首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
tRNA主要有两种生物学功能:一是接受(相应的氨基酸。二是将此氨基酸转移到多肽链中。在后一功能中,tRNA通过其反密码子同mRNA上相应的密码子形成互补碱基间的氢键配对,从而使氨基酸转移到由mRNA碱基顺序决定的多肽序列中。本工作合成酵母tRNA~(ala)密码子GpCpU,将用于测验该tRNA的转移活性,即检查该tRNA能否通过其反密码子3'CpGpI5'同已结合在核糖体上的密码子5'GpCpU3'形成氢键配对而实现转移丙氨酸的功能。迄今报道的关于制备寡核苷酸的方法,主要有三种:化学合成、酶解天然核酸和酶促合成。本工作用最后一种方法,用RN_(ase)N_1和  相似文献   

2.
Crick(1955)预见到细胞内存在一种小分子RNA称为"衔接子",并假定它是一种沟通DNA与蛋白质序列之间的中介体。Zamecnik(1955)发现sRNA(tRNA),Hoagland(1954)发现氨基酸激活酶(氨基酰-tRNA合成酶)。镁离子稳定tRNA的二级结构(1963),由此,可以得到大的寡核苷酸片断,甚至tRNA的半分子。这项技术大大推动了tRNA及其他RNA序列分析工作的迅速进展。Holley(1965)首次测定出酵母tRNAAla全部核苷酸序列,并设计出一种"三叶草"二级结构。Crick(1966)较早地提出"摆动假说",即反密码子5’端的碱基并不与密码子3’端碱基严格配对,允许有一定的摆动。Rich(1974)等用X射线晶体衍射法,阐明了酵母tRNAPhe的高级结构(呈L型)。2000年,英国剑桥科学家,使用在冰箱保存了15年的酵母tRNAPhe晶体,重新测定它的L型结构是正确的,并严格确定其中10个镁离子和一个精胺分子的精确部位。  相似文献   

3.
人的多种遗传疾病与线粒体tRNA基因突变有关,这些突变导致疾病发生的分子机理是当前研究的热点.通过研究线粒体tRNA分子上的碱基修饰情况,人们发现了一类特殊的带有牛磺酸衍生物基团的修饰,这类修饰主要位于线粒体tRNALys和线粒体tRNALeu(UUR)反密码子第一位摆动(wobble)位点的碱基上.最近的研究表明,位于这两种线粒体tRNA基因上的多种突变与遗传性脑肌病相关,包括A8344G,A3243G,T3271C等等,它们可以导致tRNA上相应摆动位点的碱基修饰缺失.无论是在体外培养的带有相应突变的细胞内,还是在来源于脑肌病病人的组织中,科学家都发现了相同的线粒体tRNA碱基修饰缺陷.通过分子手术证实,此类碱基修饰对于维持这两种tRNA的反密码子与mRNA上相应密码子的相互识别至关重要,缺失了这种修饰的tRNA将无法识别一些对应的密码子.通过进一步的实验,人们还鉴定出负责催化此类碱基修饰的酶.这些研究不但揭示了线粒体遗传性脑肌病相关突变的致病机理,也将为研究基因治疗提供可能的新手段.  相似文献   

4.
石磺线粒体基因组全序列对研究石磺科分子系统进化具有重要意义。利用LA-PCR技术对一种石磺Platevin-dexmortoni线粒体基因组全序列进行了测定和分析。结果表明,线粒体基因组序列全长13 991 bp,碱基组成分别为27.27%A、16.78%C、20.23%G、35.72%T;由22个tRNA、2个rRNA、13个蛋白编码基因和25个长度为2-118 bp的非编码区组成。4个蛋白质编码基因和5个tRNA基因从L链编码,其余基因均从H链编码。蛋白质基因的起始密码子,除ND2为GTG以外,均为典型的起始密码子ATN。ND2和Cytb基因使用了不完全终止密码子T,其余基因均使用典型的TAA或TAG。预测了22个tRNA基因的二级结构,发现tRNASer和TrnaAsn缺少DHU臂,tRNASer和tRNAThr的反密码子环上有9个碱基,而不是通常的7个碱基。最长的非编码区含有两个类似于的tRNAGln和tRNAPhy的二级结构。  相似文献   

5.
tRNA衍生片段(tRNA-derived RNA fragment,t RF)和tRNA半分子(tRNA halves,ti RNA)由成熟tRNA或其前体tRNA在不同位点特异性剪切产生,它们是一类广泛存在于原核生物和真核生物转录组中的非编码小RNA分子.t RF主要有tRF-5、tRF-3和tRF-1等3亚类,分别来自成熟tRNA的D环至反密码环茎区间切割至5′端、T环开始至3′端和前体tRNA的3′端尾部,其长度为14~30个核苷酸(nucleotide,nt).ti RNA主要有5′ti RNA和3′ti RNA等2亚类,是在成熟tRNA反密码子环处切割分别产生,其长度为29~50 nt.t RF和ti RNA具有多种生物学功能,既可以在应激反应中作为信号分子,又可以作为基因表达的调节者.它们与人类多种疾病(如肿瘤、神经退行性疾病、代谢性疾病和传染病等)的发生密切相关,有希望成为疾病诊断的新型标志物.本文就t RF和ti RNA的分类、生物学功能以及与人类疾病的关系作一综述.  相似文献   

6.
用定点突变技术将不同核苷酸引入酵母苯丙氨酸tRNA反密码子环32,37和38位.体外转录制备tRNA前体,其32,37和38位的核苷酸与野生型tRNA前体相应位点的核苷酸不同.用纯化的酵母tRNA内切酶和tRNA连接酶对这些tR-NA前体进行剪接加工.结果说明,这些位点的核苷酸不仅影响tRNA内切酶对tR-NA前体的酶切效率,而且3’-半分子5’-末端双链结构阻止tRNA连接酶将相应的tRNA半分子连接成整分子tRNA.  相似文献   

7.
按照Peattie(1979)直接化学定序法测定了某些植物病毒RAs(KYMV,CYVV,APLV和EMV)3’末端区域的核苷酸顺序。基于核苷酸顺序资料参照TYMV-RNA模型(Rietveld等,1982)提出它们3’末端的可能二级结构,即tRNA-样结构。KYMV、CYVV、OYMV、APLV和EMV-RNA3’末端的tRNA-样结构完全一致。此种对缬氨酸具有特异性的tRNA-样结构与真核生物缬氨酸tRNA也极为相似。缬氨酸反密码子(CAC)位于tRNA-样结构的适当部位。这些植物病毒RNA的核苷酸由于硷基配对在氨基酸接受臂内能产生12个硷基对的共轴堆砌。3’末端区域具有……(CC)A_(OH)末端。本实验结果支持Rietveld等1982年提出的TYMV-RNA3’末端二级结构模型。最后简要地讨论了tRNA-样结构的可能作用。  相似文献   

8.
大壁虎线粒体基因组全序列及其结构(英文)   总被引:3,自引:1,他引:2  
采用长PCR扩增、克隆和引物步行等方法,测定了大壁虎(Gekkogecko)线粒体基因组全序列。序列全长16435bp,共有13个蛋白质编码基因、2个rRNA基因和22个tRNA基因。基因组的组成、顺序、编码链的选择、tRNA的结构、较低的碱基G含量、对碱基T的偏好以及GC和AT偏斜,都与大部分脊椎动物相同或相近。但有些特征揭示了壁虎类的原始性蛋白质编码基因密码子第3位表现为对碱基A的偏好,更接近两栖类和鱼类而不是羊膜动物;标准终止密码子(TAA)只出现于3个蛋白质编码基因中,比大部分脊椎动物少。tRNA基因核苷酸长度为63~76nt,除了tRNACys和tRNASer(AGY)缺少D臂,其余的二级结构均呈典型的三叶草状。  相似文献   

9.
柯杨  黄原  雷富民 《遗传》2010,32(9):951-960
采用长PCR扩增的线粒体DNA和引物步移法, 测定并注释了中国特有鸟类-黑尾地鸦(Podoces hendersoni)的线粒体基因组全序列。黑尾地鸦的mtDNA序列全长16 867 bp, GenBank登录号GU592504。基因含量和排列次序与原鸡的一致, 包含13个蛋白编码基因、22个tRNA、2个rRNA和1个控制区(D-loop)。除COI基因以GTG作为起始密码子外, 其余12个蛋白质编码基因均以典型ATG密码子起始。11个蛋白编码基因以完全终止密码子TAA、AGG或AGA终止, COIII和ND4基因终止密码子为不完整的T。tRNASer(AGY)的DHU臂缺失, tRNALeu(CUN)的反密码子环由9个碱基构成, 而不是标准的7个碱基。其余的20个tRNA基因的二级结构均属典型的三叶草结构。预测了rRNA的二级结构, 其中, 12S rRNA二级结构包含4个结构域, 43个茎环结构; 16S rRNA的二级结构包含6个结构域, 55个茎环结构。此外, 在其他鸟类控制区中所发现的F-box、D-box、C-box、B-box、Bird similarity-box和CSB1-box也同样存在于黑尾地鸦中。  相似文献   

10.
已经测定的昆虫线粒体基因组中, 直翅目草螽亚科的疑钩额螽Ruspolia dubia线粒体控制区长度最短, 仅70 bp。为此, 本研究采用L-PCR结合二次PCR扩增策略对另一种草螽亚科昆虫斑翅草螽Conocephalus maculates线粒体基因组序列进行了测定。序列注释发现: 斑翅草螽线粒体基因组序列全长15 898 bp, A+T含量为72.05%, 基因排列与典型的节肢动物线粒体基因组一致。全部蛋白质编码基因以典型的ATN作为起始密码子, 9个蛋白质编码基因具有完整的终止密码子, 其余4个以不完整的T作为终止信号。除trnSAGN外, 其余21个tRNAs均可折叠形成典型的三叶草结构, 依照Steinberg等(1997)线粒体特殊tRNA结构类型-9, trnSAGN的DHU臂形成一个7 nt环, 反密码子臂则长达9 bp, 含1个突起碱基, 而不是正常的5 bp。斑翅草螽与其他直翅目昆虫线粒体基因组的主要区别在于, 在trnSUCN和nad1, nad1和trnLCUN基因间各存在一段罕见的、大段的基因间隔序列, 长度分别为78 bp和360 bp。其中, 位于nad1和trnLCUN之间的基因间隔序列N链可形成一个包含完整起始、终止密码子(ATT/TAA)、编码103个氨基酸的未知开放阅读框。同义密码子使用偏好与线粒体基因组编码的tRNA反密码子匹配情况无关, 但与密码子第3位点的碱基组成紧密相关; 相对密码子使用频率(relative synonymous codon usage, RSCU)大于1的密码子, 其第3位点全部是A或T。在已经测定的直翅目昆虫线粒体基因组tRNAs中, 均存在一定数量的碱基错配, 且以G-U弱配对为主, 表明G-U配对在线粒体基因组中可能是一种正常的碱基配对形式。本研究测定的斑翅草螽线粒体基因组序列, 和先前已经测定的直翅目线粒体基因组序列一起, 可以为重建直翅目的进化历史提供数据资源。  相似文献   

11.
Yang H  Huang Y 《动物学研究》2011,32(4):353-362
采用长距PCR扩增及保守引物步移法测定并注释了郑氏比蜢(Pielomastax zhengi)的线粒体基因组全序列。郑氏比蜢的线粒体基因组全长15602 bp,A+T含量为71.8%,37个基因位置与飞蝗的一致, 基因间隔序列共计10处47bp, 间隔长度从1~20bp不等; 有14对基因间存在52bp重叠, 重叠碱基数在1~8bp之间。蛋白质基因的起始密码子均为昆虫典型的起始密码子ATN。ND5基因使用了不完全终止密码子T,其余基因均为典型的TAA或TAG。除tRNASer(AGN)的DHU臂缺失外, 其余21个tRNA基因的二级结构均属典型的三叶草结构, 但在郑氏比蜢中有5个tRNA(tRNACys、tRNALys、 tRNAPhe、 tRNAPro tRNAArg)基因变异较大, 无法采用常规算法预测出来, 表现在这5个tRNA二级结构的TψC臂仅有3~4对配对碱基, tRNALys 和 tRNAArg的反密码臂仅有 4 对配对碱基。预测的lrRNA二级结构总共有6个结构域(结构域Ⅲ缺失), 44个茎环结构。预测的srRNA的二级结构包含3个结构域, 30个茎环结构。比较郑氏比蜢、西藏飞蝗(Locusta migratoria tibetensis)和疑钩额螽(Ruspolia dubia)rRNA二级结构后,发现郑氏比蜢与西藏飞蝗的更相似。A+T丰富区中存在一个被认为与复制及转录起始有关的Ploy(T)结构。  相似文献   

12.
原生动物的一些纤毛虫中终止密码子发生重分配现象,将1个或2个终止密码子翻译为氨基酸.目前对这一现象的发生机制仍无合理解释.近年来,对蛋白质合成终止过程中肽链释放因子(eukaryotic polypeptide release factor, eRF)结构和功能的深入研究,为揭示终止密码子的重分配机制提供了重要的线索.本实验以具有终止密码子识别特异性的四膜虫Tt-eRF1为研究对象,将其中与密码子识别有关的GTx、NIKS和Y-C-F关键模体(motif) 引入识别通用终止密码子的酵母Sc=eRF1中,构建成各种嵌合体eRF1.利用双荧光素酶报告系统和细胞活性实验,分析关键模体及其周边的氨基酸对eRF1识别终止密码子性质的影响.结果表明,GTx和NIKS模体一定程度上决定eRF1识别终止密码子第1位碱基U和第2位碱基A;Y-C-F模体决定eRF1识别终止密码子UGA的第2位碱基G.模体内及其相邻氨基酸定点突变分析进一步支持以上结果.本研究推测,eRF1在进化过程中一些关键模体结构的改变决定其识别终止密码子的特异性,只能识别3个终止密码子中的1个或2个.随后,由于tRNA基因的突变产生阻抑性tRNA,促成终止密码子在原生动物纤毛虫中的重新分配.  相似文献   

13.
现行高中和师范学校生物课本中蛋白质合成示意图我认为有误。产生错误的原因主要是教材的更新落后于学科的发展,在此提出和有关同志共同讨论,以达到统一认识提高教学质量的目的。第一,示意图把mRNA和tRNA的反向平行视为同向平行;第二,由于对密码子和反密码子相互作用的关系缺乏一定的了解,因而对密码子UCU和GCU的反密码子确定是错误的。蛋白质合成的内容十分复杂,现仅就以上两点加以讨论。一、信息RNA(mRNA)和转远RNA(tRNA)是反向平行的。  相似文献   

14.
在蛋白质的翻译过程中,氨酰-tRNA进入核糖体,解密mRNA上的一个密码子,并带着mRNA向其5'的方向运动,直到空载的tRNA离开核糖体,整个过程tRNA在核糖体内始终沿着一个方向运动.但随着LepA(EF4)蛋白的发现和其功能的明确,tRNA在核糖体内的新运动形式--"反转运"被揭示,即tRNA带着mRNA倒退一步,向其3'的方向运动.通过对tRNA反向运动生理意义的研究,引发了对蛋白质翻译调控的深入思考.  相似文献   

15.
一般我们认为生物体内转移RNA(tRNA)中碱基修饰的主要作用是调节翻译效率和密码子的专一性,而不涉及氨酰化专一性,即正确的氨基酸接合在正确的RNA部位上。最近Muramatsu和他的同事们有了惊人的发现,大肠杆菌异亮氨酸tRNA有一种特殊的碱基修  相似文献   

16.
真核生物RNA在转录后的剪辑过程中,通过断裂与再接反应删除原初转录产物中无编码功能的内隐子(Intron)序列将外显子(Exon)连接为成熟RNA。近年来的研究表明断裂基因可根据内隐子序列的剪切方式分为三类: 1.真核 mRNA 剪切位置由内隐子与外显子的交界序列确定。由核内小RNA与蛋白质的复合物SnRNP识别此交界序列并参与剪接反应,确切反应机理尚不清楚。 2.真核 tRNA 内隐子序列嵌在成熟tRNA序列中,反密码子3′侧一个碱基的后面,不干扰成熟分子中保守的二级或三级结构。剪切位置由外显子的结构  相似文献   

17.
氨基酸与核苷酸之间的密码关系可能来自原始tRNA链(包括识别核苷酸及反密码子)与氨基酸的直接相互作用即原始tRNA识别或第二套遗传密码.  相似文献   

18.
云斑车蝗线粒体基因组全序列测定与分析   总被引:3,自引:1,他引:2  
党江鹏  刘念  叶伟  黄原 《昆虫学报》2008,51(7):671-680
采用长距 PCR 扩增及保守引物步移法并结合克隆测序测定并注释了云斑车蝗 Gastrimargus marmoratus (Thunberg)的线粒体基因组全序列。结果表明:云斑车蝗线粒体基因组全序列为15 904 bp(GenBank登录号为EU527334),A+T含量略高于非洲飞蝗Locusta migratoria,为76.04%,包括13个蛋白质编码基因,22个tRNA 基因,2个rRNA基因和一段1 057 bp的A+T富集区。蛋白质基因的起始密码子中,除COⅠ和ND5为TTG以外,均为昆虫典型的起始密码子ATN。ND5基因使用了不完全终止密码子T,其余基因均为典型的TAA或TAG。预测了22个tRNA基因的二级结构,发现tRNASer(AGN)缺少DHU臂, tRNASer(UGY)的反密码子环上有9个碱基。预测了云斑车蝗12S和16S rRNA二级结构,分别包括3个结构域30个茎环和6个结构域44个茎环。A+T富集区含有3个串联重复序列。  相似文献   

19.
麦穗鱼线粒体基因组序列测定及分析   总被引:1,自引:0,他引:1  
利用麦穗鱼Pseudorasbora parva和相关鱼类的部分线粒体基因序列,设计出2对长批引物和30对短批引物,采用基于长PCR的2次PCR扩增法测定并注释麦穗鱼线粒体基因组全序列。结果表明,麦穗鱼线粒体基因组长16600bp,A+T含量为58.9%,37个基因位置及组成与其它硬骨鱼一致,均由13个蛋白编码基因、22个tRNA、2个rRNA基因和1个控制区(D-loop)组成。其中L链仅含8个tRNA(Pro、T yr、Ser、Ala、Asn、Cys、Glu、Gln)及ND6基因,其余基因皆由H链编码。基因排列紧密,间隔序列共计13处64bp,长度从1~32bp不等;基因重叠区7处23bp,重叠碱基数在1~7bp之间。13个蛋白编码基因中,除COI起始密码子为GTG外,其余均以ATG为起始密码子;有8个基因(ND1、ND2、COI、ATP6、ATP8、ND4L、ND5、ND6)3’端有完全的TAA或TAG终止密码子,其它5个基因终止密码子为不完整的TA(ND3和ND4)或T(COⅡ,COⅢ,Cyt b)。除tRNASer(AGY)外,其余21个tRNA基因的二级结构均为典型的三叶草结构。预测的lrRNA二级结构共有6个结构域,53个茎环结构,srRNA二级结构包含43个茎环结构。控制区(D-loop)存在3个结构区:终止序列区(TAS)、中央保守区(CSB-F、CSB-D)和保守序列区(CSB-1、CSB-2、CSB-3),其中TAS与DNA复制终止相关,出现茎环结构。  相似文献   

20.
利用麦穗鱼Pseudorasbora parva和相关鱼类的部分线粒体基因序列,设计出2对长批引物和30对短批引物,采用基于长PCR的2次PCR扩增法测定并注释麦穗鱼线粒体基因组全序列.结果表明,麦穗鱼线粒体基因组长16600 bp,A+T含量为58.9%,37个基因位置及组成与其它硬骨鱼一致,均由13个蛋白编码基因、22个tRNA、2个rRNA基因和1个控制区(D-loop)组成.其中L链仅含8个tRNA(Pro、Tyr、Ser、Ala、Asn、Cys、Glu、Gln)及ND6基因,其余基因皆由H链编码.基因排列紧密,间隔序列共计13处64 bp,长度从1~32 bp不等;基因重叠区7处23 bp,重叠碱基数在1~7bp之间.13个蛋白编码基因中,除COI起始密码子为GTG外,其余均以ATG为起始密码子;有8个基因(ND1、ND2、COI、ATP6、ATP8、ND4L、ND5、ND6)3端有完全的TAA或TAG终止密码子,其它5个基因终止密码子为不完整的TA (ND3和ND4)或T(COⅡ,COⅢ,Cyt b).除tRNAser(AGY)外,其余21个tRNA基因的二级结构均为典型的三叶草结构.预测的lrRNA二级结构共有6个结构域,53个茎环结构,srRNA二级结构包含43个茎环结构.控制区(D-loop)存在3个结构区:终止序列区(TAS)、中央保守区( CSB-F、CSB-D)和保守序列区(CSB-1、CSB-2、CSB-3),其中TAS与DNA复制终止相关,出现茎环结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号