor. The two branches of this pathway may converge at the level of the Ras-Raf complex.  相似文献   

16.
In studies of developmental signaling pathways stimulated by the Wnt proteins and their receptors, Xenopus Wnt-5A (Xwnt-5A) and a prospective Wnt receptor, rat Frizzled 2 (Rfz2), have been shown to stimulate inositol signaling and Ca2+ fluxes in zebrafish [1] [2] [3]. As protein kinase C (PKC) isoforms can respond to Ca2+ signals [4], we asked whether expression of different Wnt and Frizzled homologs modulates PKC. Expression of Rfz2 and Xwnt-5A resulted in translocation of PKC to the plasma membrane, whereas expression of rat Frizzled 1 (Rfz1), which activates a Wnt pathway using beta-catenin but not Ca2+ fluxes [5], did not. Rfz2 and Xwnt-5A were also able to stimulate PKC activity in an in vitro kinase assay. Agents that inhibit Rfz2-induced signaling through G-protein subunits blocked Rfz2-induced translocation of PKC. To determine if other Frizzled homologs differentially stimulate PKC, we tested mouse Frizzled (Mfz) homologs for their ability to induce PKC translocation relative to their ability to induce the expression of two target genes of beta-catenin, siamois and Xnr3. Mfz7 and Mfz8 stimulated siamois and Xnr3 expression but not PKC activation, whereas Mfz3, Mfz4 and Mfz6 reciprocally stimulated PKC activation but not expression of siamois or Xnr3. These results demonstrate that some but not all Wnt and Frizzled signals modulate PKC localization and stimulate PKC activity via a G-protein-dependent mechanism. In agreement with other studies [1] [2] [3]. [6] [7] these data support the existence of multiple Wnt and Frizzled signaling pathways in vertebrates.  相似文献   

17.
Protein kinase C (PKC) has been implicated in the sperm acrosome reaction. In the present study, we demonstrate induction of the acrosome reaction and activation of sperm PKCalpha by lysophosphatidic acid (LPA), which is known to induce signal transduction cascades in many cell types via binding to specific cell-surface receptors. Under conditions by which LPA activates PKCalpha, there is significant stimulation of the acrosome reaction, which is inhibited by PKC inhibitors. Protein kinase Calpha belongs to the Ca(2+)-dependent classical PKC family of isoforms, and indeed we show that its activation depends upon the presence of Ca(2+) in the incubation medium. Protein kinase Calpha is a known regulator of phospholipase D (PLD). We investigated the possible regulatory relationships between PKCalpha and PLD1. Using specific antibodies against PLD1, we demonstrate for the first time its presence in bovine sperm. Furthermore, PLD1 coimmunoprecipitates with PKCalpha and the PKCalpha-PLD1 complex decomposes after treatment of the cells with LPA or 12-O:-tetradecanoyl phorbol-13-acetate, resulting in the translocation of PKCalpha to the plasma membrane and translocation of PLD1 to the particulate fraction. A possible bilateral regulation of PKCalpha and PLD1 activation during the sperm acrosome reaction is suggested.  相似文献   

18.
19.
Protein synthesis is essential for the stabilization of glutamate receptor-dependent forms of long-lasting hippocampal synaptic plasticity and for the consolidation of memory, but the signal transduction mechanisms that regulate translation factors during these processes are not well understood. As a first step towards understanding how translation is activated during synaptic plasticity, we investigated how the eukaryotic initiation factor 4E (eIF4E), a rate-limiting mRNA cap-binding protein, and its kinase, Mnk1, are regulated by protein kinase C (PKC), cAMP-dependent protein kinase (PKA) and N-methyl-D-aspartate (NMDA) receptor activation in hippocampal area CA1. We found that treatment of mouse hippocampal slices with either phorbol ester, to activate PKC, or forskolin, to activate PKA, resulted in activation of Mnk1 and increased eIF4E phosphorylation that was dependent on extracellular signal-regulated kinase (ERK). Similarly, brief treatment of hippocampal slices with NMDA resulted in activation of Mnk1 and increased phosphorylation of eIF4E. The NMDA-induced activation of Mnk1 and increased phosphorylation of eIF4E were dependent on PKA and ERK, but not PKC, and were present in synaptoneurosome preparations. Immunohistochemical analysis revealed that the PKA- and ERK-dependent increases in Mnk1 activation induced by NMDA also occurred in dendrites. These findings identify a specific regulatory pathway that can couple NMDA receptor activation to translation initiation factors in the hippocampus, and may represent a mechanism for triggering dendritic protein synthesis during long-term potentiation and long-term memory formation.  相似文献   

20.
We show that epigallocatechin-3 gallate (EGCG), a major component of green tea, stimulates phospholipase D (PLD) activity in U87 human astroglioma cells. EGCG-induced PLD activation was abolished by the phospholipase C (PLC) inhibitor and a lipase inactive PLC-gamma1 mutant, which is dependent on intracellular or extracellular Ca(2+), with the possible involvement of Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II). EGCG induced translocation of PLC-gamma1 from the cytosol to the membrane and PLC-gamma1 interaction with PLD1. EGCG regulates the activity of PLD by modulating the redox state of the cells, and antioxidants reverse this effect. Moreover, EGCG-induced PLD activation was reduced by PKC inhibitors or down-regulation of PKC. Taken together, these results show that, in human astroglioma cells, EGCG regulates PLD activity via a signaling pathway involving changes in the redox state that stimulates a PLC-gamma1 [Ins(1,4,5)P(3)-Ca(2+)]-CaM kinase II-PLD pathway and a PLC-gamma1 (diacylglycerol)-PKC-PLD pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号