首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
napts is a recessive mutation that affects the level of sodium channel activity and, at high temperature, causes paralysis associated with a loss of action potentials. We show, by genetic complementation tests, germline transformation, and analysis of mutations, that napts is a gain-of-function mutation of mle, a gene required for X chromosome dosage compensation and male viability. Molecular analyses of nap and mle mutations indicate that mle+, nap+, and napts activities are encoded by the same open reading frame and suggest that napts is due to a single amino acid substitution. Although napts is known to act via para+, an X-linked sodium channel structural gene, its effect is not due to a simple defect in para+ dosage compensation.  相似文献   

2.
3.
4.
D. D. Hurd  M. Stern    W. M. Saxton 《Genetics》1996,142(1):195-204
To investigate the possibility that kinesin transports vesicles bearing proteins essential for ion channel activity, the effects of kinesin (Khc) and ion channel mutations were compared in Drosophila using established tests. Our results show that Khc mutations produce defects and genetic interactions characteristic of paralytic (para) and maleless (mle) mutations that cause reduced expression or function of the alpha-subunit of voltage-gated sodium channels. Like para and mle mutations, Khc mutations cause temperature-sensitive (TS) paralysis. When combined with para or mle mutations, Khc mutations cause synthetic lethality and a synergistic enhancement of TS-paralysis. Furthermore, Khc mutations suppress Shaker and ether-a-go-go mutations that disrupt potassium channel activity. In light of previous physiological tests that show that Khc mutations inhibit compound action potential propagation in segmental nerves, these data indicate that kinesin activity is required for normal inward sodium currents during neuronal action potentials. Tests for phenotypic similarities and genetic interactions between kinesin and sodium/potassium ATPase mutations suggest that impaired kinesin function does not affect the driving force on sodium ions. We hypothesize that a loss of kinesin function inhibits the anterograde axonal transport of vesicles bearing sodium channels.  相似文献   

5.
Garber G  Smith LA  Reenan RA  Rogina B 《Fly》2012,6(1):57-67
The voltage-gated Na (+) channels (VGSC) are complex membrane proteins responsible for generation and propagation of the electrical signals through the brain, the skeletal muscle and the heart. The levels of sodium channels affect behavior and physical activity. This is illustrated by the maleless mutant allele (mle (napts)) in Drosophila, where the decreased levels of voltage-gated Na(+) channels cause temperature-sensitive paralysis. Here, we report that mle (napts) mutant flies exhibit developmental lethality, decreased fecundity and increased neurodegeneration. The negative effect of decreased levels of Na(+) channels on development and ts-paralysis was more pronounced at 18 and 29°C than at 25°C, suggesting particular sensitivity of the mle (napts) flies to temperatures above and below normal environmental conditions. Similarly, longevity of mle (napts) flies was unexpectedly short at 18 and 29°C compared with flies heterozygous for the mle (napts) mutation. Developmental lethality and neurodegeneration of mle (napts) flies was partially rescued by increasing the dosage of para, confirming a vital role of Na(+) channels in development, longevity and neurodegeneration of flies and their adaptation to temperatures.  相似文献   

6.
7.
Cardnell RJ  Nogare DE  Ganetzky B  Stern M 《Genetics》2006,172(4):2351-2358
Neuronal Na+ and K+ channels elicit currents in opposing directions and thus have opposing effects on neuronal excitability. Mutations in genes encoding Na+ or K+ channels often interact genetically, leading to either phenotypic suppression or enhancement for genes with opposing or similar effects on excitability, respectively. For example, the effects of mutations in Shaker (Sh), which encodes a K+ channel subunit, are suppressed by loss-of-function mutations in the Na+ channel structural gene para, but enhanced by loss-of-function mutations in a second K+ channel encoded by eag. Here we identify two novel mutations that suppress the effects of a Sh mutation on behavior and neuronal excitability. We used recombination mapping to localize both mutations to the eag locus, and we used sequence analysis to determine that both mutations are caused by a single amino acid substitution (G297E) in the S2-S3 linker of Eag. Because these novel eag mutations confer opposite phenotypes to eag loss-of-function mutations, we suggest that eag(G297E) causes an eag gain-of-function phenotype. We hypothesize that the G297E substitution may cause premature, prolonged, or constitutive opening of the Eag channels by favoring the "unlocked" state of the channel.  相似文献   

8.
Mutations in the para gene specifically affect the expression of sodium currents in Drosophila. While 65% of wild-type embryonic neurons in culture express sodium currents, three distinct mutations in the para locus resulted in a decrease in the fraction of cells from which sodium currents could be recorded. This reduction was allele-dependent: macroscopic sodium currents were exhibited in 49% of the neurons in parats1 cultures, 35% in parats2, and only 2% in paraST76. Voltage-clamp experiments demonstrated that the parats2 mutation also affected the gating properties of sodium channels. These results provide convincing evidence that para, a gene recently shown to exhibit sequence similarity to vertebrate sodium channels alpha subunits, encodes functional sodium channels in Drosophila. The finding that one para allele (paraST76) can virtually eliminate the expression of sodium currents strongly argues that the para gene codes for the majority of sodium channels in cultured embryonic neurons.  相似文献   

9.
Fergestad T  Ganetzky B  Palladino MJ 《Genetics》2006,172(2):1031-1042
Mutations affecting ion channels and neuronal membrane excitability have been identified in Drosophila as well as in other organisms and characterized for their acute effects on behavior and neuronal function. However, the long-term effect of these perturbations on the maintenance of neuronal viability has not been studied in detail. Here we perform an initial survey of mutations affecting Na+ channels and K+ channels in Drosophila to investigate their effects on life span and neuronal viability as a function of age. We find that mutations that decrease membrane excitability as well as those that increase excitability can trigger neurodegeneration to varying degrees. Results of double-mutant interactions with dominant Na+/K+ ATPase mutations, which themselves cause severe neurodegeneration, suggest that excitotoxicity owing to hyperexcitability is insufficient to explain the resultant phenotype. Although the exact mechanisms remain unclear, our results suggest that there is an important link between maintenance of proper neuronal signaling and maintenance of long-term neuronal viability. Disruption of these signaling mechanisms in any of a variety of ways increases the incidence of neurodegeneration.  相似文献   

10.
Molecular analysis of the para locus, a sodium channel gene in Drosophila   总被引:26,自引:0,他引:26  
K Loughney  R Kreber  B Ganetzky 《Cell》1989,58(6):1143-1154
  相似文献   

11.
Reenan RA  Rogina B 《Aging cell》2008,7(2):179-186
General locomotor activity decreases with normal aging in animals and could be partially explained by decreases in neuronal function. Voltage-gated Na+ channels are essential in initiating and propagating rapid electrical impulses underlying normal locomotor activity and behavior in animals. Isolation of mutations conferring temperature-sensitive (ts) paralysis has been an extremely powerful paradigm for identifying genes involved in neuronal functions, such as membrane excitability and synaptic transmission. For instance, decreased expression of wild-type Na+ channels in flies harboring the no-action-potential ( nap ) mutant allele ( mlenapts ) confers rapid and reversible ts paralysis, because of failure of action potential propagation. Here, we report that aging wild-type Drosophila gradually develops an acquired susceptibility to ts paralysis that is indistinguishable from that seen in young ts paralytic mlenapts mutants. Moreover, we show that this general age-dependent susceptibility is also present in mlenapts flies, although the effects are shifted to lower temperature regimes. The mlenapts flies also exhibit decreased lifespan and increased frailty. Paralysis and decreased lifespan of mlenapts flies were partially rescued by increasing the dosage of para , the structural gene for the major action potential Na+ channel in central nervous system of Drosophila . Lastly, we show a dramatic scaling of ts paralysis susceptibility with chronological age in short-lived and long-lived mutant flies, further demonstrating that this age-dependent risk is independent of genetic background. Thus, decreased neural transmission, a hallmark of which is ts paralysis, is a biomarker of aging.  相似文献   

12.
We have used the identified cells of the Drosophila Giant Fiber System (GFS) to study the defects induced by the temperature-sensitive paralytic mutations no action potential (nap) and paralytic (para). These mutations paralyze at elevated temperatures, reported as due to a block of action potential propagation. We found, however, that the cells of the GFS still were able to respond to stimuli at 7-10 degrees C above the temperature causing mutant paralysis. Stimulus threshold and conduction time both decrease with increasing temperature in the mutants in a manner indistinguishable from wild-type. Since action potentials can propagate efficiently in the mutants at elevated temperatures, we looked for other neural defects that might be involved in producing paralysis. We did find reduced neuronal function at sites such as electrical synapses and axonal branch points where current may be limiting. These sites had weakened following frequency, occasional failures, and increased conduction times. We believe the non-temperature-dependent defects in nap and para uncover the normally temperature-sensitive traits latent within all neurons. Increasing temperature increases the rates of channel activation and inactivation. At higher temperatures, Na+ inactivation and K+ activation encroach upon the Na(+)-activation time, reducing inward sodium current. In addition to this normal temperature-dependent effect, the mutations decrease the number of sodium channels in neurons in a non-temperature-dependent manner. These two reductions in sodium current combine to prevent spiking threshold from being reached at current limited sites. The temperature at which a sufficient number of these sites block should be the temperature of paralysis.  相似文献   

13.
AaIT is an insect selective neurotoxic polypeptide shown to affect insect neuronal sodium conductance by binding to excitable sodium channels. In the present study the paralytic potency of AaIT to wild type and various mutant strains of houseflies (Musca domestica) and fruitflies (Drosophila melanogaster) was examined and it has been shown that: On the basis of body weight when compared to published data on Sarcophaga falculata blowflies, the Musca and Drosophila flies reveal at least two orders of magnitude decreased susceptibility to the AaIT. When compared to wild type flies the toxicity of AaIT is greatly altered in knockdown resistant fly strains which are mutated in their para gene encoding the voltage gated sodium channel. Several strains, with genetically mapped para mutations conferring pyrethroid resistance, exhibited opposing response to AaIT. The para ts2 Drosophila strain, with a point of mutation in domain I of the para gene conferring a 6-fold resistance to deltamethrin also showed about 15-fold tolerance to AaIT. On the other hand the Musca kdr and super-kdr flies, with a single or a double point mutation, respectively in domain II of the para gene, are about 9- and 14-fold more susceptible to AaIT, respectively. The above data are interpreted in terms of the pharmacological diversity and flexibility ("allosteric coupling") of voltage gated sodium channels and their implications for the management of pesticide resistance are discussed.  相似文献   

14.
K(+) currents in Drosophila muscles have been resolved into two voltage-activated currents (I(A) and I(K)) and two Ca(2+)-activated currents (I(CF) and I(CS)). Mutations that affect I(A) (Shaker) and I(CF) (slowpoke) have helped greatly in the analysis of these currents and their role in membrane excitability. Lack of mutations that specifically affect channels for the delayed rectifier current (I(K)) has made their genetic and functional identity difficult to elucidate. With the help of mutations in the Shab K(+) channel gene, we show that this gene encodes the delayed rectifier K(+) channels in Drosophila. Three mutant alleles with a temperature-sensitive paralytic phenotype were analyzed. Analysis of the ionic currents from mutant larval body wall muscles showed a specific effect on delayed rectifier K(+) current (I(K)). Two of the mutant alleles contain missense mutations, one in the amino-terminal region of the channel protein and the other in the pore region of the channel. The third allele contains two deletions in the amino-terminal region and is a null allele. These observations identity the channels that carry the delayed rectifier current and provide an in vivo physiological role for the Shab-encoded K(+) channels in Drosophila. The availability of mutations that affect I(K) opens up possibilities for studying I(K) and its role in larval muscle excitability.  相似文献   

15.
Voltage-gated sodium channels are the presumed site of action of pyrethroid insecticides and DDT. We screened several mutant sodium channel Drosophila lines for resistance to type I pyrethroids. In insecticidal bioassays the para(74) and para(DN7) fly lines showed greater than 4-fold resistance to allethrin relative to the allethrin sensitive Canton-S control line. The amino acid substitutions of both mutants are in domain III. The point mutation associated with para(74) lies within the S6 transmembrane region and the amino acid substitution associated with para(DN7) lies within the S4-S5 linker region. These sites are analogous to the mutations in domain II underlying knockdown resistance (kdr) and super-kdr, naturally occurring forms of pyrethroid resistance found in houseflies and other insects. Electrophysiological studies were performed on isolated Drosophila neurons from wild type and para(74) embryos placed in primary culture for three days to two weeks. The mutant para(74) sodium currents were kinetically similar to wild type currents, in activation, inactivation and time to peak. The only observed difference between para(74) and wild-type neurons was in the affinity of the type I pyrethroid, allethrin. Application of 500 nM allethrin caused removal of inactivation and prolonged tail currents in wild type sodium channels but had little or no effect on para(74) mutant sodium channels.  相似文献   

16.
Potassium channels control the repolarization of nerve terminals and thus play important roles in the control of synaptic transmission. Here we describe the effects of mutations in theslowpoke gene, which is the structural gene for a calcium activated potassium channel, on transmitter release at the neuromuscular junction inDrosophila melanogaster. Surprisingly, we find that theslowpoke mutant exhibits reduced transmitter release compared to normal. Similarly, theslowpoke mutation significantly suppresses the increased transmitter release conferred either by a mutation inShaker or by application of 4-aminopyridine, which blocks theShaker-encoded potassium channel at theDrosophila nerve terminal. Furthermore, theslowpoke mutation suppresses the striking increase in transmitter release that occurs following application of 4-aminopyridine to theether a go-go mutant. This suppression is most likely the result of a reduction of Ca2+ influx into the nerve terminal in theslowpoke mutant. We hypothesize that the effects of theslowpoke mutation are indirect, perhaps resulting from increased Ca2+ channel inactivation, decreased Na+ or Ca2+ channel localization or gene expression, or by increases in the expression or activity of potassium channels distinct fromslowpoke.  相似文献   

17.
Pyrethroids are a class of voltage-dependent sodium channel modifiers widely used as insecticides for control of disease vectors and agricultural pests. Many insect populations have developed resistance to pyrethroids linked to nervous system insensitivity and structural mutations in neuronal sodium channels. Pyrethroid resistant strains of the moth Heliothis virescens carry single point mutations leading to amino acid substitutions in either transmembrane segment I-S6 (V421M) or II-S6 (L1029H) of the para-homologous sodium channel. We analyzed the consequences of V421M and L1029H mutations constructed in the Drosophila para sodium channel heterologously expressed in Xenopus oocytes, and found that both mutations confer channel insensitivity to permethrin, with the L1029H mutation having a more pronounced effect. Both mutations also modify the intrinsic voltage-dependent gating properties of the channel, but L1029H less so than V421M. These results suggest that mutation V421M exacts a higher fitness cost than L1029H, providing a plausible explanation for genetic succession observed in field strains, where V421M was replaced by L1029H during the past decade.  相似文献   

18.
DSC1 encodes a putative voltage-sensitive sodium channel α subunit in Drosophila melanogaster. We generated polyclonal antibodies raised against part of the DSC1 sequence to characterize the size and the distribution of these channels in the adult fly. Immunoblotting experiments indicated that the protein has a molecular weight of about 270 kDa. We also showed that DSC1 channels are found only in the neurons of the fly. The density of channels was high in synaptic regions and in most of the axonal processes that connect the various structures of the CNS. No signal was observed in the cortical cell bodies where the para channels are mainly present. The most striking result concerns the widespread distribution of DSC1 channels in the PNS, as confirmed by experiments done with the monoclonal antibody 22C10. These results strongly suggest that DSC1 and para channels may have complementary roles, at least in the adult stage. Electronic Publication  相似文献   

19.
kdr and super-kdr are mutations in houseflies and other insects that confer 30- and 500-fold resistance to the pyrethroid deltamethrin. They correspond to single (L1014F) and double (L1014F+M918T) mutations in segment IIS6 and linker II(S4-S5) of Na channels. We expressed Drosophila para Na channels with and without these mutations and characterized their modification by deltamethrin. All wild-type channels can be modified by <10 nM deltamethrin, but high affinity binding requires channel opening: (a) modification is promoted more by trains of brief depolarizations than by a single long depolarization, (b) the voltage dependence of modification parallels that of channel opening, and (c) modification is promoted by toxin II from Anemonia sulcata, which slows inactivation. The mutations reduce channel opening by enhancing closed-state inactivation. In addition, these mutations reduce the affinity for open channels by 20- and 100-fold, respectively. Deltamethrin inhibits channel closing and the mutations reduce the time that channels remain open once drug has bound. The super-kdr mutations effectively reduce the number of deltamethrin binding sites per channel from two to one. Thus, the mutations reduce both the potency and efficacy of insecticide action.  相似文献   

20.
The changes in the excitability of the reorganized axonal membrane in myelinated and demyelinated nerve fibres as well as the causes conditioning such changes have been investigated by paired stimulation during the first 30 ms of the recovery cycle. The variations of the action potential parameters (amplitude and velocity) are traced also. The simulation of the conduction along the normal fiber is based on the Frankenhaeuser and Huxley (1964) and Goldman and Albus (1968) equations, while the demyelination is considered to be an elongation of the nodes of Ranvier. The axonal membrane reorganization is achieved by means of potassium channel blocking and increase of the sodium-channel permeability. It is shown that potassium channels block decreases membrane excitability for the myelinated and demyelinated fibres in the cases of initial and paired stimulation. With increasing sodium-channel permeability on the background of the blocked potassium channels, the membrane excitability is increased. For the fibres with a reorganized membrane, a supernormality of the membrane excitability is obtained, the latter remaining unrecovered during the 30 ms cycle under investigation. The supernormality of the excitability grows from the demyelinated fibre without reorganized membrane to the demyelinated fibre with reorganized one. For short interstimulus intervals, the second action potential propagates along the fibres with a reduced velocity and a decreased amplitude. No supernormality of the potential parameters (amplitude, velocity) is observed during the cycle up to 30 ms. The membrane properties of the myelinated and demyelinated fibres with blocked potassium channels recover in the interval from 15 to 20 ms depending on whether the sodium channels' increase of the permeability is added on the background of the blocked potassium channel or not. In the recovery cycle, the axonal membrane reorganization leads to an improvement of the conduction along most severely demyelinated fibres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号