首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract: Proteins of the paniculate fraction of sciatic nerve of rats ranging from 1 to 55 days of age were analyzed by polyacrylamide gel electrophoresis. The major myelin protein, P0, could not be detected at 1 day of age, but by 10 days it comprised from 15 to 20% of the particulate protein, the same proportion as in adult rats. Growth of nerve continued throughout the period studied. Rat sciatic nerves were incubated with [32P]orthophosphate or [3H]fucose. Particulate matter proteins from sciatic nerve (and in certain cases proteins of myelin purified from sciatic nerve) were separated by polyacrylamide disc gel electrophoresis and the distribution of protein and of radioactivity along the gels was determined. [32P]Phosphate appeared to label all myelin proteins. Labeling with fucose was more specific; myelin basic proteins were not fucosylated. A developmental study showed that sciatic nerves from 2-day-old rats could incorporate radioactive fucose and [32P]-phosphate into several proteins at the P0 region of polyacrylamide gels. Specific radioactivity of [3H]fucose in P0 protein was highest in preparations from 5-day-old rats and declined by 80% over the next 5 days as it was diluted by accumulating myelin. The specific radioactivity of incorporated [32P] phosphate was high at the early age points and declined as a result of the accumulation of compact myelin. The results indicate an association of fucosylation and/or phosphorylation with some step in the formation of myelin.  相似文献   

2.
The simultaneous incorporation of [3H]fucose and [1-14C]leucine into normal rat sciatic nerve was examined using an in vitro incubation model. A linear rate of protein precursor uptake was found in purified myelin protein over 1/2–6 hr of incubation utilizing a supplemented medium containing amino acids. This model was then used to examine myelin protein synthesis in nerves undergoing degeneration at 1–4 days following a crush injury. Data showed a statistically significant decrease in the ratio of fucose to leucine at 2, 3, and 4 days of degeneration, which was the consequence of a significant increase in leucine uptake. These results, plus substantial protein recovery in axotomized nerves, are indicative of active synthesis of proteins that purify with myelin during early Wallerian degeneration.  相似文献   

3.
The pattern of synthesis of rapidly-labelled RNA of hen sciatic nerve was studied during Wallerian degeneration. At 2,4,8, 16 and 30 days of degeneration the proximal and distal stumps of the severed nerve as well as the intact contralateral sciatic nerve (functional control) were excised and incubated with either [5-3H]uridine or [2-14C]uridine for 0.5 h. The electrophoretic pattern of RNA from the normal adult sciatic nerve showed that most of the radioactivity was incorporated into RNA species migrating between the 18 S and 4 S components of the bulk RNA. The synthesis of RNA was sensitive to actinomycin-D, an indication that it was directed by a DNA template. The electrophoretic patterns of the rapidly-labelled RNA in the proximal and distal nerve stumps demonstrated a change following nerve section. After 2–4 days of Wallerian degeneration the degenerating distal nerves incorporated more radioactivity in the 4 S region than the corresponding controls, but at 8 and 16-days after degeneration relatively more label appeared in higher molecular weight RNA species. In the intact sciatic nerve of the operated hens progressively more radioactivity was detected in the 4 S region with increasing time after the contralateral nerve section. At each stage of Wallerian degeneration the specific radioactivities of RNA in the control nerves from experimental hens were higher than those of the normal adult sciatic nerve. These results indicated a change of RNA metabolism in increased functional activity and during Wallerian degeneration.  相似文献   

4.
Rats fed a diet containing 1.25% elemental tellurium initiated on postnatal day 20 undergo a transient neuropathy characterized by synchronous demyelination of peripheral nerves. In sciatic nerve, the extent of demyelination was maximal after 5 days of tellurium exposure; there was a loss of 25% of the myelin, as assayed by concentration of myelin-specific P0 protein. Tellurium-induced alterations in the metabolic capacity of Schwann cells were examined by measuring the synthesis of myelin lipids in vitro in isolated sciatic nerve segments. Exposure to tellurium resulted in an early marked decrease of approximately 50% in overall incorporation of [14C]acetate into lipids, with a preferential depression in synthesis of cerebrosides, cholesterol, and ethanolamine plasmalogens (components enriched in myelin). Most dramatically, within 1 day of initiation of tellurium exposure, there was a profound increase in [14C]acetate-derived radioactivity in squalene; 23% of incorporated label was in this intermediate of cholesterol biosynthesis, compared to less than 0.5% in controls. In association with the remyelinating phase seen after 5 days of tellurium exposure, synthesis of myelin components gradually returned to normal levels. After 30 days, metabolic and morphologic alterations were no longer apparent. We suggest that the sequence of metabolic events in sciatic nerve following tellurium treatment initially involves inhibition of the conversion of squalene to 2,3-epoxysqualene, and that this block in the cholesterol biosynthesis pathway results, either directly or indirectly, in the inhibition of the synthesis of myelin components and breakdown of myelin.  相似文献   

5.
The localization of 3H-labeled cholesterol in nerves undergoing degeneration and regeneration was studied by radioautography at the electron microscope level. Two types of experiments were carried out: (a) Cholesterol-1,2-3H was injected intraperitoneally into suckling mice. 5 wk later, Wallerian degeneration was induced in the middle branch of the sciatic nerve, carefully preserving the collateral branches. The animals were then sacrificed at various times after the operation. During degeneration, radioactivity was found over myelin debris and fat droplets. In early stages of regeneration, radioactivity was found in myelin debris and regenerating myelin sheaths. Afterwards, radioactivity was found predominantly over the regenerated myelin sheaths. Radioactivity was also associated with the myelin sheaths of the unaltered fibers, (b) Wallerian degeneration was induced in the middle branch of the sciatic nerves of an adult mouse, preserving the collateral branches. Cholesterol-1,2-3H was injected 24 and 48 hr after the operation and the animal was sacrificed 6 wk later. Radioactivity was found in the myelin sheaths of the regenerated and unaltered fibers. The results from these experiments indicate that: (a) exogenous cholesterol incorporated into peripheral nerve during myelination remains within the nerve when it undergoes degeneration. Such cholesterol is kept in the myelin debris as an exchangeable pool from which it is reutilized for the formation of the newly regenerating fibers, especially myelin. (b) exogenous cholesterol incorporated into the nerves at the time that degeneration is beginning is also used in the formation of new myelin sheaths during regeneration, (c) mature myelin maintains its ability to incorporate cholesterol.  相似文献   

6.
The content of alkenyl-acyl, alkyl-acyl and diacyl types of the three major myelin glycerophospholipids such as PtdCho, PtdEtn and PtdSer was determined in myelin fractions prepared from sciatic nerve segments of rats at 12, 25 and 45 days after birth, and of adult rats (6-month-old) 90 days after crush injury. The biosynthesis and metabolic heterogeneity of lipid classes and types were also studied by incubation with [1-14C] acetate of nerve segments of young rats at different ages as well as crushed and sham-operated control nerve segments of adult rats. The analysis of composition and positional distribution in major individual molecular species extracted from light myelin and myelin-related fraction suggest that the metabolism of alkenyl-acyl-glycerophosphorylethanolamines and unsaturated species of PtdCho and PtdSer may not be regulated in the same manner during peripheral nerve myelination of developing rat and remyelination of regenerating nerve in the adult animal. The14C-radioactivity incorporation into lipid classes and alkyl and acyl moieties of the three major phospholipids of sciatic nerve segments during the developmental period investigated revealed that Schwann cells were capable of synthesizing acyl-linked fatty acids in both myelin fractions at a decreasing rate and with different patterns during development. In regenerating sciatic nerve of adult animals the labeling of myelin lipid classes and types of remyelinating nerve segment distal to the crush site was markedly higher than that of sham-operated normal one; however, the magnitude and the pattern of the specific radioactivity never approached those observed during active myelination of the nerve in young animals. These observations show that the remyelinating process of injured nerve during regeneration seems not to recapitulate nerve myelin ensheathment occurring during development.Abbreviations used PtdEtn Phosphatidylethanolamine - PtdCho Phosphatidylcholine - PtdSer Phosphatidylserine - GPE Glycero(3)phosphoethanolamine - GPC Glycero(3)phosphocholine - GPS Glycero(3)phosphoserine - DG-acetates 1,2-diradyl-3-acetyl-sn-glycerols - HPLC High performance liquid chromatography - TLC Thin-layer chromatography - BHT 2,6-di-tert-butyl-4-methylphenol  相似文献   

7.
Changes of lipid, free fatty acid, protein, DNA, and RNA content in proximal and distal segments of regenerating sciatic nerve, from 14 to 120 days after crush, were determined. During the early stage of Wallerian degeneration, a marked decrease of phospholipid, cerebroside and sulfatide content and, in contrast, a marked increase of protein, DNA, RNA, and free fatty acid content, in the distal segment of crushed nerve compared to control, was observed. A gradual increase of phospholipid, cerebroside, and sulfatide levels, approaching normal values, and a gradual slope in the increase of protein, DNA, RNA, and free fatty acid levels over the ensuing time periods of regeneration was seen. Total cholesterol content was relatively constant during regeneration, slightly increasing at day 120. The activity of 2,3-cyclic nucleotide 3-phosphodiesterase (CNPase) of myelin fraction purified from distal segment of regenerating sciatic nerve showed a significant increase in the 30–120 day regenerating period. A marked increase of the incorporation of [2-3H]glycerol and of [Me-14C]choline into myelin lipids of distal segment of regenerating nerve, was found. Labeling of myelin lipids with [3H]oleic acid (injected intravenously seven days before crush) support the evidence that a similar pattern of degeneration exists between two different types of trauma, i.e. nerve crush or cut. The findings suggest that, in the distal segment of crushed nerve, the lipid content as well as the myelin lipid synthesis increase as the regeneration period proceeds.  相似文献   

8.
Biochemical studies of myelin in Wallerian degeneration of rat optic nerve   总被引:3,自引:1,他引:2  
Abstract— Wallerian degeneration of the optic nerves of the rat was induced by removal of the eyes. After 54, 66, 76 or 90 days of degeneration a myelin fraction of the nerves was obtained by the procedure of Laatsch et al. (1962). The yield of myelin from the degenerated nerves was decreased, but the isolated myelin appeared to be morphologically normal. The proportion of cholesterol in the myelin lipids was slightly increased, whereas that of the ethanolamineglycerophosphatides was decreased and galactolipids were normal. After one‘cycle’of myelin purification, the high-molecular-weight fraction formed a much greater percentage of the total protein in myelin isolated from degenerated optic nerves. After 2–3‘cycles’of purification, the distribution of protein in myelin isolated from degenerated and normal optic nerves was similar, an observation suggesting that the high-molecular-weight fraction in‘1-cycle myelin’from degenerated optic nerves may have been partly attributable to contamination. With the possible exception of ethanolamineglycerophosphatides, our data suggest that there was no preferential breakdown of myelin lipid constituents nor of protein constituents during Wallerian degeneration of rat optic nerve. As assessed by SDS-gel electrophoresis of the water-insoluble particulate fraction, the percentage of myelin protein was markedly decreased after 76 days of degeneration. However, the major myelin protein constituents in this fraction (the two basic proteins and proteolipid protein) appeared to decrease in the same relative proportions.  相似文献   

9.
Rabbits were injected into the sciatic nerves with either 35S-methionine, or 3H-fucose. After times ranging from 45 min to 15 days the nerves were removed and the total particulate material from the nerves fractionated to give seven subfractions with densities between 0.2 and 1.2 M sucrose. The patterns of radio-labelled proteins were examined by SDS-PAGE and quantitative fluorography. The results showed that the P2 basic protein was metabolically far more active than either the major P0 glycoprotein, or the basic protein BP. The P2 protein also entered the myelin fractions more rapidly than either P0, or BP components. The net synthesis of P0 was slower than P2 and BP and this intrinsic membrane protein remained associated with the denser membrane fractions (>0.7 M sucrose) for longer than the basic proteins prior to entering myelin. Newly synthesized high molecular weight proteins remained concentrated in the denser membrane fractions and turned over faster than the myelin proteins.

A low density myelin fraction (B) was detected in which both the P2 protein and certain high molecular weight proteins became more rapidly labelled than in compact myelin. In this fraction the specific activity remained higher than that of compact myelin for up to five days after the injection of 35S-methionine into the nerve.

The results indicate that the major PNS myelin proteins are incorporated into and turn over in the various compartments of the Schwann cell plasma membrane—myelin continuum at very different rates.  相似文献   


10.
The contribution of the axonal transport to the biosynthesis of myelin phospholipids was investigated in the rabbit optic pathway. A double labeling technique was used. The same animals were injected with one isotope intravitreally and the other intraventricularly. This procedure allows double labeling of the optic nerves, optic tracts, lateral geniculate bodies (LGB), and superior colliculus (SC). The precursors simultaneously injected were: [1-14C]palmitate (15 Ci intravitreally in both eyes or 50 Ci intraventricularly) and [2-3H]glycerol (50 Ci intravitreally in both eyes or 100 Ci intraventricularly). Twenty four hours and 10 days after the injections, myelin was purified from pooled optic nerves and optic tracts as well as from pooled LGBs or SCs. The phospholipids were extracted and then separated by thin-layer chromatography; the specific radioactivity of the various classes of phospholipids was determined. Using both administration routes of14C-or3H-precursors, the distribution of label and specific radioactivity of myelin phospholipids in the retina and in all other optic structures were very similar. Phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine + phosphoinositol were preferentially labeled with both precursors. These results suggest that, in the rabbit optic pathway the phospholipids synthesized in the retinal ganglion cells and transported along the axons, could undergo transaxonal transfer into myelin.  相似文献   

11.
In previous works we reported the finding of neurotrophic activity in a serum-free Dulbeccos modified Eagles medium conditioned by rat sciatic nerves, previously maintained in culture for 11 days. This medium produces rapid neuron-like differentiation of cultured PC12 cells, as revealed by an increase in the size of the cell body and by the extension of short and/or long neurites by most of the cells. Neuregulin present in the conditioned medium was demonstrated to play a key role in the observed differentiation.In the present work, taking into consideration those latter results, the neurotrophic activity of conditioned media prepared with sciatic and optic nerves cultured during days 1–4 and 9–12 were studied.Evaluation of the trophic activities of those media revealed an opposite timing in the activities of sciatic and optic nerves conditioned media. The activity of the sciatic nerve was not observed in the 1–4-day period, increasing then up to the 9–12-day period. On the contrary, the optic nerve conditioned medium was active in the 1–4-day period, decreasing down to the 9–12-day period.These results led us to explore the contribution of the different cellular constituents of those nerves to their neurotrophic properties. As a first step in that direction we also investigated the neurotrophic activity of media conditioned during 12 days by cultured Schwann cells isolated from rat sciatic nerves. The Schwann cell conditioned media did produce a rapid differentiation of the PC12 cells similar to that caused by the sciatic nerve conditioned medium, though of a lower magnitude.Variations in the trophic activities of the conditioned media used in the present work is discussed taking into consideration the production of trophic and inhibitory factors by the peripheral and central glial cells. The role played by the optic nerve glia and myelin is being investigated at present.  相似文献   

12.
Abstract— Polyacrylamide gel electrophoresis has been used to assess the appearance of some optic and sciatic nerve proteins in normal developing rats and in undernourished rats. Of the myelin proteins, the'Wolfgram'proteolipid is already present about the time myelination begins. The basic myelin proteins appear later, first in sciatic and then in optic nerve. A non-myelin basic protein, assumed to be a histone, is present at high levels in both nerves before myelination begins. There is no apparent effect of undernutrition on the appearance and amount of myelin proteins at 12, 16 and 22 days of age. The'histone'protein is reduced in optic and sciatic nerves at times corresponding roughly to the transition periods from cellular proliferation to myelin formation. The possibilities are discussed that myelin basic proteins are synthesized as compact myelin formation occurs, and that there may be retarded cellular proliferation in nerves of undernourished rats.  相似文献   

13.
Remyelination is an important aspect of nerve regeneration after nerve injury but the underlying mechanisms are not fully understood. The neurotrophin receptor, p75(NTR), in activated Schwann cells in the Wallerian degenerated nerve is up-regulated and may play a role in the remyelination of regenerating peripheral nerves. In the present study, the role of p75(NTR) in remyelination of the sciatic nerve was investigated in p75(NTR) mutant mice. Histological results showed that the number of myelinated axons and thickness of myelin sheath in the injured sciatic nerves were reduced in mutant mice compared with wild-type mice. The myelin sheath of axons in the intact sciatic nerve of adult mutant mice is also thinner than that of wild-type mice. Real-time RT-PCR showed that mRNA levels for myelin basic protein and P0 in the injured sciatic nerves were significantly reduced in p75(NTR) mutant animals. Western blots also showed a significant reduction of P0 protein in the injured sciatic nerves of mutant animals. These results suggest that p75(NTR) is important for the myelinogenesis during the regeneration of peripheral nerves after injury.  相似文献   

14.
15.
The enzyme UDP-N-acetylglucosamine: dolichyl phosphate, N-acetylglucosamine-1-phosphate transferase initiates the synthesis of the oligosaccharide chain of complex-type glycoproteins. In view of the high content of glycoprotein in peripheral nerve myelin, the properties of this enzyme, its changes with age, and the effect of the specific inhibitor tunicamycin were investigated. The enzyme activity in rat peripheral nerve homogenate was completely dependent on the presence of exogenous dolichyl phosphate as well as Mg2+ and a detergent (Triton X-100) and was also greatly stimulated by a high salt concentration (0.4 M KCl) and AMP. The highest specific activity was present in the postmitochondrial membranes. The specific activity in postmitochondrial membranes in the presence of exogenous dolichyl phosphate reached a maximum at 17 days and remained relatively high throughout development, up to 2 years of age, but the activity was much lower when dolichyl phosphate was not added. This indicates that the enzyme level does not decrease with age, but that the content of the lipid cofactor may limit glycoprotein synthesis in vivo. Tunicamycin (5 micrograms) was injected intraneurally into 24-day-old rat sciatic nerve, and the enzyme was assayed from 1 to 24 days after injection. The specific activity of the transferase remained at low levels (5-40% of the level in control nerve) in most injected nerves assayed throughout this postinjection period. A protein previously identified as the unglycosylated P0 protein was synthesized in vitro by the tunicamycin-injected nerve and could be demonstrated to be incorporated into myelin in large amounts at 2 days and in small amounts at 6 days after injection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Levels of enolase isozymes (alpha alpha, alpha gamma, and gamma gamma forms) and S-100 protein in rat sciatic nerves were determined during their degeneration and regeneration processes. The sciatic nerves were unilaterally crushed or severed. The rats were killed 1, 2, 6, and 8-9 weeks later, and both the proximal and distal portions of the damaged nerves were dissected. Control samples were obtained from the untreated contralateral hindlimbs. Enolase isozymes and S-100 protein in the nerve segments were determined with the enzyme immunoassay method. The control nerves contained about 40, 90, and 30 pmol/mg protein of alpha alpha, alpha gamma, and gamma gamma enolases, respectively, and 0.85 microgram/mg protein of S-100 protein. These levels were not affected by repetitive electrical stimulation of the nerve fibers in vivo. The levels of the nervous system-specific forms of enolase (alpha gamma and gamma gamma) and S-100 protein decreased markedly within a week in the distal portion of the crushed nerve (alpha gamma, 27 pmol/mg; gamma gamma, 5.5 pmol/mg; S-100 protein, 0.36 microgram/mg) with apparently no change in the concentration of alpha alpha enolase. These levels in the proximal portion of the crushed nerve remained unaltered. The sensory and motor functions impaired by the sciatic nerve crush showed a recovery more or less after 4-9 weeks. This recovery was accompanied by a gradual regaining of the specific proteins in the distal portion of injured nerves (alpha gamma, 64 pmol/mg; gamma gamma, 13 pmol/mg; S-100 protein, 0.63 microgram/mg at the 8-9th week).  相似文献   

17.
Sulfoglucuronyl glycolipids (SGGLs) have been considered as target antigens in demyelinating peripheral neuropathies associated with IgM monoclonal gammopathy. The regulation of expression of SGGLs in the rat sciatic nerve during development was studied by assaying the levels of SGGLs and activities of four glycosyltransferases sequentially involved in their synthesis from lactosylceramide. The levels of SGGLs in the sciatic nerve increased with development and reached a maximum at sixty days after birth. The rate of increase in the level of SGGLs between day 5 to 20 was similar to rate of deposition of myelin in the nerve. Analysis of the activities of the glycosyltransferases showed that only lactotriosylceramide galactosyltransferase (LcOse3Cer-GalTr) increased in parallel with the levels of SGGLs during development. The other three enzymes were not co-relative with the synthesis of SGGLs. The product of LcOse3Cer-GalTr reaction, nLcOse4Cer is the key intermediate for all neolactoglycolipids, particularly NeuAc2-3nLcOse4Cer or nLM1, which is the major ganglioside (60%) of myelin in rat sciatic nerve. The results suggest that in the sciatic nerve SGGLs are mostly associated with Schwann cell myelin and their synthesis is regulated by LcOse3Cer-GalTr, unlike in the cerebral cortex and cerebellum where SGGLs are associated with the neuronal membranes and their synthesis is regulated by lactosylceramide N-acetylglucosaminyltransferase (LcOse2Cer-GlcNAcTr).  相似文献   

18.
The intercellular cell adhesion molecule-1 (ICAM-1) has been implicated in the recruitment of immune cells during inflammatory processes. Previous studies investigating its involvement in the process of Wallerian degeneration and focusing on its potential role in macrophage recruitement have come to controversial conclusions. To examine whether Wallerian degeneration is altered in the absence of ICAM-1, we have analyzed changes in the expression of axonal and Schwann cell markers following sciatic nerve crush in wildtype and ICAM-1-deficient mice. We report that the lack of ICAM-1 leads to impaired axonal degeneration and regeneration and to alterations in Schwann cell responses following sciatic nerve crush. Degradation of neurofilament protein, the collapse of axonal profiles, and the re-expression of neurofilament proteins are substantially delayed in the distal nerve segment of ICAM-1-/- mice. In contrast, the degradation of myelin, as determined by immunostaining for myelin protein zero, is unaltered in the mutants. Upregulation of GAP-43 and p75 neurotrophin receptor (p75NTR) expression, characteristic for Schwann cells dedifferentiating in response to nerve injury, is differentially altered in the mutant animals. These results indicate that ICAM-1 is essential for the normal progression of axonal degeneration and regeneration in distal segments of injured peripheral nerves.  相似文献   

19.
Synopsis Acid and neutral proteinases, leucine aminopeptidase (l-leucyl--naphthylamidase) and acid phosphatase were studied in rat sciatic nerves undergoing Wallerian degeneration. Biochemical evidence indicated that increased activity of both proteases and acid phosphatase occurred by 12 hr after nerve section. Histochemical changes in these three enzymes were apparent after three days. Biochemical estimation of neutral leucine aminopeptidase (an enzyme predominantly located in myelin in the normal peripheral nerve) showed increased activity near the of the first week of degeneration. During the second week after nerve section all the enzymes studied became markedly more active. The parallel increase in activity of acid proteinase and acid phosphatase and the similarities in their histochemical distribution suggest that the acid proteinase is of lysosomal origin. Such changes in early Wallerian degeneration appear to precede macrophage invasion of the nerve and to arise mainly from the degenerating axon, the Schwann cell, or both. In spite of the delayed increase in leucine aminopeptidase it seems possible that some proteinase activity also arises from myelin.Research Associate supported by the British Multiple Sclerosis Society  相似文献   

20.
Apolipoprotein synthesis was measured in control optic nerves and optic nerves undergoing Wallerian degeneration. After short term organ culture with radiolabeled amino acid, optic nerve extracts were reacted with antiserum to rat or chicken apolipoproteins. Immunoprecipitates were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the degenerating rat optic nerve, apo-E synthesis increased from 0.30 to 0.90% of newly synthesized protein and from 0.45 to 1.4% of secreted protein. A DNA-excess solution hybridization assay was constructed to measure the absolute amount of apo-E mRNA in control and degenerating optic nerves. Paralleling the increase in apo-E protein synthesis, the absolute amount of apo-E mRNA was elevated 3- to 4-fold after enucleation. Similar to rat apo-E, apo-A-I synthesis was increased in degenerating chicken optic nerve. Chicken apo-A-I represented 0.65 and 3.5% of newly synthesized protein from control and enucleated optic nerves, respectively. Apo-A-I increased from 0.85 to 5.5% of secreted protein following enucleation. Using in vitro translation to quantitate relative amounts of chicken apo-A-I mRNA, enucleated optic nerve apo-A-I mRNA content was increased 5-fold. These results suggest that local apolipoprotein synthesis may be involved in the mobilization of myelin cholesterol which occurs during Wallerian degeneration. The similar response of the rat and chicken to increase optic nerve apolipoprotein synthesis during degeneration supports the idea that avian peripheral apo-A-I and mammalian peripheral apo-E may be performing functions common to both classes of animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号