首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the electronic state of Mn(III) center with an integer electron spin S=2 in the manganese(III) protoporphyrin IX reconstituted myoglobin, Mn(III)Mb, by means of multi-frequency electron paramagnetic resonance (MFEPR) spectroscopy. Using a bimodal cavity resonator, X-band EPR signal from Mn(III) center in the Mn(III)Mb was observed near zero-field region. The temperature dependence of this signal indicates a negative axial zero-field splitting value, D<0. The EPR analysis shows that this signal is attributed to the transition between the closely spaced M(s)=+/-2 energy levels for the z-axis, corresponding to the heme normal. To determine the zero-field splitting (ZFS) parameters, EPR experiments on the Mn(III)Mb were performed at various temperatures for some frequencies between 30GHz and 130GHz and magnetic fields up to 14T. We observed several EPR spectra which are analyzed with a spin Hamiltonian for S=2, yielding highly accurate ZFS parameters; D=-3.79cm(-1) and |E|=0.08cm(-1) for an isotropic g=2.0. These ZFS parameters are compared with those in some Mn(III) complexes and Mn(III) superoxide dismutase (SOD), and effects on these parameters by the coordination and the symmetry of the ligands are discussed. To the best of our knowledge, these EPR spectra in the Mn(III)Mb are the very first MFEPR spectra at frequencies higher than Q-band in a metalloprotein with an integer spin.  相似文献   

2.
Bovine heart mitochondrial cytochrome c oxidase (cytochrome aa3) (EC 1.9.3.1) has been demonstrated to occur in several forms when the redox centers in the protein are thought to be fully oxidized. We report here the results of extensive EPR studies at 3, 8.9, 9.2, 9.4, 15 and 34 GHz on the resting state, the alternative resting state (with g = 12 at 9 GHz) and pulsed state (with g = 5 signal at 9 GHz). Theoretical consideration is given to all binary spin-coupling possibilities under the constraint that the iron atoms are either ferric or ferrous and the copper atoms are either cupric or cuprous. We conclude that the g = 12 signal can arise from any spin system with S greater than 1 and D = 0.15 cm-1. The g = 5 signals originate from an excited, integer-spin system with D = 0.035 cm-1, which is approximately 7 cm-1 above the ground state (not observed in EPR). It is pointed out that in interpretations of data and elaboration of suitable models in this field, the implications of spin-coupling should be considered in a comprehensive and not in a selective way. At 3 GHz, EPR spectra of CuA in the resting, pulsed and anaerobically oxidized states show that this center is identical in its EPR for all three states.  相似文献   

3.
EPR spectra at 4, 9 and 35 GHz of hydrogenase isolated from Chromatium vinosum have been compared. The spectra at 4 and 35 GHz confirmed our earlier conclusions, made from observations at 9 GHz (Albracht, S.P.J., Kalkman, M.L. and Slater, E.C. (1983) Biochim. Biophys. Acta 724, 309–316), that the irreversibly inactivated enzyme molecules in the preparation give rise to two EPR signals due to the independent non-interacting S = 12 systems of Ni(III) and a |3Fe-xS| cluster. It was observed that intact enzyme molecules show a complex EPR spectrum caused by a spin-coupled pair of Ni(III) and a |4Fe-4S|3+ cluster. The interaction energy is so weak (approx. 0.01 cm?1) that the 35 GHz spectra of both the Ni(III) and the |4Fe-4S|3+ cluster have the appearance of rather normal S = 12 spectra with additional splittings as a result of the spin-spin interaction. At lower microwave frequencies, the spectra become increasingly complex but phenomenologically they behave as expected for an exchange-coupled pair of dissimilar ions. The distance between the two spin systems is estimated to be at the most 1.2 nm. The spin-relaxation rate of the Ni(III) ion is dramatically enhanced as a result of the coupling to the rapidly relaxing Fe-S cluster. The g values and so presumably also the ligand fields of Ni in intact and irreversibly inactivated enzyme molecules are identical. This suggests that the specific coordination of the nickel in the enzyme is not the only requirement for activity with artificial electron donors or acceptors, and that the presence of a nearby, intact |4Fe-4S|3+(3+,2+) cluster might be another essential factor. From the g values and the probable function of Ni in the enzyme we propose, as a working hypothesis, that the nickel ion has five ligands provided by the protein in a square-pyramidal coordination.  相似文献   

4.
We have studied the Fe protein (Av2) of the Azotobacter vinelandii nitrogenase system with M?ssbauer and EPR spectroscopies and magnetic susceptometry. In the oxidized state the protein exhibits M?ssbauer spectra typical of diamagnetic [4Fe-4S]2+ clusters. Addition of Mg.ATP or Mg.ADP causes a pronounced decline in the quadrupole splitting of the M?ssbauer spectra of the oxidized protein. Our studies show that reduced Av2 in the native state is heterogeneous. Approximately half of the molecules contain a [4Fe-4S]1+ cluster with electronic spin S = 1/2 and half contain a [4Fe-4S]1+ cluster with spin S = 3/2. The former yields the characteristic g = 1.94 EPR signal whereas the latter exhibits signals around g = 5. The magnetization of reduced Av2 is dominated by the spin S = 3/2 form of its [4Fe-4S]1+ clusters. These results explain a long standing puzzle, namely why the integrated spin intensity of the g = 1.94 EPR signal is substantially less than 1 spin/4 Fe atoms. In 50% ethylene glycol, 90% of the clusters are in the spin S = 1/2 form whereas, in 0.4 M urea, 85% are in the S = 3/2 form. In 0.4 M urea, the EPR spectrum of reduced Av2 exhibits well defined resonances at g = 5.8 and 5.15, which we assign to the S = 3/2 system. The EPR and M?ssbauer studies yield a zero-field splitting of 2D approximately equal to -5 cm-1 for this S = 3/2 state.  相似文献   

5.
R J Krueger  L M Siegel 《Biochemistry》1982,21(12):2905-2909
Spinach ferredoxin-sulfite reductase (SiR) contains one siroheme and one Fe4S4 center per polypeptide subunit. The heme is entirely in the high-spin Fe3+ state in the oxidized enzyme. When SiR is photochemically reduced with ethylenediaminetetraacetate (EDTA)-deazaflavin, the free enzyme and its CN- and CO complexes show changes in absorption spectra associated with the heme even after the heme has been reduced from the Fe3+ to the Fe2+ state. With CO- or CN--SiR, these spectral changes are associated with the appearance of a classical "g = 1.94" type of EPR spectrum characteristic of reduced Fe4S4 centers. The line shapes and exact g values of the g = 1.94 EPR spectra vary with the nature of the ligand bound to the heme Fe. Photoreduction of free SiR results in production of a novel type of EPR signal, with g = 2.48, 2.34, and 2.08 in the fully reduced enzyme; this signal accounts for 0.6 spin per heme. (A small g = 1.94 type EPR signal, representing 0.2 spin per heme, is also found.) These data suggest the presence of a strong magnetic interaction between the siroheme and Fe4S4 centers in spinach SiR, this interaction giving rise to different EPR signals depending on the spin state of the heme Fe in the reduced enzyme.  相似文献   

6.
Matsukawa T  Mino H  Yoneda D  Kawamori A 《Biochemistry》1999,38(13):4072-4077
The light-induced new EPR signals at g = 12 and 8 were observed in photosystem II (PS II) membranes by parallel polarization EPR. The signals were generated after two flashes of illumination at room temperature, and the signal intensity had four flashes period oscillation, indicating that the signal origin could be ascribed to the S3-state. Successful simulations were obtained assuming S = 1 spin for the values of the zero-field parameters, D = +/-0.435 +/- 0. 005 cm-1 and E/D = -0.317 +/- 0.002. Orientation dependence of the g =12 and 8 signal intensities shows that the axial direction of the zero-field interaction of the manganese cluster is nearly parallel to the membrane normal.  相似文献   

7.
Disagreement has remained about the spin state origin of the g = 4.1 EPR signal observed at X-band (9 GHz) from the S2 oxidation state of the Mn cluster of Photosystem II. In this study, the S2 state of PSII-enriched membrane fragments was examined at Q-band (34 GHz), with special interest in low-field signals. Light-induced signals at g = 3.1 and g = 4.6 were observed. The intensity of the signal at g = 3.1 was enhanced by the presence of F- and suppressed by the presence of 5% ethanol, indicating that it was from the same spin system as the X-band signal at g = 4.1. The Q-band signal at g = 4.6 was also enhanced by F-, but not suppressed by 5% ethanol, making its identity less clear. Although it can be accounted for by the same spin system, other sources for the signal are considered. The observation of the signal at g = 3.1 agrees well with a previous study at 15.5 GHz, in which the X-band g = 4.1 signal was proposed to arise from the middle Kramers doublet of a near rhombic S = 5/2 system. Zero-field splitting values of D = 0.455 cm(-1) and E/D = 0.25 are used to simulate the spectra.  相似文献   

8.
The relaxation behavior of the EPR signals of MoV, FAD semiquinone, and the reduced Fe/S I center was measured in the presence and absence of other paramagnetic centers in milk xanthine oxidase. Specific pairs of prosthetic groups were rendered paramagnetic by poising the native enzyme or its desulfo glycol inhibited derivative at appropriate potentials and pH values. Magnetic interactions were found between the following species: Mo--Fe/S I (100-fold increase in microwave power required to saturate the MoV EPR signal at 103 K when Fe/S I is reduced as opposed to oxidized), FAD--Fe/S I and FAD--Fe/S II (70-fold increase in power required to saturate the FADH.EPR signal at 173 K when either Fe/S center is reduced), and Fe/S I--Fe/S II (2.5-fold increase in power to saturate the reduced Fe/S I EPR signal at 20 K when Fe/S II is reduced). The Mo--Fe/S I interaction was also detected as a reduced Fe/S I induced splitting of the MoV EPR spectrum at 30 K. No splittings of the FADH. or Fe/S center spectra were detected. No magnetic interactions were found between FAD and Mo or between Mo and Fe/S II. These results, together with those of Coffman & Buettner [Coffman, R. E., & Buettner, G. R. (1979) J. Phys. Chem. 83, 2392-2400], were used to estimate the following approximate distances between the electron carrying prosthetic groups of milk xamthine oxidase: Mo--Fe/S I, 11 +/- 3 A; Fe/S I-Fe/S II, 15 +/- 4 A; FAD-Fe/S I, 16 +/- 4 A; FAD-Fe/S II, 16 +/- 4 A. A model for the arrangement of these groups within the xanthine oxidase molecule is suggested.  相似文献   

9.
Photosystem I particles from spinach were reduced by illumination at 77 K. Under these conditions the one-electron transfer from P-700 resulted in a reduction of only one acceptor molecule of the reaction centre. The EPR signals at g = 2.05, 1.94 and 1.86 were attributed to reduced centre A and the smaller signals at g = 2.07, 1.92 and 1.89 to reduced centre B. Reduction of both centres by dithionite in the dark lead to signals at g = 2.05, 1.99, 1.96, 1.94, 1.92 and 1.89. Thus, the features at g = 2.07 and 1.86 disappeared and new signals at g = 1.99 and 1.96 were observed. From the spectral changes it followed that the iron-sulphur centres A and B interact magnetically. Temperature dependent EPR spectra demonstrated a faster electron spin relaxation of centre A than of centre B.

These conclusions were corroborated using microwave power saturation of the respective EPR signals. The saturation data of the fully reduced centres A and B could not be fitted using the saturation equation for a one-electron spin system. The magnetic interaction between the [4Fe-4S] centres of the electron acceptors A and B resulted in saturation properties which are similar to those of the 2[4Fe-4S] ferredoxin from Clostridium pasteurianum.

For centre X a high proportion of homogeneous broadening of the EPR lines was inferred from the inhomogeneity parameter (b = 1.83). It was, therefore, concluded that centre X is most probably an anion radical of chlorophyll. From the low temperature necessary for observing the EPR signal of centre X followed that the drastic relaxation enhancement has to be attributed to a magnetic interaction of the anion radical with iron.  相似文献   


10.
EPR spectroscopy employs a resonator operating at a single microwave frequency and phase-sensitive detection using modulation of the magnetic field. The X-band spectrometer is the general standard with a frequency in the 9–10 GHz range. Most (bio)molecular EPR spectra are determined by a combination of the frequency-dependent electronic Zeeman interaction and a number of frequency-independent interactions, notably, electron spin – nuclear spin interactions and electron spin – electron spin interactions, and unambiguous analysis requires data collection at different frequencies. Extant and long-standing practice is to use a different spectrometer for each frequency. We explore the alternative of replacing the narrow-band source plus single-mode resonator with a continuously tunable microwave source plus a non-resonant coaxial transmission cell in an unmodulated external field. Our source is an arbitrary wave digital signal generator producing an amplitude-modulated sinusoidal microwave in combination with a broadband amplifier for 0.8–2.7 GHz. Theory is developed for coaxial transmission with EPR detection as a function of cell dimensions and materials. We explore examples of a doublet system, a high-spin system, and an integer-spin system. Long, straigth, helical, and helico-toroidal cells are developed and tested with dilute aqueous solutions of spin label hydroxy-tempo. A detection limit of circa 5 µM HO-tempo in water at 800 MHz is obtained for the present setup, and possibilities for future improvement are discussed.  相似文献   

11.
Photosystem I particles from spinach were reduced by illumination at 77 K. Under these conditions the one-electrom transfer from P-700 resulted in a reduction of only one acceptor molecule of the reaction centre. The EPR signals at g=2.05, 1.94 and 1.86 were attributed to reduced centre A and the smaller signals at g=2.07, 1.92 and 1.89 to reduced centre B. Reduction of both centres by dithionite in the dark lead to signals at g=2.05, 1.99, 1.96, 1.94, 1.92 and 1.89. Thus, the features at g=2.07 and 1.86 disappeared and new signals at g=1.99 and 1.96 were observed. From the spectral changes it followed that the iron-sulphur centres A and B interact magnetically. Temperature dependent EPR spectra demonstrated a faster electron spin relaxation of centre A than of centre B. These conclusions were corroborated using microwave power saturation of the respective EPR signals. The saturation data of the fully reduced centres A and B could not be fitted using the saturation equation for a one-electron spin system. The magnetic interaction between the (4Fe-4S) CENTRes of the electron acceptors A and B resulted in saturation properties which are simular to those of the 2(4Fe-4S) ferredoxin from Clostridium pasteurianum. For centre X a high proportion of homogeneous broadening of the EPR lines was inferred from the inhomogeneity parameter (b=1.83). It was, therefore, concluded that centre X is most probably an anion radical of chlorophyll. From the low temperature necessary for observing the EPR signal of centre X followed that the drastic relaxation enhancement has to be attributed to a magnetic interaction of the anion radical with iron.  相似文献   

12.
The dependence on temperature in the range between 4.2 K and 20 K was measured for the EPR signal of monovalent nickel in H2-reduced hydrogenase from Chromatium vinosum and from Methanobacterium thermoautotrophicum. In accordance with measurements on the hydrogenase from Desulfovibrio gigas [Teixeira, M., Moura, I., Xavier, A. V., Huynh, B. H., DerVartanian, D. V., Peck, H. D., Jr, LeGall, J. and Moura, J. J. G. (1985) J. Biol. Chem. 260, 8942-8950; and Cammack, R., Patil, D. S. and Fernandez, V. M. (1985) Biochem. Soc. Trans. 13, 572-578], the enzyme from C. vinosum showed a distinct transformation of the EPR signal of nickel in this temperature region. The light sensitivity did not change. EPR spectra recorded at 9 GHz and at 35 GHz showed that the transformation of the spectrum at 4.2 K is caused by spin coupling to an unknown paramagnet. No coupling was apparent at temperatures above 20 K. At 4.2 K, additional, very broad signals in the region g= 1.2-3, as well as a signal around g = 5, were detected In the enzyme from C. Vinosum, both in the H2-reduced state and in the Ar-reoxidised state. The possible origin of the paramagnetic species responsible for these signals is discussed. The EPR signal of monovalent nickel in the enzyme from M. thermoautotrophicum showed no significant changes in line shape between 4.2 K and 70 K, nor were any additional signals detected. This suggests that in the reduced form of this enzyme similar paramagnetic species might be absent or not reduced.  相似文献   

13.
Low-temperature EPR spectroscopy with frequencies between 95 and 345 GHz and magnetic fields up to 12 T has been used to study metal sites in proteins or inorganic complexes and free radicals. The high-field EPR method was used to resolve g-value anisotropy by separating it from overlapping hyperfine couplings. The presence of hydrogen bonding interactions to the tyrosyl radical oxygens in ribonucleotide reductases were detected. At 285 GHz the g-value anisotropy from the rhombic type 2 Cu(II) signal in the enzyme laccase has its g-value anisotropy clearly resolved from slightly different overlapping axial species. Simple metal site systems with S>1/2 undergo a zero-field splitting, which can be described by the spin Hamiltonian. From high-frequency EPR, the D values that are small compared to the frequency (high-field limit) can be determined directly by measuring the distance of the outermost signal to the center of the spectrum, which corresponds to (2 S-1)* mid R: Dmid R: For example, D values of 0.8 and 0.3 cm(-1) are observed for S=5/2 Fe(III)-EDTA and transferrin, respectively. When D values are larger compared to the frequency and in the case of half-integer spin systems, they can be obtained from the frequency dependence of the shifts of g(eff), as observed for myoglobin in the presence ( D=5 cm(-1)) or absence ( D=9.5 cm(-1)) of fluoride. The 285 and 345 GHz spectra of the Fe(II)-NO-EDTA complex show that it is best described as a S=3/2 system with D=11.5 cm(-1), E=0.1 cm(-1), and g(x)= g(y)= g(z)=2.0. Finally, the effects of HF-EPR on X-band EPR silent states and weak magnetic interactions are demonstrated.  相似文献   

14.
Boussac A  Sugiura M  Inoue Y  Rutherford AW 《Biochemistry》2000,39(45):13788-13799
The Mn(4)-cluster and the cytochrome c(550) in histidine-tagged photosystem II (PSII) from Synechococcus elongatus were studied using electron paramagnetic resonance (EPR) spectroscopy. The EPR signals associated with the S(0)-state (spin = 1/2) and the S(2)-state (spin = 1/2 and IR-induced spin = 5/2 state) were essentially identical to those detected in the non-His-tagged strain. The EPR signals from the S(3)-state, not previously reported in cyanobacteria, were detectable both using perpendicular (at g = 10) and parallel (at g = 14) polarization EPR, and these signals are similar to those found in plant PSII. In the S(3)-state, near-infrared illumination at 50 K induced a 176-G-wide split signal at g = 2 and signals at g = 5.20 and g = 1.51. These signals differ slightly from those reported in plant PSII [Ioannidis, N., and Petrouleas, V. (2000) Biochemistry 39, 5246-5254]. In accordance with the cited work, the split signal presumably reflects a radical interacting with the Mn(4)-cluster in a fraction of centers, while the g = 5.20 and g = 1.51 signals are tentatively attributed to a high-spin state of the Mn(4)-cluster with zero field splitting parameters different from those in plant PSII, reflecting minor changes in the environment of the Mn(4)-cluster. Biochemical modifications (Sr(2+)/Ca(2+) substitution, acetate and NH(3) treatments) were also investigated. In Sr(2+)-reconstituted PSII, in addition to the expected modified S(2) multiline signal, a signal at g = 5.2 was present instead of the g approximately 4 signal seen in plant PSII. In NH(3)-treated samples, in addition to the expected modified S(2)-multiline signal, a g approximately 4 signal was detected in a small proportion of the reaction centers. This is of note since g approximately 4 spectra arising from the Mn(4)-cluster in the S(2) state have not yet been published in cyanobacterial PSII. The detection of modified S(3)-signals in both perpendicular (at g = 7.5) and parallel (at g = 12) polarization EPR from NH(3)-treated PSII indicate that NH(3) is still bound in the S(3)-state. The acetate-treated PSII behaves essentially as in plant PSII. A study using oriented samples indicated that the heme plane of the oxidized low spin Cytc(550) was perpendicular to the plane of the membrane.  相似文献   

15.
Reduced photosystem I samples, which give the electron paramagnetic resonance (EPR) signals associated with A, A and B, and A, B and X centres, have been studied using M?ssbauer spectroscopy. The M?ssbauer spectra obtained from each type of sample is different, which indicates that iron is associated with all three centres. The spectra are similar to those obtained from ferredoxins with 4Fe-4S centres and were fitted with oxidized and reduced components, the relative proportions depending on the degree of reduction of the sample as monitored by EPR. The sample which gave only the A EPR signal showed about 26% of the reduced component, the sample which gave A and B EPR signals showed about 48% of the reduced component, while the sample which gave A, B and X EPR signals showed about 65% of the reduced component. The measurements are consistent with X being a 4Fe-S4 centre.  相似文献   

16.
Nitrous oxide reductase from Wolinella succinogenes, an enzyme containing one heme c and four Cu atoms/subunit of Mr = 88,000, was studied by electron paramagnetic resonance (EPR) at 9.2 GHz from 6 to 80 K. In the oxidized state, low spin ferric cytochrome c was observed with gz = 3.10 and an axial Cu resonance was observed with g parallel = 2.17 and g perpendicular = 2.035. No signals were detected at g values greater than 3.10. For the Cu resonance, six hyperfine lines each were observed in the g parallel and g perpendicular regions with average separations of 45.2 and 26.2 gauss, respectively. The hyperfine components are attributed to Cu(I)-Cu(II) S = 1/2 (half-met) centers. Reduction of the enzyme with dithionite caused signals attributable to heme c and Cu to disappear; exposure of that sample to N2O for a few min caused the reappearance of the g = 3.10 component and a new Cu signal with g parallel = 2.17 and g perpendicular = 2.055 that lacked the simple hyperfine components attributed to a single species of half-met center. The enzyme lost no activity as the result of this cycle of reduction and reoxidation. EPR provided no evidence for a Cu-heme interaction. The EPR detectable Cu in the oxidized and reoxidized forms of the enzyme comprised about 23 and 20% of the total Cu, respectively, or about one spin/subunit. The enzyme offers the first example of a nitrous oxide reductase which can have two states of high activity that present very different EPR spectra of Cu. These two states may represent enzyme in two different stages of the catalytic cycle.  相似文献   

17.
The radical intermediate of pyruvate:ferredoxin oxidoreductase (PFOR) from Moorella thermoacetica was characterized using electron paramagnetic resonance (EPR) spectroscopy at X-band and D-band microwave frequencies. EPR spectra, obtained with various combinations of isotopically labeled substrate (pyruvate) and coenzyme (thiamine pyrophosphate (TPP)), were analyzed by spectral simulations. Parameters obtained from the simulations were compared with those predicted from electronic structure calculations on various radical structures. The g-values and 14N/15N-hyperfine splittings obtained from the spectra are consistent with a planar, hydroxyethylidene-thiamine pyrophosphate (HE-TPP) pi-radical, in which spin is delocalized onto the thiazolium sulfur and nitrogen atoms. The 1H-hyperfine splittings from the methyl group of pyruvate and the 13C-hyperfine splittings from C2 of both pyruvate and TPP are consistent with a model in which the pyruvate-derived oxygen atom of the HE-TPP radical forms a hydrogen bond. The hyperfine splitting constants and g-values are not compatible with those predicted for a nonplanar, sigma/n-type cation radical.  相似文献   

18.
S-State-dependent split EPR signals that are induced by illumination at cryogenic temperatures (5 K) have been measured in spinach photosystem II without interference from the Y(D)* radical in the g approximately 2 region. This allows us to present the first decay-associated spectra for the split signals, which originate from the CaMn4 cluster in magnetic interaction with a nearby radical, presumably Y(Z)*. The three split EPR signals that were investigated, "Split S1", "Split S3", and Split S0", all exhibit spectral features at g approximately 2.0 together with surrounding characteristic peaks and troughs. From microwave relaxation studies we can reach conclusions about which parts of the complex spectra belong together. Our analysis strongly indicates that the wings and the middle part of the split spectrum are parts of the same signal, since their decay kinetics in the dark at 5 K and microwave relaxation behavior are indistinguishable. In addition, our decay-associated spectra indicate that the g approximately 2.0 part of the "Split S1" EPR spectrum contains a contribution from magnetically uncoupled Y(Z)* as judged from the g value and 22 G line width of the EPR signal. The g value, 2.0033-2.0040, suggests that the oxidation of Y(Z) at 5 K results in a partially protonated radical. Irrespective of the S state, a small amount of a carotenoid or chlorophyll radical was formed by the illumination. However, this had relaxation and decay characteristics that clearly distinguish this radical from the split signal spectra. In this paper, we present the "clean" spectra from the low-temperature illumination-induced split EPR signals from higher plants, which will provide the basis for further simulation studies.  相似文献   

19.
We describe two new characteristics of the EPR of the seven-iron containing ferredoxin from Thermus thermophilus. First, the reduced state of the 3Fe center, which has traditionally been considered to be EPR-silent, has been found to exhibit a delta m = 4 transition, which is unique for Fe-S centers. This signal is similar to that of high-spin Fe2+-EDTA and supports the suggestion that the ground electronic state of the 3Fe cluster is S = 2. Second, we have recorded the EPR spectrum of the fully reduced protein at 9 and 15 GHz and found that changes occur in the signal which are consistent with a weak electronic spin-spin interaction between the [4Fe-4S]+ (S = 1/2) and the reduced 3Fe center. A theoretical explanation is given for the observation of interaction signals with constant effective g values.  相似文献   

20.
Paramagnetic transition metal centers and organic radicals in liver from wild-type carp (Cyprinus carpio) were characterized by electron paramagnetic resonance (EPR) spectroscopy. Approximately twelve EPR signals were observed at 77 K with resonance positions between g=1.8 and g=2.5. Identification was facilitated by a study of the variation in signal intensity with microwave power (microwave power saturation) for each signal. Many were organic radical or iron signals from typical liver enzymes, including cytochrome P450, coenzyme Q10, NADH dehydrogenase, and succinate dehydrogenase, cytochrome c oxidase and/or catalase. Of special interest were two signals that are not normally found in mammalian liver. The first was a six-line signal from divalent manganese, which was evident in the spectra in quantities suggestive of a functional role. The second was probably a signal from nitrosylated non-heme iron and may be related to the presence of nitrogen-containing compounds produced by nitrifying bacteria in the aquatic environment. These notable differences between the EPR spectra of fish and mammalian liver suggest major metabolic differences between the two systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号