首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence ofH-2 subregions on graft survival in a liver slice-tokidney bed grafting system has been investigated.H-2K-region andH-2IA-region donor-recipient differences, either individually or in concert, cause acute graft rejection.H-2D-region donor-recipient differences cause chronic immunological reaction as evaluated by histological criteria. Grafts across this barrier may ultimately be rejected or may survive indefinitely. Several possible explanations for the variation in survival are proposed. The remaining knownH-2 regions (IB, IC, S, andG) all appear to cause immunological reactivity in a recipient animal which differs from the liver tissue donor at any of these regions. However, only anIC-region difference may ultimately cause complete graft destruction following an extended chronic immunological course. Grafts across background histocompatibility barriers of several genetic types show rejection patterns equivalent to those seen acrossK andIA barriers. These patterns are unchanged, whether or not the donor and recipient are congenic forH-2 alleles. DifferentH-2 allelic donor-recipient differences do, however, show different times of survival, indicating variation in strength or number of donor antigens or differences in recipient immune response.  相似文献   

2.
A tissue slice-to-kidney bed grafting system is used to study the mechanism of specific tissue rejection (in this case, rejection of liver tissue) over a series of histocompatibility barriers other than the H-2 barrier. Using the method described, it is possible to obtain a pattern or time-course picture of the immunological process, rather than a mean survival time. It is clear from histological observations of these patterns that, although there are considerable differences in numbers of liver grafts which survive for long period's across the several histocompatibility barriers studied, some grafts in almost every case survive the immunological challenge elicited by the genetic barriers. Grafts of liver tissue are therefore similar, but not identical, in survival patterns to grafts of tumor, ovary, and skin. These studies also indicate that immunological mechanisms controlling rejection of tissue over H barriers other than H-2 differ from those controlling rejection over the major histocompatibility barrier in the mouse.  相似文献   

3.
Neonatal transplantation tolerance to the products of theH-2 b complex was induced in B10.A (H-2 a ) mice. On the basis of the survival of skin allografts it was found that antigens determined by theD region of theH-2 b complex (of the B10.A(2R) strain) were most easily overcome and that tolerance to the products of theD end of theH-2 complex (of the B10.A(4R) strain) was also easy to induce. The antigens produced by theK end ofH-2 (of the B10.A(5R) and B10.A(3R) strains) represented a stronger incompatibility barrier and a difference in the entireH-2 b complex caused strongest resistance to tolerance induction. When tolerance to the products of the entireH-2 b complex was induced in newborn B10.A mice, and the neonatally treated animals were grafted simultaneously with five different grafts, those disparate at theK end ofH-2 and in the entireH-2 region were rejected in some animals, while the grafts disparate at theD end of H-2 remained intact in the same mice. No dependence on theI-J subregion was observed in this system. Furthermore, tolerance was more easily inducible in male than in female B10.A mice.  相似文献   

4.
Neonatal mouse heart fragments were grafted under the ear skin of adult recipients. Cardiac allograft survival was evaluated by visual observation of pulsation, electrocardiography, and histology. Employing a series of congenic resistant strains differing from C57BL/10Sn at theH-1, H-3,H-4, H-7, H-8, H-9, H-10, H-11, andH-12 loci, the median survival times of the heart grafts to and from C57BL/10Sn were obtained. The various interallelic combinations resulted in a wide variation of graft survival. Reciprocal transplants frequently showed different survival times.H-1 c grafts were rejected by B10.129(5M)/nSn female mice with a median survival time of 90 days.H-1 b grafts were not rejected by C57BL/10Sn mice for the experiment's duration of 200 days. The weaker the histocompatibility barrier, the more variable the survival times and the smaller the ratio of rejected to total grafted heart fragments. Female recipients were observed to reject their grafts more rapidly and to reject a higher proportion than males of the same strain. Although the strength of the different non-H-2 barriers generally paralleled that determined by skin transplants, the rankings of the strongest minor barriers were not the same for both tissues.  相似文献   

5.
The line B6.M505 is congenic with C57BL/6JY and carries a mutant form of theH-2 b haplotype designatedH-2 bd . The mutant site 505 was located by the F1 tests in theK end of theH-2 gene complex. The M505 mice are histoincompatible with the B6.C(Hz1) line (haplotypeH-2 ba ) carrying another mutation in theK end ofH-2 b . Inability of M505 to complement Hz1 in tests with B6 skin grafting is considered as an evidence that the same gene was altered by both mutations. The gained H antigens of two mutants can cross-react in vivo as revealed by accelerated rejection of Hz1 skin grafts by B6 recipients presensitized with M505 spleen cells. The lost antigenic determinants are not identical as shown by accelerated rejection of B6 skin grafts by Hz1 hosts preimmunized with M505 spleen cells. Absorptions of the antiserum ASY-015, (d×a) anti-i, anti-H-2.33 with M505 spleen cells did not clear forH-2 i ,H-2 b andH-2 ba , and absorptions with Hz1 did not clear forH-2 i ,H-2 b , andH-2 bd . These results show that changes of histocompatibility determinants may be accompanied by loss of some haptenic determinants in the Hz1 and M505 mutations.  相似文献   

6.
Lymph-node cells fromH-2 allogeneic, intra-H-2 recombinant andH-2 mutant congenic strains were sensitized in limiting dilution cultures to quantitate the cytotoxic T-lymphocyte precursor frequencies (CTL.Pf) against antigens encoded by different regions of theH-2 complex. When fourH-2K b mutants of C57BL/6 (B6) were tested, we observed anti-B6 CTL.Pf that were as high or higher than those of recombinant strains which differ from B6 at theK end of theH-2 complex. Relative to strains completelyH–2 allogeneic to B6, the CTL.Pf inH-2 bm1,H-2 bm3 andH-2 bm5 averaged 40–50 percent, andH-2 bm8 averaged 140 percent. Recombinant strains B10.A (4R) and B10.D2 (R103), which differ from B6 at theK end of theH-2 complex, averaged 60 percent of the completelyH-2 allogeneic value. Since the mutant and wild-type gene products have no serological and minimal structural differences relative to other alleles atH-2K, these results indicate that the CTL.Pf does not increase with increasing H-2 antigenic disparity between any two strains. Rather, the data suggests that the T-cell receptor repertoire recognizes those H-2 molecules or determinants closest to self.  相似文献   

7.
The genetic control of the immune response to H-4 histocompatibility alloantigens is described. The rejection of H-4.2-incompatible skin grafts is regulated by anH-2-linkedIr gene. Fast responsiveness is determined by a dominant allele at theIrH-4.2 locus. TheH-2 b ,H-2 d , andH-2 s haplotypes share the fast response allele;H-2 a has the slow response allele. Through the use of intra-H-2 recombinants, we have mapped theIrH-4.2 locus to theI-B subregion of theH-2 complex; theH-2 h4 ,H-2 15, andH-2 t4 haplotypes are fast responder haplotypes. These observations suggest that the strength of non-H-2 histocompatibility antigens is ultimately determined by the antigen-specific recipient responsiveness.  相似文献   

8.
Rejection of tailskin grafts exchanged between two male hybrids of the cross B10.M × B10.RIII(71NS) revealed a mutation in theH-2 f haplotype from the B10.M congenic line. Complementation studies with skin grafting and cell-mediated lympholysis showed the mutant, namedH-2 fb , to be different from anotherH-2 f mutant,H-2 fa , and further, that the HH-2 fb mutation occurred in theD end of theH-2 complex. Reciprocal skin grafts exchanged between mutant and normal mice were rejected. Hemagglutinating antibody reactive with B10.M cells was raised in the mutant mice. Mutant spleen cells responded weakly, but significantly, to wild-type cells in a mixed lymphocyte culture and in a graftversus-host assay, but no response was seen in the opposite direction. However, cytotoxic effector cells were generated against target cells in both directions in a cell-mediated lympholysis assay.  相似文献   

9.
The genetic control of delayed-type hypersensitivity in mice was investigated by contact sensitization with picryl chloride. Distribution patterns of contact sensitivity in 11 inbred strains of mice showed significant differences among strains. Comparison of levels of response between congenic-resistant lines and their inbred partners, at 9 to 11 weeks of age, revealed a clear association betweenH-2 haplotype and the magnitude of response. Testing ofH-2 recombinants further suggested the influence of two genes mapping at either end of theH-2 complex. While theH-2K d andH-2D k alleles were associated with a high response, theH-2K k ,H-2K b ,H-2D d , andH-2D b alleles were associated with a low response. Analysis of the ontogeny of response suggested that theH-2 haplotype manifests its effect through the maturation of contact sensitivity. On both the C57BL/6By and C57BL/10Sn backgrounds, theH-2 d haplotype was associated with early maturation of response, while theH-2 b haplotype was associated with late maturation. Analysis of the response of congenic lines with different genetic backgrounds and of CXB recombinant-inbred lines further revealed the marked effects of yet other genes on this trait.  相似文献   

10.
Genes of the major histocompatibility complex (MHC) in the mouse (H-2 complex) have been shown to be an important factor in determining the immune responsiveness of various strains of mice to isolated antigens (e. g., lysozyme). The role of MHC genes in controlling the responsiveness of mice to multiple alloantigens is less well-defined, and although non-MHC genes have been shown to be important in determining responsiveness in some systems (e. g., haptens), they have not been demonstrated as yet to influence the rejection of vascularized organ allografts. In this study, the responsiveness of mice to vascularized cardiac allografts transplanted across well-defined major (H-2) and minor (non-H-2) histocompatibility barriers was investigated using congenic mice in 32 different donor/recipient combinations. The results show that both H-2 and non-H-2 gene products can act as target alloantigens for rejection. At the responder level, they may interact to effect responsiveness of a recipient strain to multiple alloantigens. In no case in this study has any one gene or group of genes been found to confer universal high or low responder status.  相似文献   

11.
We investigated the genetic control of heterotopic heart allograft rejection using a family of standard inbred, major histocompatibility complex (MHC)-congenic, and intra-MHC recombinant rat strains. Gene products of the various regions within the rat MHC differed markedly in their capacity to induce rejection. Isolated incompatibility at class I antigens encoded by theRT1. A andRT1. C regions failed to induce rejection within the observation period of 100 days, whereas class II antigens encoded by theRT1.B/D region provoked rapid rejection within 10 days. By comparison of the rejection times of isolated and combined incompatibilities a number of functional interactions could be demonstrated between individual MHC regions which either prolonged or shortened allograft survival. In contrast to rapid rejection of MHC-mismatched heart allografts, differences at non-MHC histocompatibility antigens were associated with graft survival beyond 100 days, although chronic rejection of variable severity was detected histologically. Disparity at non-MHC plus class I antigens, however, provoked acute heart allograft rejection.  相似文献   

12.
Skin graft rejection in congenic pairs of mice differing only at theH-2 complex appears to be influenced by at least 3 genes (H-2K, H-2D, H-2I); we now describe a fourth,H- 2IC: Grafts transplanted across anIC difference are sometimes rejected. TheI-C regions of three differentH-2 haplotypes (d,k,s) were studied in different combinations, and variable patterns emerged: (a)IC d : B10.S(7R) show delayed or no rejection of first B10.S(9R) grafts, but grafts to immunized recipients were usually rejected in 20 days; (b)IC k : in two combinations (A.AL A and B10.HTT B10.S[9R]) first grafts were rejected by day 30, although grafts to immunized mice showed a different pattern. In the third combination (B10.HTTB10.S[7R]) first grafts were retained but immunized mice rejected their grafts, (c)IC s : B10.S(9R) regularly reject B10.S(7R) first grafts, but immunized mice retain their grafts. In two other combinations first grafts were retained but grafts to immunized recipients were rejected; while in a third combination rejection did not occur at all. The background of the recipient appeared to be important in determining the variable pattern of rejection, and there is evidence for a similarity of the H-genes inIC s andIC k , and inIC k andIC p . Graft rejection occurred independently of known differences in Ia specificities, indicating thatH-2IC and the genes determining Ia specificities are probably different, although when grafts were performed in the presence of known la differences, graft rejection usually occurred.  相似文献   

13.
Genetically anemicW/W v mice were cured by marrow allografts from donors of 13 out of 18 tested strains that differed at non-H-2 histocompatibility alleles defined by skin or tumor grafting. They were also cured by donors from all four tested congenic lines whose antigenic differences had been defined by induction of serum antibodies. They were not cured acrossH-2 differences. Tail skin graft survival times on uncuredW/W v recipients were determined for all congenic lines used as marrow donors. The longest and shortest skin graft survival times predicted correctly marrow graft success or failure. NoW/W v mice were cured by marrow grafts from donors of the three congenic lines whose skin grafts were rejected in fewer than three weeks. Almost everyW/W v mouse grafted was cured by marrow grafts from donors of the 13 congenic lines whose skin grafts survived longest, from 11 to more than 25 weeks. Intermediate skin graft survival times failed to predict whether marrow grafts would succeed.W/W v mice were cured by marrow from four congenic lines with mean skin graft survival times of 4.2, 4.4, 8, and 9 weeks, while marrow grafts failed from other congenic lines with mean skin graft survival times of 3.3, 3.4, 4.8, and 8.7 weeks. The simplest explanation for these results is that the antigens specified by theH-2, H-3, H-4, H-25, andH-28 loci are strongly immunogenic on both marrow precursor cells and skin,H-17 andH-24 are strongly immunogenic on skin but not on marrow, andH-12 is strongly immunogenic on marrow precursor cells but less strongly on skin.  相似文献   

14.
Embryoid bodies (ascites tumor) from a 129/Sv transplantable teratocarcinoma produce tumors (100%) in syngenic 129/Sv mice but fail to form tumors (3–6%) in BALB/c mice, C3H/He mice and C57BL/6 mice, in spite of the fact that the malignant stem cells of this tumor do not express detectable H-2 antigens. The available evidence indicates that this allogeneic tumor restriction has an immunological basis; 100% of the F1 hybrid mice between 129/Sv and the three other inbred mouse strains accept the 129/Sv teratocarcinoma. The backcross and F2 mice segregate the BALB/c, C3H/He and C57BL/6 tumor transplantation rejection loci in a manner that indicates that each of these inbred strains of mice contain one to two major transplantation rejection loci. A linkage analysis in the BALB/c and C3H/He backcross and F2 generations indicates that these mice have a teratocarcinoma transplantation rejection locus on chromosome 17, about eight to nine recombination units from theH- 2 complex. An F1 complementation analysis between allogeneic mice that each reject teratocarcinomas tumors (BALB/c × C57BL/6 and C3H/He × C57BL/6), indicates that the C57BL/6 mice have the 129/Sv tumor-accepting (sensitive) allele at theH-2-linked locus but reject teratocarcinomas because of antigenic differences at a second locus.While these major teratocarcinoma transplantation rejection loci determine the acceptance or rejection of a tumor by a mouse injected with high doses of tumor tissue (750 g of tumor protein), evidence is presented for a number of minor genetic factors that can (1) affect the efficiency of tumor rejection and (2) cause complete tumor rejection at lower tumor doses (7.5–75 g of tumor protein).  相似文献   

15.
A newH-2 mutation was found in a mouse belonging to CBA/CaLacSto (H-2 k ) strain and designated 523, the proposed haplotype symbol for which isH-2 ka . The line CBA.M523 carries this mutation and is fully congenic with the parental strain, except for the mutant site 523. The mutation 523 is located within theK- end of theH-2 gene complex. Phenotypically, it causes prompt skin graft rejection and pronounced graft-versus-host activity in strain combination CBA/Sto⇄C-BA.M523. Attempts to produce active alloantisera in the same strain combination have so far been unsuccessful.  相似文献   

16.
A.TH (H-2 t2) anti-A.TL (H-2 t1) effectors, obtained after in vitro restimulation of in vivo sensitized cells, react in the CML assay not only withH-2 t1, but also with a number of other targets carrying unrelatedH-2 haplotypes. The broad cross-reactivity can be explained by postulating the presence among the effectors of at least two populations of cells, one reacting with antigens controlled by theI region, and the other directed against antigens controlled by a locus at theD end, outside theH-2 complex. The existence of the two cell populations is also supported by cold-target inhibition data. The locus coding for the D-end CML antigens maps betweenQa-2 andTla. The locus is assigned the symbolH-2T. TheH-2T-locus CML is seen only after in vivo presensitization, but the killing is not K/D-restricted.  相似文献   

17.
H(KH-11) is a mouse mutant histocompatibility gene, the expression of which, as detected by skin graft rejection, requires the presence of a second gene in the graft donor which is associated with theH-2 b haplotype, but not withH-2 d. The mutant gene is not linked to theH-2 complex and may be carried and transmitted with or without expression, as predicted by classical Mendelian genetics.This research was supported by Grants CA 12662 and GM 18421 from the National Institutes of Health. We wish to express our gratitude to Dr. Ian McKenzie for performing the serological typing and to Ms. Geraldine Spencer and Mr. Ernest White for their faithful technical assistance.  相似文献   

18.
(AQR×B10)F1 mice were grafted with skin from donors differing in theK, I, KI, andISD regions of theH-2 complex. A dichotomy was observed in the fate of theH-2I-disparate grafts: either they were rejected acutely within the second week or were accepted indefinitely. Acceptances were much more common among male than female hosts. Acceptor status was limited to the I group, was unpredictable in occurrence, was not well-correlated with positive serum anti-Ia titers, and did not confer protection of grafts that were alike atH-2I but different atH-2K orH-2D. Since theH-2I barrier studied here elicited such divergent responses in genetically identical hosts, it is unlikely that any histocompatibility typing test could predict graft fate.Abbreviations used in this paper are MST median survival time - MHC major histocompatibility complex - CTL cytotoxic T lymphocyte - B10 C57 BL/10 - 6R BIO.T(6R) - B10.A BIO. ASn - H-2-Ia serologically detected antigens coded in theI region ofH-2 This term is used in preference toIa, since it has recently been shown that Ia-like alloantigens may be coded outside the MHC (Dickleret al. 1975).  相似文献   

19.
The strength of the H-Y antigen on thymus cells and on skin was compared in differentH-2-congenic mouse strains using a host-versus-graft reaction popliteal lymph node assay, and skin grafts from males of parental strains grafted to F1 hybrid females. The results revealed considerable differences in the strength of the H-Y antigen among different congenic strains; these differences demonstrate the effect of theH-2-linked gene on the expression of the H-Y antigen. The linkage withH-2 was also confirmed in tests with segregating F2 generations. In the strains bearing recombinantH-2 haplotypes, the strength of the H-Y antigen is similar to that of parental strain from which the recombinant received itsK end, and the responsible gene (or genes) map to the left ofI-C. The effect of theH-2-linked gene(s) on thymus cells and skin is different. The gene linked to theK end ofH- 2b determines a strong H-Y antigen on thymus cells, but a relatively weak H-Y antigen on skin. The gene linked to theK end ofH- 2k determines a weak H-Y antigen on thymus cells, but a strong H-Y antigen on skin. The gene linked to theK end ofH- 2d determines a weak H-Y antigen on both thymus cells and skin. Our observations raise the possibility that the structural gene for the H-Y antigen is linked toH-2. Alternative (but not exclusive) explanations invoke regulatory effects ofH-2 on the expression of the H-Y antigen, possibly by means of the control of the cellular andogen receptors.  相似文献   

20.
Skin grafts transplanted from B10.HTT donors onto (A.TL × B10)F1 recipients are rapidly rejected despite the fact that the B10.HTT and A.TL strains should be carrying the sameH-2 chromosomes and that both the donor and the recipient contain the B10 genome. The rejection is accompanied by a production of cytotoxic antibodies against antigens controlled by theIr region of theH-2 complex. These unexpected findings are interpreted as evidence for a third histocompatibility locus in theH-2 complex,H-2I, located in theIr region close toH-2K. The B10.HTT and A.TL strains are postulated to differ at this hypothetical locus, and the difference between the two strains is explained as resulting from a crossing over between theH-2 t1 andH-2 s chromosomes in the early history of the B10.HTT strain. TheH-2 genotypes of the B10.HTT and A.TL strains are assumed to beH-2K s Ir s / k Ss k H-2D d andH-2K s Ir k Ss k H-2D d , respectively. Thus, theH-2 chromosomes of the two strains differ only in a portion of theIr region, including theH-2I locus. The B10.HTT(H-2 tt) and B10.S(7R)(H-2 th) strains differ in a relatively minor histocompatibility locus, possibly residing in theTla region outside of theH-2 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号