首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The intrinsically active, sn-glycerol-3-phosphate acyltransferase present in membranes prepared from both wild type Escherichia coli and from strains which overproduce the enzyme can be kinetically distinguished from a latent enzyme species which is unmasked by solubilization and reconstitution. Both membrane-associated and solubilized/reconstituted enzyme preparations exhibited cooperativity with respect to sn-glycerol-3-phosphate and palmitoyl-coenzyme A substrates; positive cooperativity in membranes toward palmitoyl-coenzyme A (napp = 4) and negative cooperativity toward sn-glycerol-3-phosphate (napp = 0.75) were significantly altered upon solubilization and reconstitution. Since the degree of alteration increased with the amount of sn-glycerol-3-P acyltransferase present in the membranes, a detergent-dissociable homooligomerization of the sn-glycerol-3-phosphate acyltransferase was considered as an underlying mechanism. This possibility was investigated by changing the protein-to-Triton X-100 ratio of homogeneous enzyme prior to reconstitution and then analyzing the subsequent migration of samples on a Sephacryl S-300 sizing column. The elution positions were consistent with monomeric and dimeric polypeptide bound to micelles of Triton X-100. Hill coefficients for monomeric, reconstituted enzyme preparations were comparable to those obtained for the active, membrane-associated sn-glycerol-3-phosphate acyltransferase. The reduced cooperativity of dimeric, reconstituted enzyme preparations correlated closely to the Hill coefficient values obtained for latent, solubilized/reconstituted sn-glycerol-3-phosphate acyltransferase from membranes of Escherichia coli which overproduce the enzyme. The physiological significance of these findings is discussed.  相似文献   

2.
The sn-glycerol-3-phosphate (glycerol-P) acyltransferase of Escherichia coli cytoplasmic membrane was purified in Triton X-100 (Green, P. R., Merrill, A. H., Jr., and Bell, R. M. (1981) J. Biol. Chem. 256, 11151-11159) and incorporated into mixed micelles containing Triton X-100, phosphatidylethanolamine, phosphatidylglycerol, cardiolipin, and beta-octyl glucoside. Enzyme activity was quantitatively reconstituted from the mixed micelle into single-walled phospholipid vesicles by chromatography over Sephadex G-50. Activity coeluted with vesicles of 90-nm average diameter on columns of Sepharose CL-4B and Sephacryl S-1000. These vesicles contained less than 2 Triton X-100 and 5 beta-octyl glucoside molecules/100 phospholipid molecules. Calculations suggested that up to eight 91,260-dalton glycerol-P acyltransferase polypeptides were incorporated per 90-nm vesicle. The pH dependence and apparent Km values for glycerol-P and palmitoyl-CoA of the glycerol-P acyltransferase reconstituted into vesicles were similar to those observed upon reconstitution by mixing of the enzyme in Triton X-100 with a 20-fold molar excess of sonicated phosphatidylethanolamine:phosphatidylglycerol:cardiolipin, 6:1:1. The integrity of vesicles containing glycerol-P acyltransferase was established by trapping 5,5'-dithiobis-(2-nitrobenzoic acid). Chymotrypsin inactivated greater than 95% of the glycerol-P acyltransferase in intact vesicles and cleaved the 91,260-dalton polypeptide into several vesicle-bound and several released peptides, indicating that critical domains of the enzyme are accessible in intact vesicles. Trinitrobenzene sulfonate and 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene caused greater than 90% loss of glycerol-P acyltransferase in vesicles. Disruption of vesicles with Triton X-100 did not reveal significant latent activity. These data strongly suggest that the glycerol-P acyltransferase was reconstituted asymmetrically into the vesicles with its active site facing outward.  相似文献   

3.
The sn-glycerol-3-phosphate (glycerol-P) acyltransferase, the first enzyme of membrane phospholipid synthesis in Escherichia coli, was investigated in a wild type and a mutant strain defective in this activity. The mutant strain, selected as a glycerol-P auxotroph, was previously shown to contain a glycerol-P acyltransferase activity with an apparent Km for glycerol-P 10 times higher than that of its parent or revertants. The membranous mutant glycerol-P acyltransferase but did not appear to be thermolabile in vivo. Revertants no longer requiring glycerol-P for growth, showed glycerol-P acyltransferase activity with thermolability properties similar to the wild type. The second phospholipid biosynthetic enzyme, 1-acylglycerol-P acyltransferase, was not thermolabile in membranes containing a thermolabile glycerol-P acyltransferase activity. The pH optimum for the mutant acyltransferase was over 1 pH unit higher than that of the parental activity. Further, the mutant and wild type glycerol-P acyltransferase differed in their response to magnesium chloride and potassium chloride. The palmitoyl-CoA dependence of the wild type and mutant glycerol-P acyltransferase activities were different. The mutant glycerol-P acyltransferase activity was inhibited greater than 90% by Triton X-100 under conditions where the wild type activity was not affected. These experiments provide novel information about the wild type glycerol-P acyltransferase activity of E. coli and provide six additional lines of evidence for the mutant character of the glycerol-P acyltransferase in the mutant strains.  相似文献   

4.
Overexpression of the Escherichia coli sn-glycerol-3-phosphate (glycerol-P) acyltransferase, an integral membrane protein, causes formation of ordered arrays of the enzyme in vitro. The formation of these tubular structures did not occur in an E. coli strain bearing a mutation in the htpR gene, the regulatory gene for the heat shock response. The htpR165 mutation was shown by genetic analysis to be the lesion responsible for blockage of tubule formation. Similar amounts of glycerol-P acyltransferase were produced in isogenic htpR+ and htpR165 strains, ruling out an effect of htpR165 on expression of glycerol-P acyltransferase. Further, phospholipid metabolism was not altered in either strain after induction of glycerol-P acyltransferase synthesis. Increased glycerol-P acyltransferase synthesis caused a partial induction of the heat shock response which was dependent upon a wild type htpR gene. The heat shock proteins induced were identified as the groEL and dnaK gene products on two-dimensional gels. These two proteins have been implicated in the assembly of bacteriophage coats. These heat shock proteins appear essential for tubule formation.  相似文献   

5.
Revertants of Escherichia coli mutants defective in the first enzyme of membrane phospholipid synthesis, sn-glycerol-3-phosphate (glycerol-P) acyltransferase, were investigated. These glycerol-P acyltransferase mutants, selected as glycerol-P auxotrophs, contained membranous glycerol-P acyltransferase activity with an apparent Km for glycerol-P 10 times higher than the parental activity. The glycerol-P acyltransferase activity was also more thermolabile in vitro than the parental activity. Most revertants no longer requiring glycerol-P for growth regained glycerol-P acyltransferase activity of normal thermolability and apparent Km for glycerol-P. However, two novel revertants were isolated which retained an abnormal glycerol-P acyltransferase activity. The glycerol-P dehydrogenase activities of these novel revertants were about 20-fold less sensitive to feedback inhibition by glycerol-P. The feedback-resistant glycerol-P dehydrogenase co-transduced with gpsA, the structural gene for the glycerol-P dehydrogenase. Further transduction experiments demonstrated that the feedback resistant glycerol-P dehydrogenase phenotypically suppressed the glycerol-P acyltransferase Km lesion. The existence of the class of glycerol-P auxotrophs which owe their phenotype to the glycerol-P acyltransferase Km lesion therefore depends on the feedback regulation of glycerol-P synthesis in E. coli.  相似文献   

6.
Yeast acyl-coenzyme A:dihydroxyacetone-phosphate O-acyltransferase (DHAP acyltransferase; EC 2.3.1.42) was investigated to (i) determine whether its activity and that of acyl-coenzyme A:sn-glycerol-3-phosphate O-acyltransferase (glycerol-P acyltransferase; EC 2.3.1.15) represent dual catalytic functions of a single membranous enzyme, (ii) estimate the relative contributions of the glycerol-P and DHAP pathways for yeast glycerolipid synthesis, and (iii) evaluate the suitability of yeast for future genetic investigations of the eucaryotic glycerol-P and DHAP acyltransferase activities. The membranous DHAP acyltransferase activity showed an apparent Km of 0.79 mM for DHAP, with a Vmax of 5.3 nmol/min per mg, whereas the glycerol-P acyltransferase activity showed an apparent Km of 0.05 mM for glycerol-P, with a Vmax of 3.4 nmol/min per mg. Glycerol-P was a competitive inhibitor (Ki, 0.07 mM) of the DHAP acyltransferase activity, and DHAP was a competitive inhibitor (Ki, 0.91 mM) of the glycerol-P acyltransferase activity. The two acyltransferase activities exhibited marked similarities in their pH dependence, acyl-coenzyme A chain length preference and substrate concentration dependencies, thermolability, and patterns of inactivation by N-ethylmaleimide, trypsin, and detergents. Thus, the data strongly suggest that yeast glycerol-P and DHAP acyltransferase activities represent dual catalytic functions of a single membrane-bound enzyme. Furthermore, since no acyl-DHAP oxidoreductase activity could be detected in yeast membranes, the DHAP pathway for glycerolipid synthesis may not operate in yeast.  相似文献   

7.
8.
Complete separation of glycerophosphate acyltransferase and 1-acylglycerophosphate acyltransferase from Escherichia coli was obtained by sequential extraction with Triton X-100. Solubilized glycerophosphate acyltransferase was reconstituted by the cholate dispersion and gel filtration method in small unilamellar vesicles. 1-Acylglycerophosphate acyltransferase could not be solubilized from the membranes and was used in endogenous membrane fragments after detergent removal. Mixing of the two preparations and subsequent incubation in the presence of glycerol 3-phosphate, palmitoyl-CoA and oleoyl-CoA resulted in the efficient synthesis of phosphatidic acid. Inclusion of exogenous lysophosphatitic acid in the assay medium resulted in a dilution of the newly synthesized lysophosphatidate. By contrast, the synthesis of phosphatidic acid from glycerol 3-phosphate by the acyltransferases present in native membrane vesicles was barely influenced by the presence of exogenous lysophosphatidic acid. When comparing the utilization of membrane-associated 14C-labeled and newly generated 3H-labeled lysophosphatidic acid, the latter appeared to be the preferred substrate. These results indicate that lysophosphatidic acid, synthesized by glycerophosphate acyltransferase, is utilized by 1-acylglycerophosphate acyltransferase without prior mixing with the total membrane-associated pool of lysophosphatidic acid, and suggest a close proximity of the two enzymes in native E. coli membranes. This property of the acyltransferases is lost upon separation and reconstitution of enzyme activities.  相似文献   

9.
A chemotactic peptide stimulated the high-affinity GTPase activity in membrane preparations from guinea pig neutrophils. The enzyme stimulation was inhibited by prior exposure of the membrane-donor cells to islet-activating protein (IAP), pertussis toxin, or by direct incubation of the membrane preparations with its A-protomer (the active peptide) in the presence of NAD. The affinity for the chemotactic peptide binding to its receptors was lowered by guanyl-5'-yl beta, gamma-imidodiphosphate (Gpp(NH)p) reflecting its coupling to the guanine nucleotide regulatory protein in neutrophils. The affinity in the absence of Gpp(NH)p was lower, but the affinity in its presence was not, in the A-protomer-treated membranes than in nontreated membranes. The inhibitory guanine nucleotide regulatory protein of adenylate cyclase (Ni) was purified from rat brain, and reconstituted into the membranes from IAP-treated cells. The reconstitution was very effective in increasing formyl-Met-Leu-Phe-dependent GTPase activity and increasing the chemotactic peptide binding to membranes due to affinity increase. The half-maximal concentration of IAP to inhibit GTPase activity was comparable to that of the toxin to inhibit the cellular arachidonate-releasing response which was well correlated with ADP-ribosylation of a membrane Mr = 41,000 protein (Okajima, F., and Ui, M. (1984) J. Biol. Chem. 259, 13863-13871). It is proposed that the IAP substrate, Ni, couples to the chemotactic peptide receptor and mediates arachidonate-releasing responses in neutrophils, as it mediates adenylate cyclase inhibition in many other cell types.  相似文献   

10.
To study the effect of sterols on the activity of the eukaryotic plasma membrane transporter, the hexose-proton symporter HUP1 from the unicellular alga Chlorella kessleri was expressed in Escherichia coli, a prokaryotic microorganism containing virtually no sterols. Under certain conditions, the recombinant protein was partially active in this prokaryotic organism. The heterologously produced HUP1p was purified from membrane fractions of E. coli and reconstituted in an in vitro system. The presence of ergosterol during solubilization, purification and reconstitution resulted in an increased activity of the reconstituted protein. Its activity, however, was 5-6 times lower as compared to the activity of HUP1p produced in Saccharomyces cerevisiae membranes and solubilized, purified, and reconstituted under the same conditions as above.  相似文献   

11.
The acyl-CoA:sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.15) (glycerol-P acyltransferase) and acyl-CoA:dihydroxyacetone phosphate acyltransferase (EC 2.3.1.42) (DHAP acyltransferase) activities were investigated in vitro in order to evaluate the quantitative contribution of the glycerol-P and DHAP pathways for the synthesis of triacylglycerols in isolated fat cells and to test the hypothesis that these two activities may be dual catalytic functions of a single enzyme. More than 85% of both acyltransferase activities was associated with the microsomal subcellular fraction. The microsomal glycerol-P acyltransferase activity showed an apparent Km of 8 muM for glycerol-P with a Vmax of 15.6 nmol/min/mg, while the DHAP acyltransferase activity showed an apparent Km of 40 muM for DHAP with a Vmax of 9.7 nmol/min/mg. Glycerol-P was a competitive inhibitor (Ki = 7.2 muM) of the DHAP acyltransferase, and DHAP was a competitive inhibitor (Ki = 92 muM) of the glycerol-P acyltransferase. The two acyltransferase activities showed virtual identity in their pH dependence, acyl-CoA chain length dependence, thermolability, and inactivation by N-ethylmaleimide. Trypsin, detergents, collagenase, phospholipases, and various salts and organic solvents also had similar effects on both activities. Taken as a whole, the data strongly suggest that the microsomal glycerol-P and DHAP acyltransferase activities actually represent dual functions of a single enzyme. Calculations based on the above kinetic constants and previously reported glycerol-P and DHAP pools in adipocytes suggest that the in vivo ratio of glycerol-P to DHAP acylation should be greater than 24:1.  相似文献   

12.
The nucleoside transporter has been purified by passage of a preparation of human erythrocyte-membrane band-4.5 proteins through a column of immobilized antibodies specific for the glucose transporter. This procedure removed greater than 99.8% of the glucose transporters and achieved an approx. 18-fold purification of the nucleoside transporter, constituting a 478-fold purification from erythrocyte membranes. The isolated protein migrated as a single broad band of average apparent Mr 55,000 on SDS/polyacrylamide gels and bound approx. 0.6 mol of nitrobenzylthioinosine/mol of polypeptide, with a Kd of 1.1 +/- 0.14 (S.E.M.) nM. Upon reconstitution into large unilamellar phospholipid vesicles it catalysed the uptake of uridine with an apparent specific activity 6-fold greater than that of the unfractionated band-4.5 proteins. Furthermore, the purified nucleoside transporter was not labelled on Western blots by monoclonal antibody raised against the glucose transporter. It is concluded that the nucleoside transporter has been purified to near homogeneity.  相似文献   

13.
We purified the ATPase Fo sector from a nonoverexpressing strain of Escherichia coli, reconstituted it into lipid vesicles made of either asolectin or two different mixtures of purified lipids, and measured proton flux through the reconstituted proton channel. We measured single-channel conductances and found that Fo activity depends on both lipids and reconstitution methods. In asolectin vesicles, Fo has a single-channel conductance of about 0.2 fS. Additionally, the relatively impure Fo prepared from cells carrying single-copy ATPase genes allowed us to observe two other fluxes, a nonselective cation leak (C(L)) and a slow H+ flux (Hs). Unlike the Fo flux, these fluxes could not be blocked by the Fo inhibitor DCCD. The C, reduces the total apparent trapped volume inside vesicles and therefore must equilibrate both H+ and K+ in the vesicles that contain it. When reconstituted into bilayers, these Fo preparations displayed a 120 pS cation channel with characteristics consistent with C(L) flux. The Hs conducts only H+ but at a slower rate than the Fo. We were therefore able to: 1) quantitate the single-channel conductance of the Fo, 2) demonstrate that our Fo purification method co-purified other membrane proteins that have ion-conduction properties, and 3) show that certain lipids are necessary for functional reconstitution of Fo.  相似文献   

14.
Eukaryotic initiation factor 2 (eIF-2), which specifically binds Met-tRNAMetf and forms stable ternary complexes with GTP, has been purified from ribosomal salt wash proteins from calf liver. The purified factor exhibits only two polypeptide bands of Mr = 48,000 and 38,000 following electrophoresis in 15% polyacrylamide gels in the presence of sodium dodecyl sulfate. Densitometric tracings show the two polypeptides are present in a molar ratio of 1:1. This suggests a Mr = 86,000 for the native enzyme, a value which agrees with the apparent molecular weight determined by physical methods. Less pure preparations of eIF-2 show additional polypeptide bands, including 50,000- and 46,000-dalton bands, all of which can be removed by further purification without affecting the activity of eIF-2.  相似文献   

15.
The known subunits of the membrane sector F0 of the bovine mitochondrial ATP synthase complex are subunits b, d, 6, F6, OSCP (oligomycin sensitivity-conferring protein), the DCCD (dicyclohexylcarbodiimide) binding proteolipid, and A6L. The first six subunits were purified from SMP or preparations of the ATP synthase complex, and monospecific antibodies were raised against each. The antisera were shown to be competent for immuno-blotting, and each antiserum recognized a single polypeptide of the expected Mr in preparations of the ATP synthase complex. Immunoblots utilizing antibodies to OSCP and subunits d and 6, which exhibit the same Mr on dodecyl sulfate-polyacrylamide gels, showed clearly that these polypeptides are immunologically distinct. Immunological cross-reactivity was demonstrated between bovine, human, rat, Saccharomyces cerevisiae, Paracoccus denitrificans, and Escherichia coli for subunit 6; between bovine, human, and rat for subunits b, d, OSCP, and F6; and between bovine and rat for the DCCD binding proteolipid. Anti-subunit 6 antiserum, before or after immunopurification against the ATP synthase complex, recognized a single polypeptide in the bovine ATP synthase complex and S. cerevisiae mitochondria, but two polypeptides of different Mr in bovine SMP, human, and rat mitochondria, and Paracoccus and E. coli membranes.  相似文献   

16.
The sn-glycerol-3-phosphate (glycerol-phosphate) acyltransferase of Escherichia coli was purified to near homogeneity and its activity reconstituted with phospholipids (Green, P.R., Merrill, A.M., Jr. and Bell, R.M. (1981) J. Biol. Chem. 256, 11151-11159). The competency of glycerol-P analogues to serve as inhibitors and as substrates was investigated. Dihydroxyacetone-P, ethyleneglycol-P, 1,3-propanediol-P, 3,4-dihydroxybutylphosphonate and DL-glyceraldehyde-3-P were inhibitors of the reconstituted purified glycerol-phosphate acyltransferase. The kinetics of inhibition, while formally of the mixed type, most closely resembled that of a simple competitive inhibition with respect to glycerol-3-P. Inorganic phosphate was also found to be a competitive inhibitor. All of the glycerol-3-P analogues except DL-glyceraldehyde-3-P were substrates. Of these, dihydroxyacetone-P proved to be the best substrate. The secondary hydroxyl was not necessary for activity. Glycerol-phosphate acyltransferase catalyzed the hydrolysis of palmitoyl-CoA in the presence of DL-, but not D-glyceraldehyde-3-P. This suggests that the gem diol of L-glyceraldehyde-3-P may be a substrate, and that the acylated adduct may be unstable. The enzyme was inactivated by phenylglyoxal and butanedione, suggesting that arginine may be at or near the active site.  相似文献   

17.
Enzyme activities of the sn-glycerol 3-phosphate (glycerol-P) and of the dihydroxyacetone-phosphte (DHAP) pathway of glycerolipid biosynthesis were investigated during the differentiation of 3T3-L1 preadipocytes into adipocytes. Total particulate glycerol-P and DHAP acyltransferase activities increased 70- and 30-fold, respectively, during differentiation induced with methylisobutylxanthine and dexamethasone. The N-ethylmaleimide-sensitive (microsomal) glycerol-P and DHAP acyltransferase activities were virtually undetectable in nondifferentiated cells, and increased in parallel over 70-fold during differentiation. These and several kinetic observations are consistent with the induction of a single microsomal enzyme having dual activity. During differentiaion, the N-ethylmaleimide-resistant DHAP acyltransferase activity increased 10-fold, suggesting the presence of at least two DHAP acyltransferase isoenzymes. Qualitatively similar changes in microsomal glycerol-P and DHAP acyltransferase activities were observed when cell differentiation was induced with insulin or with insulin plus dexamethasone and methylisobutylxanthine. Acyl-DHAP oxidoreductase (EC 1.1.1.101) specific activity increased only 3- to 5-fold during adipocyte differentiation. Alkyl-DHAP synthase activity was not detected. These data demonstrate that selective changes in enzyme activities of the gycerol-P pathways of glycerolipid synthesis occur during the differentiation of 3T3-L1 preadipocytes.  相似文献   

18.
G Vogel  R Steinhart 《Biochemistry》1976,15(1):208-216
A simple procedure for the purification of Mg2+-stimulated ATPase of Escherichia coli by fractionation with poly(ethylene glycols) and gel filtration is described. The enzyme restores ATPase-linked reactions to membrane preparations lacking these activities. Five different polypeptides (alpha, beta, gamma, delta, epsilon) are observed in sodium dodecyl sulfate electrophoresis. Freezing in salt solutions splits the enzyme complex into subunits which do not possess any catalytic activity. The presence of different subunits is confirmed by electrophoretic and immunological methods. The active enzyme complex can be reconstituted by decreasing the ionic strength in the dissociated sample. Temperature, pH, protein concentration, and the presence of substrate are each important determinants of the rate and extent of reconstitution. The dissociated enzyme has been separated by ion-exchange chromatography into two major fragments. Fragment IA has a molecular weight of about 100000 and contains the alpha, gamma, and epsilon polypeptides. The minor fragment, IB, has about the same molecular weight but contains, besides alpha, gamma, and epsilon, the delta polypeptide. Fragment II, with a molecular weight of about 52000, appears to be identical with the beta polypeptide. ATPase activity can be reconstituted from fragments IA and II, whereas the capacity of the ATPase to drive energy-dependent processes in depleted membrane vesicles is only restored after incubation of these two fractions with fraction IB, which contains the delta subunit.  相似文献   

19.
The beta 1-adrenergic receptor of rat fat cells was effectively solubilized with digitonin and purified by affinity chromatography and steric exclusion high pressure liquid chromatography (HPLC). The purification strategy described permits an approximately 24,000-fold purification of the beta 1-adrenergic receptor of fat cells with an overall recovery of approximately 70%. Purified receptor preparations demonstrate a specific activity for (-) [3H]dihydroalprenolol binding of 12 nmol/mg of protein. The purified receptor was shown to migrate in steric exclusion HPLC as a Mr = 67,000 protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of radioiodinated purified receptor revealed a single, major peptide of Mr = 67,000. The binding of (-) [3H]dihydroalprenolol to purified receptor preparations displayed stereoselectivity and affinities for antagonists similar in nature to the membrane-bound and digitonin-solubilized beta 1-adrenergic receptor. In addition to the Mr = 67,000 component, a Mr = 140,000 form of the receptor was identified in HPLC runs of freshly prepared, affinity chromatographed receptor preparations that had not been frozen. This larger form of the receptor yielded binding activity of Mr = 67,000 on sequential HPLC runs and was shown to contain the Mr = 67,000 peptide. The beta 1-receptor from this mammalian source, composed of a single Mr = 67,000 peptide, is clearly quite distinct from the purified avian beta 1-, amphibian beta 2-, and mammalian beta 2-adrenergic receptors described by others.  相似文献   

20.
Cholecystokinin (CCK) is a peptide hormone that has a variety of physiologically important functions in the gastrointestinal tract, in which distinct high affinity receptors have been identified. We describe here the purification of the digitonin-solubilized rat pancreatic receptor as an initial step in the determination of its primary structure. Solubilization of total pancreatic membranes using 1% digitonin resulted in a single class of binding sites with a specific content of 4 pmol/mg as measured in a soluble binding assay using the nonpeptidyl CCK antagonist [3H]3S[-]-N-[2,3-dihydro-1-methyl-2-oxo-5-phenyl-1H-1,4- benzodiazepine-3-yl]-1H-indole-2-carboxamide [( 3H]364,718). The solubilized receptor was purified using the following chromatographic steps: 1) cation exchange; 2) Ulex europaeus agglutinin-I-agarose; and 3) Sephacryl S-300. The final preparation of the purified receptor had a specific content of 8,055 pmol/mg, which represented a 9,051-fold purification from intact membranes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the purified receptor preparation under reducing conditions resulted in a predominant polypeptide with an Mr = 85,000-95,000 and minor polypeptides of Mr = 57,000 and 26,000 as determined by radiolabeling and silver staining. Solubilized pancreatic membranes were affinity labeled with the peptidyl CCK agonist 125I-D-Tyr-Gly-[(Nle28,31,6-NO2-Phe33)CCK-26-33] and chromatographed under conditions similar to those described for untreated membranes. Elution of radioactive peaks from each chromatographic column was coincident with [3H]364,718 binding activity and resulted in a labeled polypeptide having the same electrophoretic mobility as receptor derived from freshly labeled membranes and purified from untreated membranes. High performance liquid-gel exclusion chromatography of the crude digitonin-solubilized membrane preparation revealed an estimated molecular size for the [3H]364,718-binding activity of 370,000, which was consistent with the size determined by nondenaturing gel electrophoresis of the purified receptor complexed with the labeled nonpeptidyl antagonist. Binding of [3H]364,718 to the purified receptor preparation was comparable to that observed with the crude solubilized pancreatic membrane preparation; and both the homologous ligand 364,718 (Ki = 0.5 nm) and CCK-8 (Ki = 1.4 microM) competed for binding to both preparations in a similar manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号