首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various strategies involving the use of hepatitis C virus (HCV) E1 and E2 envelope glycoproteins as immunogens have been developed for prophylactic vaccination against HCV. However, the ideal mode of processing and presenting these immunogens for effective vaccination has yet to be determined. We used our recently described vaccine candidate based on full-length HCV E1 or E2 glycoproteins fused to the heterologous hepatitis B virus S envelope protein to compare the use of the E1 and E2 proteins as separate immunogens with their use as the E1E2 heterodimer, in terms of immunogenetic potential and the capacity to induce neutralizing antibodies. The specific anti-E1 and anti-E2 antibody responses induced in animals immunized with vaccine particles harboring the heterodimer were profoundly impaired with respect to those in animals immunized with particles harboring E1 and E2 separately. Moreover, the anti-E1 and anti-E2 antibodies had additive neutralizing properties that increase the cross-neutralization of heterologous strains of various HCV genotypes, highlighting the importance of including both E1 and E2 in the vaccine for an effective vaccination strategy. Our study has important implications for the optimization of HCV vaccination strategies based on HCV envelope proteins, regardless of the platform used to present these proteins to the immune system.  相似文献   

2.
Persistent human papillomavirus (HPV)-associated benign and malignant lesions are a major cause of morbidity and mortality worldwide. Vaccination against HPV early proteins could provide an effective means of treating individuals with established infections. Recombinant vesicular stomatitis virus (VSV) vectors have been used previously to elicit strong humoral and cellular immune responses and develop prophylactic vaccines. We have shown that VSV vectors also can be used to elicit therapeutic immunity in the cottontail rabbit papillomavirus (CRPV)-rabbit model of high-risk HPV infection. In the present study, three new VSV vectors expressing the CRPV E1, E2, or E7 protein were produced and compared to the previously generated VSV-E6 vector for therapeutic efficacy. To determine whether vaccine efficacy could be augmented by simultaneous vaccination against two CRPV proteins, the four vaccines were delivered individually and in all possible pairings to rabbits 1 week after CRPV infection. Control rabbits received the recombinant wild-type VSV vector or medium only. Cumulative papilloma volumes were computed for analysis of the data. The analyses showed that VSV-based vaccination against the E1, E2, E6, or E7 protein significantly reduced papilloma volumes relative to those of the controls. Furthermore, VSV-based CRPV vaccination cured all of the papillomas in 5 of 30 rabbits. Of the individual vaccines, VSV-E7 was the most effective. The VSV-E7 vaccine alone was the most effective, as it reduced cumulative papilloma volumes by 96.9% overall, relative to those of the controls, and ultimately eliminated all of the disease in all of the vaccinees. Vaccine pairing was not, however, found to be beneficial, suggesting antigenic competition between the coexpressed CRPV proteins. These preclinical results, obtained in a physiologically relevant animal model of HPV infection, demonstrate that VSV vectors deserve serious consideration for further development as therapeutic antitumor vaccines.  相似文献   

3.
A cottontail rabbit papillomavirus (CRPV) E6 DNA vaccine that induces significant protection against CRPV challenge was used in a superior vaccination regimen in which the cutaneous sites of vaccination were primed with an expression vector encoding granulocyte-macrophage colony-stimulating factor (GM-CSF), a cytokine that induces differentiation and local recruitment of professional antigen-presenting cells. This treatment induced a massive influx of major histocompatibility complex class II-positive cells. In a vaccination-challenge experiment, rabbit groups were treated by E6 DNA vaccination, GM-CSF DNA inoculation, or a combination of both treatments. After two immunizations, rabbits were challenged with CRPV at low, moderate, and high stringencies and monitored for papilloma formation. As expected, all clinical outcomes were monotonically related to the stringency of the viral challenge. The results demonstrate that GM-CSF priming greatly augmented the effects of CRPV E6 vaccination. First, challenge sites in control rabbits (at the moderate challenge stringency) had a 0% probability of remaining disease free, versus a 50% probability in E6-vaccinated rabbits, and whereas GM-CSF alone had no effect, the interaction between GM-CSF priming and E6 vaccination increased disease-free survival to 67%. Second, the incubation period before papilloma onset was lengthened by E6 DNA vaccination alone or to some extent by GM-CSF DNA inoculation alone, and the combination of treatments induced additive effects. Third, the rate of papilloma growth was reduced by E6 vaccination and, to a lesser extent, by GM-CSF treatment. In addition, the interaction between the E6 and GM-CSF treatments was synergistic and yielded more than a 99% reduction in papilloma volume. Finally, regression occurred among the papillomas that formed in rabbits treated with the E6 vaccine and/or with GM-CSF, with the highest regression frequency occurring in rabbits that received the combination treatment.  相似文献   

4.
Cervical cancer arises from lesions caused by infection with high-risk types of human papillomavirus (HPV). Therefore, vaccination against HPV could prevent carcinogenesis by preventing HPV infection or inducing lesion regression. HPV E2 protein is an attractive candidate for vaccine development because it is required for papilloma formation, is involved in all stages of the virus life cycle, and is expressed in all premalignant lesions as well as some cancers. This study reports vaccination against E2 protein using a rabbit model of papillomavirus infection. A recombinant adenovirus (Ad) vector expressing the E2 protein of cottontail rabbit papillomavirus (CRPV) was tested for therapeutic efficacy in CRPV-infected rabbits. Primary immunization with the Ad-E2 vaccine, compared to immunization with a control Ad vector, reduced the number of papilloma-forming sites from 17 of 45 to 4 of 45. After booster immunization, vaccinated rabbits formed no new papillomas versus an additional 23 papillomas in rabbits that received the control vector. Papillomas in the Ad-E2 vaccinees were significantly smaller than those in the control rabbits, and all four papillomas in the Ad-E2 vaccinated rabbits regressed. No CRPV DNA was detected either in the regression sites or in sites that did not form papillomas, indicating that the vaccination led to clearance of CRPV from all infected sites.  相似文献   

5.
Clinical studies suggest that responses to HPV16 E6E7L2 fusion protein (TA-CIN) vaccination alone are modest, and GPI-0100 is a well-tolerated, potent adjuvant. Here we sought to optimize both the immunogenicity of TA-CIN via formulation with GPI-0100 and treatment of HPV16+ cancer by vaccination after cisplatin chemotherapy. HPV16 neutralizing serum antibody titers, CD4+ T cell proliferative and E6/E7-specific CD8+ T cell responses were significantly enhanced when mice were vaccinated subcutaneously (s.c.) or intramuscularly (i.m.) with TA-CIN formulated with GPI-0100. Vaccination was tested for therapy of mice bearing syngeneic HPV16 E6/E7+ tumors (TC-1) either in the lung or subcutaneously. Mice treated with TA-CIN/GPI-0100 vaccination exhibited robust E7-specific CD8+ T cell responses, which were associated with reduced tumor burden in the lung, whereas mice receiving either component alone were similar to controls. Since vaccination alone was not sufficient for cure, mice bearing s.c. TC-1 tumor were first treated with two doses of cisplatin and then vaccinated. Vaccination with TA-CIN/GPI-0100 i.m. substantially retarded tumor growth and extended survival after cisplatin therapy. Injection of TA-CIN alone, but not GPI-0100, into the tumor (i.t.) was similarly efficacious after cisplatin therapy, but the mice eventually succumbed. However, tumor regression and extended remission was observed in 80% of the mice treated with cisplatin and then intra-tumoral TA-CIN/GPI-0100 vaccination. These mice also exhibited robust E7-specific CD8+ T cell and HPV16 neutralizing antibody responses. Thus formulation of TA-CIN with GPI-0100 and intra-tumoral delivery after cisplatin treatment elicits potent therapeutic responses in a murine model of HPV16+ cancer.  相似文献   

6.
Avian coccidiosis is an intestinal disease caused by protozoa of the genus Eimeria. To investigate the potential of recombinant protein vaccines to control coccidiosis, we cloned 2 Eimeria sp. genes (EtMIC2 and 3-1E), expressed and purified their encoded proteins, and determined the efficacy of in ovo immunization to protect against Eimeria infections. Immunogen-specific serum antibody titers, parasite fecal shedding, and body weight gains were measured as parameters of disease. When administered alone, the recombinant EtMIC2 gene product induced significantly higher antibody responses, lower oocyst fecal shedding, and increased weight gains compared with nonvaccinated controls following infection with E. tenella. Combined embryo immunization with the EtMIC2 protein plus chicken cytokine or chemokine genes demonstrated that all 3 parameters of vaccination were improved compared with those of EtMIC2 alone. In particular, covaccination with EtMIC2 plus interleukin (IL)-8, IL-16, transforming growth factor-beta4, or lymphotactin significantly decreased oocyst shedding and improved weight gains beyond those achieved by EtMIC2 alone. Finally, individual vaccination with either EtMIC2 or 3-1E stimulated protection against infection by the heterologous parasite E. acervulina. Taken together, these results indicate that in ovo vaccination with the EtMIC2 protein plus cytokine/chemokine genes may be an effective method to control coccidiosis.  相似文献   

7.
Persistent infection with high-risk human papillomavirus (HPV) types, most often HPV16 and HPV18, causes all cervical and most anal cancers, and a subset of vulvar, vaginal, penile and oropharyngeal carcinomas. Two prophylactic virus-like particle (VLPs)-based vaccines, are available that protect against vaccine type-associated persistent infection and associated disease, yet have no therapeutic effect on existing lesions or infections. We have generated recombinant live-attenuated influenza A viruses expressing the HPV16 oncogenes E6 and E7 as experimental immunotherapeutic vaccine candidates. The influenza A virus life cycle lacks DNA intermediates as important safety feature. Different serotypes were generated to ensure efficient prime and boost immunizations. The immune response to vaccination in C57BL/6 mice was characterized by peptide ELISA and IFN-γ ELISpot, demonstrating induction of cell-mediated immunity to HPV16 E6 and E7 oncoproteins. Prophylactic and therapeutic vaccine efficacy was analyzed in the murine HPV16-positive TC-1 tumor challenge model. Subcutaneous (s.c.) prime and boost vaccinations of mice with recombinant influenza A serotypes H1N1 and H3N2, followed by challenge with TC-1 cells resulted in complete protection or significantly reduced tumor growth as compared to control animals. In a therapeutic setting, s.c. vaccination of mice with established TC-1 tumors decelerated tumor growth and significantly prolonged survival. Importantly, intralesional vaccine administration induced complete tumor regression in 25% of animals, and significantly reduced tumor growth in 50% of mice. These results suggest recombinant E6E7 influenza viruses as a promising new approach for the development of a therapeutic vaccine against HPV-induced disease.  相似文献   

8.
Functional interactions between papillomavirus E1 and E2 proteins.   总被引:4,自引:3,他引:1       下载免费PDF全文
DNA replication of papillomaviruses requires the viral E1 and E2 proteins. These proteins bind cooperatively to the viral origin of replication (ori), which contains binding sites for both proteins, forming an E1-E2-ori complex which is essential for initiation of DNA replication. To map the domains in E2 that are involved in the interaction with E1, we have used chimeric bovine papillomavirus (BPV)/human papillomavirus type 11 (HPV-11) E2 proteins. The results from this study show that both the DNA binding domain and the transactivation domain from BPV E2 independently can interact with BPV E1. However, the roles of these two interactions are different: the interaction between E1 and the activation domain of E2 is necessary and sufficient for cooperativity in binding and for DNA replication; the interaction between E1 and the DNA binding domain of E2 is required only when the binding sites for E1 and E2 are adjacent to each other, and the function of this interaction appears to be to facilitate the interaction between E1 and the transactivation domain of E2. These results indicate that the cooperative binding of E1 and E2 to the BPV ori takes place via a novel two-stage mechanism where one interaction serves as a trigger for the formation of the second, productive, interaction between the two proteins.  相似文献   

9.
In this study, cottontail rabbit papillomavirus infection of domestic rabbits was used as an animal model to develop papillomavirus early gene-based vaccines. Groups of rabbits were intracutaneously vaccinated with single papillomavirus early genes E1, E2, E6, and E7 or with a combination of these four genes. Only a fraction of rabbits were protected from subsequent viral challenge when vaccinated with the E1 or E6 gene. Viral tumor growth in those rabbits vaccinated with the E1 or E2 gene was suppressed compared to that in controls. In contrast, seven of nine rabbits vaccinated with the combination of the E1, E2, E6, and E7 genes were completely protected against viral challenge. These data indicated that intracutaneous genetic vaccination with the combination of the E1, E2, E6, and E7 genes can be an effective strategy for immunoprophylaxis of papillomavirus infection.  相似文献   

10.
BACKGROUND: Cervical cancer remains a leading cause of cancer-related mortality in women, particularly in developing countries. The causal association between genital human papilloma virus (HPV) infection and cervical cancer has been firmly established, and the oncogenic potential of certain HPV types has been clearly demonstrated. Vaccines targeting the oncogenic proteins, E6 and E7 of HPV-16 and -18 are the focus of current vaccine development. Previous studies have shown that calreticulin (CRT) enhances the MHC class I presentation of linked peptide/protein and may serve as an effective vaccination strategy for antigen-specific cancer treatment. METHODS: Two replication-deficient adenoviruses, one expressing HPV-16 E7 (Ad-E7) and the other expressing CRT linked to E7 (Ad-CRT/E7), were assessed for their ability to induce cellular immune response and tested for prophylactic and therapeutic effects in an E7-expressing mouse tumor model. RESULTS: Vaccination with Ad-CRT/E7 led to a dramatic increase in E7-specific T cell proliferation, interferon (IFN)-gamma-secretion, and cytotoxic activity. Immunization of mice with Ad-CRT/E7 was effective in preventing E7-expressing tumor growth, as well as eradicating established tumors with long-term immunological memory. CONCLUSION: Vaccination with an adenoviral vector expressing CRT-E7 fusion protein represents an effective strategy for immunotherapy of cervical cancer in rodents, with possible therapeutic potential in clinical settings.  相似文献   

11.
Human papillomavirus infection is associated with cervical cancer. The E6 and E7 papillomavirus proteins are normally required for the maintenance of the malignant phenotype. Expression of these proteins in infected cells is negatively regulated by the binding of the papilloma E2 protein to the long terminal control region of the papilloma virus genome. The E2 protein can also promote cell arrest and apoptosis in HeLa cells. Therefore, it is clear that this protein has the potential of inhibiting the malignant phenotype. Because, anticancer vaccines based in vaccinia viruses have recently been shown to be an effective way to treat and to eradicate tumors, a recombinant vaccinia virus expressing the E2 gene of bovine papilloma virus (Modified Vaccinia Ankara, MVA E2) was created, to explore further the antitumor potential of the E2 protein. A series of rabbits, containing the VX2 transplantable papilloma carcinoma, were treated with MVA E2. An impressive tumor regression, up to a complete disappearance of tumor, was observed in most animals (80%). In contrast, very little or no regression was detected if the normal vaccinia virus was used. Lymphocytes isolated from MVA E2-treated rabbits did not show cytotoxic activity against tumor cells. However, in these animals a humoral immune response against tumor cells was observed. These antitumor antibodies were capable of activating macrophages to destroy tumor cells efficiently. These data indicate that injecting the MVA E2 recombinant vaccinia virus directly into the tumor results in a robust and long-lasting tumor regression. Data also suggest that antitumor antibodies are responsible, at least in part, for eliminating tumors by activating macrophage antibody-dependent cytotoxicity. Received: 23 November 1999 / Accepted: 12 April 2000  相似文献   

12.
13.
Recent studies have identified a family of DNA-binding proteins that share a common DNA-binding and dimerization domain with the potential to form a helix-loop-helix (HLH) structure. Various HLH proteins can form heterodimers that bind to a common DNA sequence, termed the E2-box. We demonstrate here that E2-box-binding B-cell- and myocyte-specific nuclear factors contain subunits which are identical or closely related to ubiquitously expressed (E12/E47) HLH proteins. These biochemical function for E12/E47-like molecules in mammalian differentiation, similar to the genetically defined function of daughterless in Drosophila development.  相似文献   

14.
We have analyzed the structure of rubella virus proteins labeled metabolically with [35S]methionine, [3H]mannose, and [3H]glucosamine or externally with [3H]borohydride after galactose oxidase treatment. Four structural proteins, with MrS of about 58,000 (E1), 47,000 (E2a), 42,000 (E2b), and 33,000 (C), were resolved on sodium dodecyl sulfate-polyacrylamide gels. Tryptic peptide maps obtained from [35S]methionine-labeled proteins indicated that E1 and C were unrelated to each other and to E2a and E2b, whereas the latter two gave similar, if not identical, maps. E1, E2a, and E2b were associated with the envelope and were located externally on the virus particle, whereas the C protein was associated with the RNA in the nucleocapsid. Solubilization of the virus with Triton X-100, followed by removal of the nucleocapsid and the detergent, resulted in the formation of soluble envelope protein complexes (rosettes) containing E1, E2a, and E2b. Although external labeling with [3H]borohydride and metabolic labeling with [3H]glucosamine suggested that all three proteins were glycosylated, only E1 and E2b were efficiently labeled with [3H]mannose. It is thus possible that the difference in migration between E2a and E2b is due to differences in glycosylation. Analysis by immunoprecipitation and sodium dodecyl sulfate-gel electrophoresis of intracellular [35S]methionine-labeled structural proteins synthesized in the presence and absence of tunicamycin supported the conclusion that E1 and E2 are glycoproteins. Unglycosylated E1 and E2 had an Mr of about 53,000 and 30,000, respectively.  相似文献   

15.
The study of human papillomavirus replication has been hampered by the lack of an in vitro system which reliably supports virus replication. Recent results from the bovine papillomavirus (BPV) system indicate that the E1 and E2 proteins are the only viral gene products required for replication. By analogy with simian virus 40 large T antigen, E1 is thought to possess ATPase and helicase activity, which may play a direct role in viral DNA replication. The precise role of E2 is unclear, but it may function in part to help localize E1 to the replication origin. We have initiated a study of replication in the human papillomavirus type 11 system which, by analogy to BPV, has focused on the E1 and E2 proteins of this virus. We have expressed the full-length E1 and E2 proteins in Sf9 insect cells by using a baculovirus expression vector. Both the 80-kDa E1 protein and the 42.5-kDa E2 protein are nuclear phosphoproteins. The E1 and E2 proteins form a heteromeric complex within the insect cells, and both proteins localize to a DNA fragment which contains the viral origin of replication. In addition, we have detected an E1-associated ATPase and GTPase activity, which is likely part of an energy-generating system for the helicase activity which is predicted for this protein. The human papillomavirus type 11 E1 and E2 proteins possess the same replication-associated activities exhibited by the corresponding BPV proteins, suggesting that the replication activities of these viruses are tightly conserved.  相似文献   

16.
Current strategies to prevent or treat human papillomavirus type 16 (HPV-16) infection are promising, but remain costly. More economical but efficient vaccines are thus needed. In this study, we evaluated the protective effects of mucosally coadministered live Lactococcus lactis strains expressing cell wall-anchored E7 Ag and a secreted form of IL-12 to treat HPV-16-induced tumors in a murine model. When challenged with lethal levels of tumor cell line TC-1 expressing E7, immunized mice showed full prevention of TC-1-induced tumors, even after a second challenge, suggesting that this prophylactic immunization can provide long-lasting immunity. Therapeutic immunization with L. lactis recombinant strains, i.e., 7 days after TC-1 injection, induced regression of palpable tumors in treated mice. The antitumor effects of vaccination occurred through a CTL response, which is CD4+ and CD8+ dependent. Furthermore, immunized mice developed an E7-specific mucosal immune response. These preclinical results suggest the feasibility of the low-cost mucosal vaccination and/or immunotherapy strategies against HPV-related cervical cancer in humans.  相似文献   

17.
During the adenovirus infectious cycle, the early proteins E4orf6 and E1B55K are known to perform several functions. These include nuclear export of late viral mRNAs, a block of nuclear export of the bulk of cellular mRNAs, and the ubiquitin-mediated degradation of selected proteins, including p53 and Mre11. Degradation of these proteins occurs via a cellular E3 ubiquitin ligase complex that is assembled through interactions between elongins B and C and BC boxes present in E4orf6 to form a cullin 5-based ligase complex. E1B55K, which has been known for some time to associate with the E4orf6 protein, is thought to bind to specific substrate proteins to bring them to the complex for ubiquitination. Earlier studies with E4orf6 mutants indicated that the interaction between the E4orf6 and E1B55K proteins is optimal only when E4orf6 is able to form the ligase complex. These and other observations suggested that most if not all of the functions ascribed to E4orf6 and E1B55K during infection, including the control of mRNA export, are achieved through the degradation of specific substrates by the E4orf6 ubiquitin ligase activity. We have tested this hypothesis through the generation of a virus mutant in which the E4orf6 product is unable to form a ligase complex and indeed have found that this mutant behaves identically to an E4orf6 virus in production of late viral proteins, growth, and export of the late viral L5 mRNA.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号