首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The variation of indole-3-acetic acid (IAA) transport along Lupinus albus L. hypocotyls was studied using decapitated seedlings and excised sections. To confirm that the mobile species was IAA and not IAA metabolites, dual isotope-labeled IAAs, [5-3H]IAA + [1-14C]IAA, were used. After apical application to decapitated seedlings, the longitudinal distribution of both isotopes at different transport periods showed that the velocity of IAA transport was higher in the apical, elongating region than in the basal, non-growing region. This variation in velocity was not a traumatic consequence of decapitation because after application of IAA to the basal region of decapitated seedlings, both the velocity and intensity of IAA transport were lower than in the apical treatment. The variation in IAA transport down the hypocotyl was confirmed when it was measured in excised sections located at different positions along the hypocotyl. The velocity and, to a greater extent, the intensity of IAA transport decreased from the apical to the basal sections. Consequently, if the amount of IAA reaching the apical zones of lupin hypocotyl were higher than the IAA transport capacity in the basal zones, accumulation of mobile IAA might be expected in zones located above the basal region. In fact, an IAA accumulation occurred in the elongating region during the first 4-h period of transport after apical treatment with IAA. It is proposed that the fall in IAA transport along the hypocotyl might be responsible for the IAA distribution and, consequently, for the growth distribution reported in this organ. An indirect proof of this was obtained from experiments that showed that the excision of the slowly transporting basal zones strongly reduced the growth in the remaining part of the organ, whereas excision of the root caused no significant modification in growth during a 20-h period.  相似文献   

2.
The Radial and Longitudinal Path of Ion Movement in Roots   总被引:4,自引:0,他引:4  
The existence of a barrier to lateral outward diffusion of ions from roots was demonstrated quantitatively and by autoradiography. Ions applied to the apical zone were excreted through the basal cut end with no lateral outward diffusion from the central zone. The ions moving through the conducting tissues showed no leakage to the external solution regardless whether the treatment roots came from seedlings grown under low or high salt conditions. However, when dinitrophenol (DNP) was also applied to the central zone in the external salt solution, leakage of apically applied calcium occurred from the conducting tissues. Autoradiographic studies with labeled calcium suggested that the endodermal layer was an effective barrier preventing the lateral outward diffusion of ions. The ions moved longitudinally through the stele. In the stelar tissues the autoradiographic studies failed to detect the presence of any radioactive calcium in the central duct and in the mature xylem vessels, although high concentrations of labeled ions were found in the living cells of the stele, particularly the xylem parenchyma. It is suggested that xylem parenchyma cells may be involved in the longitudinal transport of ions.  相似文献   

3.
Gravity-Induced Polar Transport of Calcium across Root Tips of Maize   总被引:13,自引:8,他引:5       下载免费PDF全文
Calcium movement across primary roots of maize (Zea mays, L.) was determined by application of 45Ca2+ to one side of the root and collection of radioactivity in an agar receiver block on the opposite side. Ca movement across the root tip was found to be at least 20 times greater than movement across the elongation zone. The rapid movement of Ca across the tip was severely inhibited in roots from which the root cap had been removed. Ca movement across the tip was also strongly retarded in roots pretreated with 2,4-dinitrophenol or potassium cyanide. Orientation of roots horizontally had no effect on Ca movement across the elongation zone but caused a strong asymmetry in the pattern of Ca movement across the tip. In gravistimulated roots, the movement of Ca from top to bottom increased while movement from bottom to top decreased. The data indicate that gravistimulation induces polar movement of Ca toward the lower side of the root cap. An earlier report (Lee, Mulkey, Evans 1983 Science 220: 1375-1376) from this laboratory showed that artificial establishment of calcium gradients at the root tip can cause gravitropic-like curvature. Together, the two studies indicate that Ca plays a key role in linking gravistimulation to the gravitropic growth response in roots.  相似文献   

4.
Under iron deficiency the release of so-called phytosiderophores by roots of barley plants ( Hordeum vulgare L. cv. Europa) was greater by a factor of 10 to 50 compared to iron-sufficient plants. This enhanced release occurred particularly in apical zones of the seminal roots and in the lateral root zones. Under iron deficiency, uptake rates for iron, supplied as FeIII phytosiderophore, increased by a factor of ca 5 as compared to iron-sufficient plants. This enhanced uptake rate for iron was also much more pronounced in apical than in basal root zones. In contrast, with supply of the synthetic iron chelate, FelII EDDHA (ferric diaminoethane-N, N-di- o -hydroxyphenyl acetic acid), the Fe deficiency-enhanced uptake rates for iron were only small and similar along the roots, except for the lateral root zones. The high selectivity of barley roots for uptake and translocation of FeIII phytosiderophores compared with FeIII EDDHA is reflected by the fact that, at the same external concentration (2 μ M ), rates of uptake and translocation of iron from FeIII phytosiderophores were between 100 (Fe-sufficient) and 1 000 times higher (Fe-deficient plants) than from FeIII EDDHA. The relatively high rates of uptake and particularly of translocation of iron supplied as FeIII EDDHA in the zone of lateral root formation strongly suggest an apoplastic pathway of radial transport of the synthetic iron chelate into the stele in this root zone.
The results demonstrate that apical root zones are the main sites both for Fe deficiency-enhanced release of phytosiderophores and for uptake and translocation of iron supplied as FeIII phytosiderophores.  相似文献   

5.
The effect of Ca on the polar movement of [3H]indoleacetic acid ([3H] IAA) in gravistimulated roots was examined using 3-day-old seedlings of maize (Zea mays L.). Transport of label was measured by placing an agar donor block containing [3H]IAA on one side of the elongation zone and measuring movement of label across the root into an agar receiver block on the opposite side. In vertically oriented roots, movement of label across the elongation zone into the receiver was slight and was not enhanced by incorporating 10 millimolar CaCl2 into the receiver block. In horizontally oriented roots, movement of label across the root was readily detectable and movement to a receiver on the bottom was about 3-fold greater than movement in the opposite direction. This polarity was abolished in roots from which the caps were removed prior to gravistimulation. When CaCl2 was incorporated into the receivers, movement of label across horizontally oriented intact roots was increased about 3-fold in both the downward and upward direction. The ability of Ca to enhance the movement of label from [3H]IAA increased with increasing Ca concentration in the receiver up to 5 to 10 millimolar CaCl2. With the inclusion of CaCl2 in the receiver blocks, gravity-induced polar movement of label into receiver blocks from applied [3H]IAA was detectable within 30 minutes, and asymmetric distribution of label within the tissue was detectable within 20 minutes. The results indicate that gravistimulation induces a physiological asymmetry in the auxin transport system of maize roots and that Ca increases the total transport of auxin across the root.  相似文献   

6.
Internal transport of O2 from the aerial tissues along the adventitious roots of intact maize plants was estimated by measuring the concentrations of adenine nucleotides in various zones along the root under an oxygen-free atmosphere. Young maize plants were grown in nutrient solution under conditions that either stimulated or prevented the formation of a lysigenous aerenchyma, and the roots (up to 210 mm long) were then exposed to an anaerobic (oxygen-free) nutrient solution. Aerenchymatous roots showed higher values than non-aerenchymatous ones for ATP content, adenylate energy charge and ATP/ADP ratios. We conclude that the lysigenous cortical gas spaces help maintain a high respiration rate in the tissues along the root, and in the apical zone, by improving internal transport of oxygen over distances of at least 210 mm. This contrasted sharply with the low energy status (poor O2 transport) in non-aerenchymatous roots.Abbreviation AEC adenylate energy charge  相似文献   

7.
8.
Segments of the roots of young, intact barley plants were treatedin solution culture with labelled nutrients, pesticides, andtritiated water (THO). Some of the labelled substances takenup were lost to the unlabelled solutions surrounding the remainderof the root system. The magnitude of this longitudinal movementand subsequent loss has been compared for phosphate, calcium,and nitrate, for the pesticides simazine and ethirimol, andfor THO. Losses of phosphate and calcium at a distance of 5mm from the treated segments were very small by comparison withthe amounts translocated to the shoots and did not appear tobe greater towards the basal than towards the apical portionof the root system when the labelled solutions were appliedto the middlle segments. There was a larger loss of nitrateand there was some suggestion that this loss was polar, beinggreater in a basipetal direction than towards the root tip.Losses of the two pesticides and in particular of THO were stronglypolar and sufficiently great that over a peried of 24 h onlysmall amounts of these substances which had been taken up bythe apical zones of the roots were translocated to the shoots.The polarity of longitudinal movement and loss of THO was stillvery marked even when transpiration was eliminated by removingthe shoots. Some consideration is given to the possibility ofthe existence of contrasting pathways of movement for the differentsubstances.  相似文献   

9.
Water deficit and salt accumulation in soil presents serious problems to crop production in semi-arid regions. These problems depend on the active transpiration stream and the selective absorption of ions by crop roots. In this study, a large sized soil column system was used to examine the dynamics of water and ion transport and salt accumulation in soil layers. Special reference was placed on the effects of the active and selective absorption by roots of different crops (i.e., corn plants, sunflower plants and no plants). The column system was equipped with on-line systems for the control of groundwater level. Soil water content sensors enabled time-course evaluations of the volumetric water content and hence upward flux of the groundwater in the soils at different depths. Furthermore, the distribution and accumulation of ions in soil layers, plant organs and xylem sap were analyzed using ion chromatography. In this column experiment, diurnal and longer term changes in water movement and ion accumulation in soil, affected by root absorption characteristics of plants, were evaluated quantitatively. The results demonstrated that the column system was applicable for the quantitative analysis of the effects of root absorption by different crops on water deficit and salinization in soils.  相似文献   

10.
Jackson PC 《Plant physiology》1982,70(5):1373-1379
Effects of 2,4-dinitrophenol (DNP) and several other substituted phenols on permeability of barley roots (Hordeum vulgare var. Trebi) to ions were assayed as a function of pH and phenol concentration. Solutions containing 0.1 micromolar undissociated DNP increase the permeability of barley root cells to small ions such as K+, Na+, Ca2+, and Cl with no inhibition of respiration. Undissociated forms of the other phenols increase permeability also, but they are less effective than DNP. Only the undissociated DNP is effective. Anionic DNP does not increase permeability or inhibit ion uptake, although it is the major species accumulated by the roots, both at pH 5 and pH 7. At pH 7, in contrast to pH 5, 10 micromolar DNP has no effect on ion permeability of barley roots yet it uncouples oxidative phosphorylation of barley root mitochondria. This indicates that the all too common use of DNP as a test for active transport or involvement of ATP synthesis can be misleading.  相似文献   

11.
The effect of 15, 25, and 35°C root temperature on waterabsorption, transpiration, and sulphate uptake by the rootsand transport to the shoots of intact sunflower plants has beenstudied using 0.5, 5.0, and 50.0 mM sulphate concentrationsat two rates of transpiration induced (1) by light and low relativehumidity and (2) by darkness and high relative humidity. Root temperatures and sulphate concentrations did not significantlyaffect the water absorption and transpiration and both theseprocesses were approximately similar at the different treatments.There was a nearly twofold increase in water absorption andtranspiration in the light and low relative humidity as comparedto the dark and high relative humidity irrespective of the roottemperatures and sulphate concentrations. The A.F.S. uptake in the roots was found to be independent ofthe root temperatures, sulphate concentrations, and transpirationrates, and amounted to 15 to 21 per cent based on the root weight.Sulphate accumulation in the roots was not significantly influencedby the root temperatures at 0.5 and 5.0 mM sulphate concentrations,but nearly doubled with temperature at 50.0 mM sulphate concentrationof the external solution. The slow nature of accumulation ofsulphate, the high sulphate status of the experimental plants,and the short duration of the experiments are considered aslikely reasons for the absence of a clear effect of temperatureson accumulation of sulphate at the two lower concentrationsof the external solution. Effects of high concentration on permeabilityand metabolism of the cells are suggested as the reasons forthe decreased accumulation with an increase in temperature at50.0 mM sulphate concentration. Accumulation of sulphate inthe roots was not significantly influenced by the transpirationrates. Unlike root accumulation, sulphate transport to the shoots increasedwith increasing transpiration. However, a major part of thesulphate transport (70 to 75 per cent at 0.5 and 5.0 mM sulphateconcentrations and 80 to 85 per cent at 50.0 mM sulphate concentration)appeared to have occurred at the low transpiration. The similarityof this transport to the accumulation of sulphate in the rootsindicates that it was due to an active transport process sensitiveto root temperatures and sulphate concentrations. A low concentrationof sulphate in the xylem and an increased permeability of theroot cells to ion movement induced by an increased suction inthe xylem are considered as reasons for a small increase inthe sulphate transport at high transpiration rate. The evidencefor the existence of a barrier—probably endodermis—preventingthe passive diffusion of sulphate and sensitivity of the TranspirationStream Concentration to root temperatures and sulphate concentrationsfavour that the increased transport with increased transpirationwas due to an active process.  相似文献   

12.
以低浓度(50 mmol.L-1)和高浓度(150 mmol.L-1)NaC l处理弗吉尼亚栎(Quercus virginiana)2年生扦插苗,研究了弗吉尼亚栎生长和根系形态学参数变化以及Na+、K+、Ca2+、Mg2+、NO3-等矿质离子在不同器官的吸收、运输和分配。结果表明,盐胁迫不同程度促进了地上部和根系生长,地上部和根系干重、根长、表面积和体积在低浓度盐胁迫下明显增加(P0.05),而在高浓度盐胁迫下变化不大。随着根系对Na+和C l-吸收的增加,K+、Ca2+、Mg2+在根部和茎部的积累明显降低,矿质离子由根部向茎部运输的能力在低浓度盐胁迫增加而高浓度下受到抑制。叶片在低浓度和高浓度盐胁迫下对K+、NO3-具有很强的选择吸收能力,这对于维持叶片离子平衡和正常的光合作用及代谢过程具有重要意义。Na+和C l-在根部的浓度远远大于地上部,说明弗吉尼亚栎根系对盐离子具有较高的耐受性,而减少盐离子在地上部的积累,对于维持地上部的正常生长具有重要意义,这也是弗吉尼亚栎对盐胁迫的适应机制之一。  相似文献   

13.
Cholewa E  Peterson CA 《Plant physiology》2004,134(4):1793-1802
The pathway of Ca(2+) movement from the soil solution into the stele of the root is not known with certainty despite a considerable body of literature on the subject. Does this ion cross an intact, mature exodermis and endodermis? If so, is its movement through these layers primarily apoplastic or symplastic? These questions were addressed using onion (Allium cepa) adventitious roots lacking laterals. Radioactive Ca(2+) applied to the root tip was not transported to the remainder of the plant, indicating that this ion cannot be supplied to the shoot through this region where the exodermis and endodermis are immature. A more mature zone, in which the endodermal Casparian band was present, delivered 2.67 nmol of Ca(2+) mm(-1) treated root length d(-1) to the transpiration stream, demonstrating that the ion had moved through an intact endodermis. Farther from the root tip, a third zone in which Casparian bands were present in the exodermis as well as the endodermis delivered 0.87 nmol Ca(2+) mm(-1) root length d(-1) to the transpiration stream, proving that the ion had moved through an unbroken exodermis. Compartmental elution analyses indicated that Ca(2+) had not diffused through the Casparian bands of the exodermis, and inhibitor studies using La(3+) and vanadate (VO(4)(3-)) pointed to a major involvement of the symplast in the radial transport of Ca(2+) through the endodermis. It was concluded that in onion roots, the radial movement of Ca(2+) through the exodermis and endodermis is primarily symplastic.  相似文献   

14.
Calcium (Ca) movement across tips of primary and lateral roots of Phaseolus vulgaris was determined by applying 45Ca2+ to one side of the root and collecting radioactivity in an agar receiver block on the opposite side of the root. The ratios of cpm in receiver blocks on the bottom of primary roots : cpm in receiver blocks on the top of the primary roots were 1.87 and 2.47 after 1 and 2 hr, respectively. This polar transport of Ca across tips of primary roots correlated positively with a graviculture of 43 degrees after 2 hr. The ratio of cpm in receiver blocks on the bottom of lateral roots : cpm in receiver blocks on the top of lateral roots was 1.20 after 2 hr. The decreased polar movement of Ca across tips of lateral roots correlated positively with lateral roots being nongraviresponsive. These data 1) support the suggestion that gravistimulation induces polar movement Ca toward the lower side of tips of primary roots, and 2) suggest that the reduced polar movement of Ca across tips of lateral roots may be involved in uncoupling gravistimulation from gravicurvature in lateral roots.  相似文献   

15.
We examined the influence of aluminum and calcium (and certain other cations) on hormone transport in corn roots. When aluminum was applied unilaterally to the caps of 15 mm apical root sections the roots curved strongly away from the aluminum. When aluminum was applied unilaterally to the cap and 3H-indole-3-acetic acid was applied to the basal cut surface twice as much radioactivity (assumed to be IAA) accumulated on the concave side of the curved root as on the convex side. Auxin transport in the apical region of intact roots was preferentially basipetal, with a polarity (basipetal transport divided by acropetal transport) of 6.3. In decapped 5 mm apical root segments, auxin transport was acropetally polar (polarity = 0.63). Application of aluminum to the root cap strongly promoted acropetal transport of auxin reducing polarity from 6.3 to 2.1. Application of calcium to the root cap enhanced basipetal movement of auxin, increasing polarity from 6.3 to 7.6. Application of the calcium chelator, ethylene-glycol-bis-(β-aminoethylether)-N,N,N′, N′-tetraacetic acid, greatly decreased basipetal auxin movement, reducing polarity from 6.3 to 3.7. Transport of label after application of tritiated abscisic acid showed no polarity and was not affected by calcium or aluminum. The results indicate that the root cap is particularly important in maintaining basipetal polarity of auxin transport in primary roots of corn. The induction of root curvature by unilateral application of aluminum or calcium to root caps is likely to result from localized effects of these ions on auxin transport. The findings are discussed relative to the possible role of calcium redistribution in the gravitropic curvature of roots and the possibility of calmodulin involvement in the action of calcium and aluminum on auxin transport.  相似文献   

16.
A computer-assisted, two-dimensional vibrating probe was used to study the ionic currents around developing lateral roots of Raphanus sativus in vitro. This system allowed us to superimpose current vectors on the video image of the roots. In a young lateral root, current entered the cap, meristematic, and elongation zones and exited the primary root surface close to the base of the lateral root. As the lateral root grew, current began to exit from its basal (cell maturation zone) end. The densities of currents entering the apical portion of the faster-growing lateral roots in a medium lacking indole 3-acetic acid were about twice as large as those entering the apical region of the slower-growing lateral roots in indole 3-acetic acid-supplemented medium.  相似文献   

17.
Pine root structure and its potential significance for root function   总被引:2,自引:1,他引:1  
Peterson  Carol A.  Enstone  Daryl E.  Taylor  Jeff H. 《Plant and Soil》1999,217(1-2):205-213
Actively growing roots of pouch-grown Pinus banksiana Lamb. are known to have three anatomically distinct zones, i.e., white, condensed tannin, and cork (in order of increasing distance from the root tip). Roots of pouch and pot-grown Pinus taeda L., and field-grown P. banksiana also develop these three zones. The terminal region of a dormant root resembles the condensed tannin zone, with the addition of a suberized metacutis partially surrounding the apical meristem. White roots are anatomically suited for efficient ion uptake due to the presence of a living cortex. The condensed tannin zones of both growing and dormant roots have a dead cortex but retain passage cells in their endodermal layers, through which some ion uptake could occur. The effect of the maturation from white to condensed tannin zone on water uptake is difficult to predict, but some uptake would occur through the endodermal passage cells. In the young cork zone, no ion and little water absorption should occur. The discrepancies between results of separate anatomical and physiological investigations of tree roots need to be resolved by correlative studies incorporating both approaches in individual experiments. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
19.
Arabidopsis plants responding to phosphorus (P) deficiency increase lateral root formation and reduce primary root elongation. In addition the number and length of root hairs increases in response to P deficiency. Here we studied the patterns of radical oxygen species (ROS) in the roots of Arabidopsis seedlings cultured on media supplemented with high or low P concentration. We found that P availability affected ROS distribution in the apical part of roots. If plants were grown on high P medium, ROS were located in the root elongation zone and quiescent centre. At low P ROS were absent in the elongation zone, however, their synthesis was detected in the primary root meristem. The proximal part of roots was characterized by ROS production in the lateral root primordia and in elongation zones of young lateral roots irrespective of P concentration in the medium. On the other hand, plants grown at high or low P differed in the pattern of ROS distribution in older lateral roots. At high P, the elongation zone was the primary site of ROS production. At low P, ROS were not detected in the elongation zone. However, they were present in the proximal part of the lateral root meristem. These results suggest that P deficiency affects ROS distribution in distal parts of Arabidopsis roots. Under P-sufficiency ROS maximum was observed in the elongation zone, under low P, ROS were not synthesized in this segment of the root, however, they were detected in the apical root meristem.  相似文献   

20.
Roots of Allium cepa L. grown in aerated water elongate rapidly,but are not graviresponsive. These roots (1) possess extensivecolumella tissues comprised of cells containing numerous sedimentedamyloplasts, (2) lack mucilage on their tips, and (3) are characterizedby a weakly polar movement of calcium (Ca) across their tips.Placing roots in humid air correlates positively with the (1)onset of gravicurvature, (2) appearance of mucilage on tipsof the roots, and (3) onset of the ability to transport Ca polarlyto the lower side of the root tip. Gravicurvature of roots previouslysubmerged in aerated water is more rapid when roots are orientedvertically for 1–2 h in humid air prior to being orientedhorizontally. The more rapid gravicurvature of these roots correlatespositively with the accumulation of mucilage at the tips ofroots during the time the roots are oriented vertically. Therefore,the onset of gravicurvature and the ability of roots to transportCa to the lower sides of their tips correlate positively withthe presence of mucilage at their tips. These results suggestthat mucilage may be important for the transport of Ca acrossroot caps. Allium cepa, root gravitropism, root mucilage, calcium, onion  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号