首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deoxyribonucleic acid (DNA) polymerase activity was induced at approximately 18 to 20 hr after infection of secondary cultures of human embryonic kidney cells with adenovirus type 2 or type 12, and, at 30 to 50 hr after infection, the activity of this enzyme increased two- to threefold. The activity of thymidine kinase was also induced, but the activity of deoxycytidylic deaminase was not. The DNA content per cell at 71 hr after infection was 1.6-fold greater in adenovirus 2-infected cultures, and approximately 2.4-fold greater in adenovirus 12-infected cultures, than in the noninfected cultures. Several properties of DNA polymerase were studied. The enzymes in normal and adenovirus 2- or 12-infected cell extracts were saturated by approximately the same concentration of heat-denatured salmon sperm DNA primer (160 mug/ml); the enzyme activities had a similar broad pH optimum between 7.5 and 9. Extracts prepared from cells infected by either adenovirus did not activate DNA polymerase from noninfected cells, nor did the noninfected cell extracts inhibit enzyme activity of infected cell extracts. DNA polymerase in both normal and adenovirus 2- or 12-infected cells was located predominantly in the nucleus. In each case, the cytoplasm had only 30% of the enzyme activity of the nucleus. At 40 hr after infection with adenovirus 2 or 12, the activities of the enzyme in the nuclear and cytoplasmic fractions increased two- to threefold. Puromycin, an inhibitor of protein synthesis, prevented DNA polymerase induction when added to cultures during the 18- to 30-hr postinfection period, and it arrested the additional increase in enzyme activity when added after enzyme induction began. However, the increases in both DNA polymerase and thymidine kinase activities took place after treatment of infected cultures with 1-beta-d-arabinofuranosylcytosine, an inhibitor of DNA synthesis and adenovirus growth.  相似文献   

2.
The incorporation of (3)H-thymidine ((3)H-dT) into deoxyribonucleic acid (DNA) has been studied in uninfected confluent monolayer cultures of monkey kidney and mouse kidney cells, simian virus 40 (SV40)-infected cells, and in SV40-transformed mouse kidney cells. Radioautographic measurements revealed that during the period from 28 to 51 hr after productive SV40 infection of monkey kidney cultures about 80% of the cells synthesized DNA, compared to about 16% in uninfected cultures. At 28 to 43 hr after abortive SV40 infection of mouse kidney cultures, 24 to 37% of the cells synthesized DNA, compared to about 6 to 8% in uninfected cultures. The infected monkey kidney and mouse kidney cultures, respectively, incorporated about 5 to 10 times and 3 to 5 times as much (3)H-dT into DNA as did uninfected cultures. Moreover, the net DNA synthesized by SV40-infected monkey kidney cultures, estimated by colorimetric methods, substantially exceeded that of uninfected cultures.Nitrocellulose chromatography and band centrifugation experiments were performed to elucidate the kinds of DNA synthesized in the cultures. In uninfected monkey kidney cultures and at 2 to 12 hr after SV40 infection, almost all of the (3)H-dT labeled DNA sedimented more rapidly than SV40 DNA, and the radioactive DNA was denatured by heating for 12 min at 100 C (cellular DNA). Almost all of the labeled DNA obtained from abortively infected mouse kidney cultures and from SV40-transformed cells also had the properties of cellular DNA. However, approximately one-third to one-half of the labeled DNA obtained from monkey kidney cultures 28 to 51 hr after infection sedimented more slowly than cellular DNA and was not denatured by the heating (SV40 DNA). It is concluded that cellular DNA synthesis was induced during either the productive or abortive SV40 infections.  相似文献   

3.
The synthesis of cell-specific ribonucleic acid (RNA) appeared to be stimulated in human embryonic kidney (HEK) cultures infected with adenovirus 2 or 12. Deoxyribonucleic acid (DNA)-RNA hybridization experiments revealed that by 44 to 70 hr after infection with either virus, the relative amount of pulse-labeled RNA capable of hybridizing with HEK cell DNA increased considerably; such RNA was detected in both nuclear and cytoplasmic fractions. The main increase in apparent host RNA synthesis was preceded by (i) a relatively early transient stimulation of the DNA-dependent RNA polymerase activity in isolated nuclei, and (ii) a small but consistently observed increase in the rate of acetylation of lysine-rich and arginine-rich histone fractions. The Mn2+-(NH4)2SO4 and Mg2+-activated RNA polymerase reactions measured in nuclei isolated from cells infected with adenovirus 2 or 12 were stimulated at about the same time; a rapid loss of polymerase activity followed. The augmentation of the two RNA polymerase reactions found in adenovirus 12-infected cells was independent of protein synthesis. After the initial increase, the acetylation rate of histones of cells infected with adenovirus 2 or 12 declined, until late in infection it was approximately 40 to 70% of the control cell rate.  相似文献   

4.
Infectious deoxyribonucleic acid (DNA) was extracted from green monkey kidney (CV-1) cultures at various times after the cultures were infected with simian virus 40 (SV40) at input multiplicities of 0.01 and 0.1 plaque-forming unit (PFU) per cell. A pronounced decrease in infectious DNA was observed from 3 to 16 hr after virus infection, suggesting that structurally altered intracellular forms may have been generated early in infection. Evidence is also presented that SV40 DNA synthesis requires concurrent protein synthesis. DNA replication was studied in the presence and absence of cycloheximide in: (i) SV40-infected and uninfected cultures of CV-1 cells; (ii) cultures synchronized with 1-β-d-arabinofuranosylcytosine (ara-C) for 24 to 30 hr prior to the addition of cycloheximide; and (iii) in heterokaryons of SV40-transformed hamster and susceptible monkey kidney cells. DNA synthesis was determined by pulse-labeling the cultures with 3H-thymidine at various times from 24 to 46 hr after infection. In addition, the total infectious SV40 DNA was measured. Addition of cycloheximide, even after early proteins had been induced, grossly inhibited both SV40 and cellular DNA syntheses. The activities of thymidine kinase, DNA polymerase, deoxycytidylate deaminase, and thymidylate kinase were measured; these enzyme activities remained high for at least 9 hr in the presence of cycloheximide. SV40 DNA prelabeled with 3H-thymidine before the addition of cycloheximide was also relatively stable during the time required for cycloheximide to inhibit further DNA replication.  相似文献   

5.
Deoxyribonucleic Acid Synthesis in FV-3-infected Mammalian Cells   总被引:12,自引:11,他引:1       下载免费PDF全文
Deoxyribonucleic acid (DNA) synthesis and virus growth in frog virus 3 (FV-3)-infected mammalian cells in suspension were examined. The kinetics of thymidine incorporation into DNA was followed by fractionating infected cells. The cell fractionation procedure separated replicating viral DNA from matured virus. Incorporation of isotope into the nuclear fraction was depressed 2 to 3 hr postinfection; this inhibition did not require protein synthesis. About 3 to 4 hr postinfection, there was an increase in thymidine incorporation into both nuclear and cytoplasmic fractions. The nuclear-associating DNA had a guanine plus cytosine (GC) content of 52%; unlike host DNA it was synthesized in the presence of mitomycin C, it could be removed from nuclei by centrifugation through sucrose, and it was susceptible to nuclease digestion. This nuclear-associating DNA appeared to be a precursor of cytoplasmic DNA of infected cells. The formation of the latter DNA class could be selectively inhibited by conditions (infection at 37 C or inhibition of protein synthesis) that permit continued incorporation of thymidine into nuclear-associating DNA. The cytoplasmic DNA class also had a GC content of 52%, was resistant to nuclease degradation, and its sedimentation profile in sucrose gradients corresponded to that of infective virus. Contrary to previous reports, we found that (i) viral DNA synthesis can continue in the absence of concomitant protein synthesis, and (ii) viral DNA synthesis is not abolished at 37 C. The temperature lesion in FV-3 replication appeared to be in the packaging of DNA into the form that appears in the cytoplasmic fraction of disrupted cells.  相似文献   

6.
Cultures of L cells were synchronized with respect to deoxyribonucleic acid (DNA) synthesis with thymidine and 5-fluoro-2'-deoxyuridine (FUdR) and infected with Newcastle disease virus (NDV), mengovirus, or reovirus 3. Inhibition of incorporation of (3)H-cytidine into the DNA of synchronized cells is partially inhibited 2 hr after infection with NDV or mengovirus and nearly completely suppressed 4 hr after infection. With NDV and mengovirus, no evidence was obtained of differences in sensitivity of cells during early S phase as compared to later stages in DNA synthesis. When cells were infected with reovirus at the time of release from FUdR block, inhibition of cellular DNA synthesis was evident at 2 to 3 hr, and it was complete at 4 to 5 hr after infection. However, when cells were infected several hours prerelease, synthesis of DNA occurred in early S phase in spite of the fact that the cells had been infected for up to 6 hr. The results indicate that DNA synthesis in early S phase is relatively insensitive to the inhibitory function of reovirus. Colorimetric determinations (diphenylamine reaction) of the amounts of DNA produced in synchronized cells have substantiated the inhibition of DNA synthesis observed by isotope incorporation techniques.  相似文献   

7.
Autoradiographic methods were used to study the incorporation of tritiated cytidine, thymidine, and uridine into asexual stages of Eimeria tenella cultured in embryonic chick kidney cells. Developing parasites did not incorporate 3H-thymidine either when host cells were labeled prior to infection or when the cultures were labeled for 30 min, 48–72 hr after infection. Continuous exposure of infected cultures to 3H-thymidine for up to 18 hr resulted in light labeling of cell cytoplasm and schizonts. 3H-cytidine and 3H-uridine were incorporated into parasites developing in cultures that were labeled before infection. When the cultures were labeled for 30 min, 48–72 hr postinfection and fixed immediately, schizonts were labeled lightly with 3H-cytidine but contained dense accumulations of 3H-uridine.  相似文献   

8.
9.
Infection of primary or secondary cultures of Chinese hamster embryo cells with simian virus 40 at a multiplicity of 20 to 50 induced synthesis of the virus-specific intranuclear T antigen in 80 to 90% of the cells within 48 to 72 hr. In the infected cultures, 30 to 50% more cells were recruited into deoxyribonucleic acid (DNA) synthesis than in the controls, whether or not the cultures were confluent. The newly synthesized DNA was mostly cellular, since little virus was produced (as shown by various techniques: immunofluorescence for viral antigen, virus growth curves, and isolation of viral DNA from infected cultures). Transformed cells could be detected a few weeks after infection and produced tumors when inoculated into irradiated animals. Chromosomal changes were observed soon after infection (24 hr). Initially, there was a marked increase in the proportion of polyploid cells (8 to 14%), most of which were chromosomally normal. In a few weeks, a large majority of the infected population was polyploid (30 to 50%). Thus, the polyploid cells have the ability to proliferate. Evidence is presented to suggest that polyploid cells arise by stimulation of cells in the G(1), G(2), or S phases to undergo two or more successive periods of DNA synthesis without an intervening mitosis. With a subsequent loss or redistribution of chromosomal material, this may lead eventually to a biologically transformed cell; thus, it is suggested that the initial event(s) relevant to transformation occurs at the level of control of cellular DNA synthesis.  相似文献   

10.
Autoradiographic analyses of deoxyribonucleic acid (DNA) synthesis in randomly growing KB cell cultures infected with equine abortion virus (EAV) suggested that viral DNA synthesis was initiated only at times that coincided with the entry of noninfected control cells into the S phase of the cell cycle. Synchronized cultures of KB cells were infected at different stages of the cell cycle, and rates of synthesis of cellular and viral DNA were measured. When cells were infected at different times within the S phase, viral DNA synthesis was initiated 2 to 3 hr after infection. However, when cells in G1 and G2 were infected, the initiation of viral DNA synthesis was delayed and occurred only at times corresponding to the S phase. The times when viral DNA synthesis began were independent of the time of infection and differed by as much as 5 hr, depending on the stage of the cell cycle at which cells were infected. Viral one-step growth curves were also related to the S phase in a manner which indicated a relationship between the initiation of viral DNA synthesis and the S phase. These data support the concept that initiation of EAV DNA synthesis is dependent upon some cellular function(s) which is related to the S phase of the cell cycle.  相似文献   

11.
1. Mouse-fibroblast cultures in the stationary phase of growth show an increased rate of [(3)H]thymidine incorporation into DNA from 12 to 44hr. after infection with polyoma virus. 2. Intracellular virus progeny is first detected at about 24hr. after infection. 3. Calculations based on the [(3)H]thymidine-incorporation data and direct measurements of the DNA content of the cell cultures indicate that the amount of the excess of DNA synthesized by the infected cell cultures corresponds to about 10% of their total DNA. 4. The mitotic index of the cell cultures at 40hr. after infection was significantly higher than that of non-infected control cells. 5. Possible interpretations of the stimulation of DNA synthesis observed in polyoma-infected cell cultures are discussed.  相似文献   

12.
Incorporation of tritiated thymidine by KB cells infected with oncogenic adenovirus 12 was studied by means of high-resolution electron microscopic autoradiography. After a 1-hr pulse with tritiated thymidine, infected and control cultures were fixed at 8, 16, 24, 30, and 36 hr. Infected cultures showed a higher percentage of labeled cells. During early stages, the frequency of silver grains in the nucleus and in the nucleolus was higher in infected material. From 24 hr on, there was an inhibition of nuclear and nucleolar deoxyribonucleic acid (DNA) synthesis. At late stages, one-third of the label was located over nuclear inclusions, type II and IV, previously shown to be composed of DNA and protein, while a large majority of the remaining grains were located over the nucleoplasm. The possibility is considered, that the early increase in nuclear and nucleolar DNA synthesis produced by adeno 12 replication could in part be due to newly synthesized cellular DNA, as has been reported by others with respect to other oncogenic DNA viruses.  相似文献   

13.
Effect of cell physiological state on infection by rat virus   总被引:20,自引:18,他引:2       下载免费PDF全文
Infection by rat virus has been studied in cultures of rat embryo cells to evaluate the Margolis-Kilham hypothesis that the virus preferentially infects tissues with actively dividing cells. An enhancement of infection was seen in cultures infected 10 hr after fresh medium was added as compared to infection of stationary cultures (infected before addition of fresh medium). Since addition of fresh medium stimulates deoxyribonucleic acid (DNA) synthesis, the number of cells per culture synthesizing DNA at the time of infection was compared with the proportion of cells which synthesized viral protein. Cells were infected before the medium change and 10 or 24 hr after the medium change and were pulse-labeled with 3H-thymidine at the time virus was added. The cells were allowed to initiate viral protein synthesis before they were fixed and stained with fluorescein-conjugated anti-rat virus serum. Fluorescence microscopy permitted both labels to be counted simultaneouly and showed that the greatest proportion of cells synthesizing viral protein were those which had incorporated 3H-thymidine at the time of infection.  相似文献   

14.
15.
The infection of secondary cultures of Chinese hamster cells with simian virus 40 (SV40) induces the appearance of cells with polyploid deoxyribonucleic acid (DNA) content or chromosomal component within one cell generation. The mechanism of this phenomenon was studied by the use of 5-bromodeoxyuridine (BUdR) incorporation as a DNA density marker. When cultures were treated with (14)C-BUdR and colcemide and harvested at 48 hr postinfection, only hybrid and light DNA molecules were found in control cultures, whereas in infected cultures there were also heavy molecules. The proportion of heavy DNA synthesized during the experimental period varied from 13 to 25%. It was determined by DNA-DNA hybridization that the heavy DNA consisted of cellular DNA. In radioautographic experiments, it was shown that, under the conditions used, a fraction of the infected cell population twice replicated its complete DNA content. Analysis of the kinetics indicated that the heavy DNA resulted from the reinitiation of DNA synthesis after the initial replication of the entire cell DNA. It was concluded that, after infection with SV40, a fraction of the Chinese hamster cell population undergoes two cycles of DNA synthesis without intervening mitosis.  相似文献   

16.
HEp-2 cells were pulse-labeled at different times after infection with herpes simplex virus, and nuclear ribonucleic acid (RNA) and cytoplasmic RNA were examined. The data showed the following: (i) Analysis by acrylamide gel electrophoresis of cytoplasmic RNA of cells infected at high multiplicities [80 to 200 plaque-forming units (PFU)/cell] revealed that ribosomal RNA (rRNA) synthesis falls to less than 10% of control (uninfected cell) values by 5 hr after infection. The synthesis of 4S RNA also declined but not as rapidly, and at its lowest level it was still 20% of control values. At lower multiplicities (20 PFU), the rate of inhibition was slower than at high multiplicities. However, at all multiplicities the rates of inhibition of 18S and 28S rRNA remained identical and higher than that of 4S RNA. (ii) Analysis of nuclear RNA of cells infected at high multiplicities by sucrose density gradient centrifugation showed that the synthesis and methylation of 45S rRNA precursor continued at a reduced but significant rate (ca. 30% of control values) at times after infection when no radioactive uridine was incorporated or could be chased into 28S and 18S rRNA. This indicates that the inhibition of rRNA synthesis after herpesvirus infection is a result of two processes: a decrease in the rate of synthesis of 45S RNA and a decrease in the rate of processing of that 45S RNA that is synthesized. (iii) Hybridization of nuclear and cytoplasmic RNA of infected cells with herpesvirus DNA revealed that a significant proportion of the total viral RNA in the nucleus has a sedimentation coefficient of 50S or greater. The sedimentation coefficient of virus-specific RNA associated with cytoplasmic polyribosomes is smaller with a maximum at 16S to 20S, but there is some rapidly sedimenting RNA (> 28S) here too. (iv) Finally, there was leakage of low-molecular weight (4S) RNA from infected cells, the leakage being approximately three-fold that of uninfected cells by approximately 5 hr after infection.  相似文献   

17.
We examined the patterns of host cell and virus deoxyribonucleic acid (DNA) synthesis in synchronized cultures of KB cells infected at different stages of the cell cycle with herpes simplex virus (HSV). We found that the initiation of HSV DNA synthesis, we well as the production of new infectious virus, is independent of the S, G1, and G2 phases of the mitotic cycle of the host cell. This is in contrast to data previously found with equine abortion virus. Because HSV replicates independently of the cell cycle, we were able to establish conditions that would permit the study of rates of HSV DNA synthesized in logarithmically growing cells in the virtual absence of cellular DNA synthesis. This eliminates the need for separation of viral and cellular DNA by isopycnic centrifugation in CsCl. We found that HSV DNA synthesis was initiated between 2 to 3 hr after infection. The rate of DNA synthesis increased rapidly, reaching a maximum 4 hr after infection, and decreased to 50% of maximum by 8 hr. Evidence is also presented which suggests that HSV infection can inhibit both the ongoing synthesis of host DNA as well as the initiation of the S phase.  相似文献   

18.
Thymidine kinase was induced after infection of an established strain of green monkey kidney cells (CV-1) with simian adenovirus SV15. Increased levels of thymidine kinase were first observed 8 to 10 hr postinoculation (PI), and the levels increased four- to eightfold by 16 to 24 hr PI. A transient increase (1.5- to 3-fold) of deoxyribonucleic acid (DNA) polymerase activity was also observed about 18 hr PI, but the level of deoxycytidylic deaminase was not enhanced. The inductions of thymidine kinase and DNA polymerase were not obtained when protein synthesis was inhibited with 10−5 M cycloheximide. However, the enzyme increases did take place when infected cultures were treated with 1-β-D-arabinofuranosylcytosine (ara-C), an inhibitor of DNA synthesis and SV15 replication. The incorporation of tritium-labeled thymidine (H3-dT) into DNA was also stimulated 8 to 24 hr after infection with SV15.  相似文献   

19.
Transformation of rat embryo cells by murine sarcoma virus (MSV) was contingent upon synthesis of deoxyribonucleic acid (DNA) during the first 12 hr of infection. Inhibition of DNA synthesis by thymidine (20 mm) or cytosine arabinoside (0.1 mm) resulted in the protection of cells from transformation by MSV. Transient suppression of DNA synthesis prior to infection or after a 12-hr delay had little effect on subsequent transformation, emphasizing the critical time period in in which DNA synthesis was necessary for intracellular fixation of the viral genome. These results are similar to those previously described for Rous sarcoma virus. Development of transformed cells after viral fixation was shown to be influenced by cellular density. Under conditions which allowed fixation of virus in confluent cellular monolayers, less than 20% of these cells developed into transformed foci.  相似文献   

20.
Experiments were designed to identify herpes simplex virus type 2 (HSV-2)-specific functions expressed during stimulation of human embryo fibroblast DNA synthesis. Cultures were partially arrested in DNA synthesis by pretreatment with 5-fluorouracil and maintenance in low-serum (0.2%) medium during virus infection. Results showed that continuous [methyl-(3)H]thymidine uptake into cellular DNA was ninefold greater in HSV-2-infected than in mock-infected cultures measured after 24 h of incubation at 42 degrees C. Shifting mock-infected cultures from low- to high-serum (10%) medium also caused some stimulation, but [methyl-(3)H]thymidine uptake was only twofold greater than in cells maintained with low serum. Plating efficiencies of both HSV-2-infected and mock-infected cells at 42 degrees C were essentially the same and ranged from 37 to 76% between zero time and 72 h of incubation. De novo RNA and protein syntheses were continuously required for HSV-2 stimulation of cellular DNA synthesis. HSV-2 infection markedly enhanced transport, phosphorylation, and rate of incorporation of [methyl-(3)H]thymidine into cellular DNA, starting at 3 h and reaching a maximum by 12 h; after 12 h, these processes gradually declined to low levels. In mock-infected cells these processes remained at low levels throughout the observation period. Pretreatment of cells with interferon or addition of arabinofuranosylthymine at the time of virus infection inhibited stimulation caused by HSV-2. 5-Bromodeoxyuridine density-labeled experiments revealed that HSV-2 stimulates predominantly semiconservative DNA replication and some DNA repair. Stimulation of [methyl-(3)H]thymidine into cellular DNA correlated with detection of virus-specific thymidine kinase activity. In conclusion, HSV-2 stimulation of cellular DNA synthesis appeared to involve at least four virus-specific functions: induction of thymidine transport, HSV-2 thymidine kinase activity, semiconservative replication, and repair of cellular DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号