首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
To investigate the action of the neck accessory muscles on the rib cage, we stimulated the sternocleidomastoid and the scalenus muscles separately in supine anesthetized dogs. Hooks screwed into the sternum and ribs were used to measure their axial displacements and the changes in anteroposterior (AP) and transverse (T) diameters of the rib cage. We found that the sternocleidomastoid and scalenus muscles, when they contract alone, cause a large axial displacement of the sternum and the ribs in a cephalad direction and expand the rib cage along both its AP and T diameters. Opening the abdomen increased the cephalad displacement of the ribs and the expansion of the lower rib cage, particularly along its T diameter, but reduced the increase in lung volume. These experiments indicate 1) that the action of the sternocleidomastoid and scalenus muscles on the rib cage is essentially the consequence of a rotation of the ribs' neck axes, resulting from the cephalad displacement of the ribs, and 2) that the fall in abdominal pressure, almost certainly by acting through the zone of apposition of the diaphragm to the rib cage, has a deflationary action on the lower rib cage, more markedly so on its lateral than its anterior wall. The experiments also suggest that the fall in abdominal pressure prevents the diaphragm from moving cephalad and aids the neck accessory muscles in inflating the lungs.  相似文献   

3.
4.
Hox patterning of the vertebrate rib cage   总被引:2,自引:0,他引:2  
Unlike the rest of the axial skeleton, which develops solely from somitic mesoderm, patterning of the rib cage is complicated by its derivation from two distinct tissues. The thoracic skeleton is derived from both somitic mesoderm, which forms the vertebral bodies and ribs, and from lateral plate mesoderm, which forms the sternum. By generating mouse mutants in Hox5, Hox6 and Hox9 paralogous group genes, along with a dissection of the Hox10 and Hox11 group mutants, several important conclusions regarding the nature of the ;Hox code' in rib cage and axial skeleton development are revealed. First, axial patterning is consistently coded by the unique and redundant functions of Hox paralogous groups throughout the axial skeleton. Loss of paralogous function leads to anterior homeotic transformations of colinear regions throughout the somite-derived axial skeleton. In the thoracic region, Hox genes pattern the lateral plate-derived sternum in a non-colinear manner, independent from the patterning of the somite-derived vertebrae and vertebral ribs. Finally, between adjacent sets of paralogous mutants, the regions of vertebral phenotypes overlap considerably; however, each paralogous group imparts unique morphologies within these regions. In all cases examined, the next-most posterior Hox paralogous group does not prevent the function of the more-anterior Hox group in axial patterning. Thus, the ;Hox code' in somitic mesoderm is the result of the distinct, graded effects of two or more Hox paralogous groups functioning in any anteroposterior location.  相似文献   

5.
Besides protecting the internal organs of the thorax, the rib cage is the site of numerous muscle attachments. It also decreases the overall flexibility of the thoracic spine. This study developed finite element (FE) models of the thoracic spine with and without the rib cage, and the effects of the rib cage on thoracic spine flexibility were determined. The numerical models were validated by comparing the maximum rotation of the models for several loading cases with experimental data in the literature. After adapting the material properties for the discs and ligaments, the calculated maximum rotations differed from the measured median values by less than 1 degrees without the rib cage and by less than 2.5 degrees with it. The rib cage decreased the mean flexibility of the thoracic spine by 23% to 47%, depending on the loading plane. Assuming the ribs to be rigid beams required a corresponding reduction of ligament stiffnesses in order to achieve the same agreement of the maximum rotations with the measured median values. Interconnecting the FE thoracic spine model plus rib cage with the existing detailed FE lumbar spine model improves the simulation of force directions of muscles attached to the rib cage or thoracolumbar spine. In addition, such a model is suitable for determining the effects of lumbar spine implants on spinal balance.  相似文献   

6.
Measurements of the three-dimensional shape of the rib cage   总被引:5,自引:0,他引:5  
  相似文献   

7.
Static volume-pressure characteristics of the rib cage and abdomen   总被引:8,自引:0,他引:8  
  相似文献   

8.
An earlier model for the study of rib cage mechanics was modified so that rib deformity in scoliosis could be better represented. The rigid ribs of that model were replaced by five-segment deformable ribs. Literature data on cadaver rib mechanical behavior were used to assign stiffnesses to the new individual model ribs so that experimental and model rib deflections agreed. Shear and tension/compression stiffnesses had little effect on individual rib deformation, but bending stiffnesses had a major effect. Level-to-level differences in mechanical behavior could be explained almost exclusively by level to level differences in the rib shape. The model ribs were then assembled into a whole rib cage. Computer simulations of whole rib cage behaviors, both in vivo and in vitro, showed a reasonable agreement with the measured behaviors. The model was used to study rib cage mechanics in two scolioses, one with a 43 degrees and the other with a 70 degrees Cobb angle. Scoliotic rib cage deformities were quantified by parameters measuring the rib cage lateral offset, rib cage axial rotation, rib cage volume and rib distortion. Rib distortion was quantified both in best-fit and simulated computer tomography (CT) scan planes. Model rib distortion was much smaller in best-fit planes than in CT planes. The total rib cage volume changed little in the presence of the scolioses, but it became asymmetrically distributed.  相似文献   

9.
The diaphragm acting alone causes a cranial displacement of the lower ribs and a caudal displacement of the upper ribs. The respiratory effect of the lower rib displacement, however, is uncertain. In the present study, two sets of experiments were performed in dogs to assess this effect. In the first, all the inspiratory intercostal muscles were severed, so that the diaphragm was the only muscle active during inspiration, and the normal inspiratory cranial displacement of the lower ribs was suppressed at regular intervals. In the second experiment, the animals were given a muscle relaxant to abolish respiratory muscle activity, and external, cranially oriented forces were applied to the lower rib pairs to simulate the action of the diaphragm on these ribs. The data showed that 1) holding the lower ribs stationary during spontaneous, isolated diaphragm contraction had no effect on the change in lung volume during unimpeded inspiration and no effect on the fall in pleural pressure (Ppl) during occluded breaths; 2) the procedure, however, caused an increase in the caudal displacement of the upper ribs; and 3) pulling the lower rib pairs cranially induced a cranial displacement of the upper ribs and a small fall in Ppl. These observations indicate that the force applied on the lower ribs by the diaphragm during spontaneous contraction, acting through the interdependence of the ribs, is transmitted to the upper ribs and has an inspiratory effect on the lung. However, this effect is very small compared to that of the descent of the dome.  相似文献   

10.
11.
While a relatively broad thorax and strongly curved ribs are widely regarded as common features of living hominoids, few studies have quantitatively examined these traits by methods other than calculating the chest index. The present study aims to quantify variations in thoracic cage morphology for living anthropoids. The odd-numbered ribs (first to eleventh) were articulated with the corresponding vertebrae and the cranial and lateral views subsequently photographed. Rib profiles were digitized in both views and line-fitted by a Bézier curve to create a three-dimensional morphological data set. When thoracic cage width was scaled against body mass, Hylobates (and possibly Pongo) plotted above non-hominoid anthropoids at almost all rib levels, while Pan did not differ from non-hominoid anthropoids. The overall pattern of the normalized thoracic width differed between Hylobates and other hominoids. In Hylobates, an upward convex curve was seen between the first and seventh ribs while a more linear pattern was observed in Pan and Pongo. This result quantitatively confirmed that the barrel-shaped thoracic cage in Hylobates can be distinguished from the funnel-shaped form in other hominoids. Conversely, all hominoids shared two distinct features in the upper half-thorax: (1) a pronounced dorsal protrusion of the proximal part of the rib in accordance with ventral displacement of the thoracic spine and (2) a relatively medially projecting sternal end. Although these features are likely to provide some mechanical advantage in orthograde and/or suspensory positional behaviors, they were barely present in the suspensory Ateles. An erratum to this article can be found at  相似文献   

12.
13.
14.
15.
Sequence alignments between membrane-spanning segments of pheophytin-quinone-type photosynthetic reaction centers, FeS-type photosynthetic reaction centers, core chlorophyll-proteins of PS II, chlorophyll t a/t b-containing antenna proteins of plants and light-harvesting complexes of purple bacteria led us to postulate a large common ancestral pigment-carrying protein with more than 10 membrane spans. Its original function as a UV-protector of the primordial cell is discussed. It is conceivable that a purely dissipative photochemistry started still in the context of the UV-protection. We suggest that mutations causing the t loss of certain porphyrin-type pigments led to the acquisition of redox cofactors and paved the way for a gradual transition from dissipative to productive photochemistry.  相似文献   

16.
17.

Background  

Few studies address the issue of hybridization in a more than two-species context. The species-rich Quercus complex is one of the systems which can offer such an opportunity. To investigate the contemporary pattern of hybridization we sampled and genotyped 320 offspring from a natural mixed forest comprising four species of the European white oak complex: Quercus robur, Q. petraea, Q. pubescens, and Q. frainetto.  相似文献   

18.
A three-dimensional mathematical model useful for studies of the mechanics of the human skeletal thorax is described. To construct this model, rib cage elements are incorporated into a previously reported model of the thoracolumbar spine. The vertebrae and bony portions of the ribs and sternum are idealized as rigid bodies. The behavior of the discs, ligaments and costal cartilages are modelled by deformable elements. Appropriate geometric and stiffness property data are assigned to the elements of the model. In constructing the model, it was found that the mechanical response of the costo-vertebral joint is strongly influenced by articulation geometry. Although rigid bodies were used to model calcified portions of the ribs, the model predicted rib cage deformations in close agreement with those measured experimentally. These studies indicate that the rigid body motion of calcified portions of the rib makes a major contribution to the deformation of the rib cage in response to certain types of loadings. Quantitative results are also reported on the roles the rib cage plays in bending responses of the spine, the lateral stability of the spine, and the production and correction of several scoliotic deformities.  相似文献   

19.
The abdominal muscles expand the rib cage when they contract alone. This expansion opposes the deflation of the lung and may be viewed as pressure dissipation. The hypothesis was raised, therefore, that alterations in rib cage elastance should affect the lung deflating action of these muscles. To test this hypothesis and evaluate the quantitative importance of this effect, we measured the changes in airway opening pressure (Pao), abdominal pressure (Pab), and rib cage transverse diameter during isolated stimulation of the transversus abdominis muscle in anesthetized dogs, first with the rib cage intact and then after rib cage elastance was increased by clamping the ribs and the sternum. Stimulation produced increases in Pao, Pab, and rib cage diameter in both conditions. With the ribs and sternum clamped, however, the change in Pab was unchanged but the change in Pao was increased by 77% (P < 0.001). In a second experiment, the transversus abdominis was stimulated before and after rib cage elastance was reduced by removing the bony ribs 3-8. Although the change in Pab after removal of the the ribs was still unchanged, the change in Pao was reduced by 62% (P < 0.001). These observations, supported by a model analysis, indicate that rib cage elastance is a major determinant of the mechanical coupling between the abdominal muscles and the lung. In fact, in the dog, the effects of rib cage elastance and Pab on the lung-deflating action of the abdominal muscles are of the same order of magnitude.  相似文献   

20.
By use of the method of Konno and Mead and the respiratory magnetometer, the partition of respired gas volumes into rib cage and diaphragm-abdomen components was accomplished in 81 normal subjects including 32 young and middle-aged men, 29 young and middle-aged women, and 20 elderly men. Studied were isovolume maneuvers and the relaxation configuration over the inspiratory capacity range, quiet tidal breathing, increased amplitudes of slow breathing, rapid inspirations and expirations, and both quiet and forceful phonation. No major differences were noted between men and women or between the young and the elderly during any respiratory acts. During quiet breathing most normal subjects are abdominal breathers when supine and thoracic breathers when upright. Rapid respiratory maneuvers were accomplished mostly through rib cage displacement suggesting that rib cage muscles are capable of more rapid action than diaphragm and abdominal muscles. Data from deep breathing and rapid maneuvers supported the view that abdominal and rib cage muscles often act to optimize the mechanical (length-tension) advantage of the diaphragm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号