首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA polymorphisms in endothelial nitric oxide synthase (eNOS) gene have been shown to be associated with constitutive eNOS expression and coronary artery disease (CAD). In the present study we explored the hypothesis whether genotype-dependent effects can be maintained in vitro during replication, or the effect is conditional on in vivo biological environments. Human umbilical vein endothelial cells (HUVEC) were collected and cultured from 89 normal deliveries of Mexican Americans. The cells were treated with or without cigarette smoking extracts (CSE) and genotypes of eNOS polymorphisms were determined by PCR. We measured the levels of eNOS by ELISA and its binding proteins including heat-shock protein 90 (Hsp-90) and caveolin-1 by Western blotting. The rare C allele for the promoter T786C polymorphism (0.2), and the rare 4 x 27-bp repeat allele in the intron 4 (0.30) were different from those reported in other populations. Yet, the rare T allele in the exon 7 (G894T polymorphism) was similar as others. After four passages in vitro, both the intron 4 and promoter polymorphisms maintained significant effects on eNOS mRNA levels in HUVECs (P < 0.05). However, the effects on eNOS protein and enzyme activity were less consistent. Although primary smokers had significantly lower eNOS protein levels (P < 0.05), the in vitro CSE treatment on cultured HUVECs only resulted in a significant reduction in NO levels as measured by the stable metabolites of nitrite/nitrate (P < 0.001). Neither Hsp-90 nor caveolin-1--important eNOS regulators--appears to mediate the genotypesmoking effects on eNOS expression although HUVECs did produce more Hsp-90 when exposed to CSE. Our study demonstrates that endothelial cells maintain genotype-dependent expression even after the deprivation of in vivo environment. However, the cigarette smoking-genotype interaction may require such in vivo conditions to be manifested.  相似文献   

2.
Hypercholesterolemia-induced vascular disease and atherosclerosis are characterized by a decrease in the bioavailability of endothelium-derived nitric oxide. Endothelial nitric-oxide synthase (eNOS) associates with caveolae and is directly regulated by the caveola protein, caveolin. In the present study, we examined the effects of oxidized low density lipoprotein (oxLDL) on the subcellular location of eNOS, on eNOS activation, and on caveola cholesterol in endothelial cells. We found that treatment with 10 microgram/ml oxLDL for 60 min caused greater than 90% of eNOS and caveolin to leave caveolae. Treatment with oxLDL also inhibited acetylcholine-induced activation of eNOS but not prostacyclin production. oxLDL did not affect total cellular eNOS abundance. Oxidized LDL also did not affect the palmitoylation, myristoylation or phosphorylation of eNOS. Oxidized LDL, but not native LDL, or HDL depleted caveolae of cholesterol by serving as an acceptor for cholesterol. Cyclodextrin also depleted caveolae of cholesterol and caused eNOS and caveolin to translocate from caveolae. Furthermore, removal of oxLDL allowed eNOS and caveolin to return to caveolae. We conclude that oxLDL-induced depletion of caveola cholesterol causes eNOS to leave caveolae and inhibits acetylcholine-induced activation of the enzyme. This process may be an important mechanism in the early pathogenesis of atherosclerosis.  相似文献   

3.
Endothelial nitric-oxide synthase (eNOS) is regulated in part through specific protein interactions. Dynamin-2 is a large GTPase residing within similar membrane compartments as eNOS. Here we show that dynamin-2 binds directly with eNOS thereby augmenting eNOS activity. Double label confocal immunofluorescence demonstrates colocalization of eNOS and dynamin in both Clone 9 cells cotransfected with green fluorescent protein-dynamin and eNOS, as well as in bovine aortic endothelial cells (BAEC) expressing both proteins endogenously, predominantly in a Golgi membrane distribution. Immunoprecipitation of eNOS from BAEC lysate coprecipitates dynamin and, conversely, immunoprecipitation of dynamin coprecipitates eNOS. Additionally, the calcium ionophore, a reagent that promotes nitric oxide release, enhances coprecipitation of dynamin with eNOS in BAEC, suggesting the interaction between the proteins can be regulated by intracellular signals. In vitro studies demonstrate that glutathione S-transferase (GST)-dynamin-2 quantitatively precipitates both purified recombinant eNOS protein as well as in vitro transcribed (35)S-labeled eNOS from solution indicating a direct interaction between the proteins in vitro. Scatchard analysis of binding studies demonstrates an equilibrium dissociation constant (K(d)) of 27.6 nm. Incubation of purified recombinant eNOS protein with GST-dynamin-2 significantly increases eNOS activity as does overexpression of dynamin-2 in ECV 304 cells stably transfected with eNOS-green fluorescent protein. These studies demonstrate a direct protein-protein interaction between eNOS and dynamin-2, thereby identifying a new NOS-associated protein and providing a novel function for dynamin. These events may have relevance for eNOS regulation and trafficking within vascular endothelium.  相似文献   

4.
Endothelial NOS (eNOS)-derived NO is a key factor in regulating microvascular permeability. We demonstrated previously that eNOS translocation from the plasma membrane to the cytosol is required for hyperpermeability. Herein, we tested the hypothesis that eNOS activation in the cytosol is necessary for agonist-induced hyperpermeability. To study the fundamental properties of endothelial cell monolayer permeability, we generated ECV-304 cells that stably express cDNA constructs targeting eNOS to the cytosol or plasma membrane. eNOS-transfected ECV-304 cells recapitulate the eNOS translocation and permeability properties of postcapillary venular endothelial cells (Sánchez, F. A., Rana, R., Kim, D. D., Iwahashi, T., Zheng, R., Lal, B. K., Gordon, D. M., Meininger, C. J., and Durán, W. N. (2009) Proc. Natl. Acad. Sci. U.S.A. 106, 6849-6853). We used platelet-activating factor (PAF) as a proinflammatory agonist. PAF activated eNOS by increasing phosphorylation of Ser-1177 and inducing dephosphorylation of Thr-495, increasing NO production, and elevating permeability to FITC-dextran 70 in monolayers of cells expressing wild-type and cytosolic eNOS. PAF failed to increase permeability to FITC-dextran 70 in monolayers of cells transfected with eNOS targeted to the plasma membrane. Interestingly, this occurred despite eNOS Ser-1177 phosphorylation and production of comparable amounts of NO. Our results demonstrate that the presence of eNOS in the cytosol is necessary for PAF-induced hyperpermeability. Our data provide new insights into the dynamics of eNOS and eNOS-derived NO in the process of inflammation.  相似文献   

5.
Endothelial dysfunction leads to lethal vascular complications in diabetes and related metabolic disorders. Here, we demonstrate that de novo lipogenesis, an insulin-dependent process driven by the multifunctional enzyme fatty-acid synthase (FAS), maintains endothelial function by targeting endothelial nitric-oxide synthase (eNOS) to the plasma membrane. In mice with endothelial inactivation of FAS (FASTie mice), eNOS membrane content and activity were decreased. eNOS and FAS were physically associated; eNOS palmitoylation was decreased in FAS-deficient cells, and incorporation of labeled carbon into eNOS-associated palmitate was FAS-dependent. FASTie mice manifested a proinflammatory state reflected as increases in vascular permeability, endothelial inflammatory markers, leukocyte migration, and susceptibility to LPS-induced death that was reversed with an NO donor. FAS-deficient endothelial cells showed deficient migratory capacity, and angiogenesis was decreased in FASTie mice subjected to hindlimb ischemia. Insulin induced FAS in endothelial cells freshly isolated from humans, and eNOS palmitoylation was decreased in mice with insulin-deficient or insulin-resistant diabetes. Thus, disrupting eNOS bioavailability through impaired lipogenesis identifies a novel mechanism coordinating nutritional status and tissue repair that may contribute to diabetic vascular disease.  相似文献   

6.
Although several reports have indicated that eNOS is a highly sensitive calpain substrate, the occurrence of a concomitant Ca(2+)-dependent activation of the synthase and of the protease has never been analyzed in specific direct experiments. In this study, we have explored in vivo how eNOS can undergo Ca(2+)-dependent translocation and activation, protected against degradation by activated calpain. Here we demonstrate that following a brief exposure to Ca(2+)-loading, the cytosolic eNOS-HSP90 complex recruits calpain in a form in which the chaperone and the synthase are almost completely resistant to digestion by the protease. Furthermore, in the presence of the HSP90 inhibitor geldanamycin, a significant decrease in NO production and an extensive degradation of eNOS protein occurs, indicating that dissociation from membranes and association with the chaperone is correlated to the protection of the synthase. Experiments with isolated membrane preparations confirm the primary role of HSP90 in dissociation of eNOS from caveolae. Prolonged exposure of cells to Ca(2+)-loading resulted in an extensive degradation of both eNOS and HSP90, accompanied by a large suppression of NO production. We propose that the protective effect exerted by HSP90 on eNOS degradation mediated by calpain represents a novel and critical mechanism that assures the reversibility of the intracellular trafficking and activation of the synthase.  相似文献   

7.
Endothelial nitric-oxide synthase (eNOS), which generates the endogenous vasodilator, nitric oxide (NO), is highly regulated by post-translational modifications and protein interactions. We recently used purified proteins to characterize the mechanisms by which heat shock protein 90 (HSP90) increases eNOS activity at low and high Ca2+ levels (Takahashi, S. and Mendelsohn, M. E. (2003) J. Biol. Chem. 278, 9339-9344). Here we extend these studies to explore interactions between HSP90, Akt, and eNOS. In studies with purified proteins, HSP90 increased the initial rate and maximal extent of Akt-mediated eNOS phosphorylation and activation at low Ca2+ levels. Akt was not observed in the eNOS complex in the absence of HSP90, but both active and inactive Akt associated with eNOS in the presence of HSP90. Direct binding of Akt to HSP90 was observed even in the absence of eNOS. HSP90 also facilitated CaM binding to eNOS irrespective of Akt presence. Geldanamycin (GA) disrupted HSP90-eNOS binding, reduced HSP90-stimulated CaM binding, and blocked both recruitment of Akt to the eNOS complex and phosphorylation of eNOS at Ser-1179. Akt phosphorylated only CaM-bound eNOS, in an HSP90-independent manner. HSP90 and active Akt together increased eNOS activity synergistically, which was reversed by GA. In bovine aortic endothelial cells (BAECs), the effects of vascular endothelial growth factor (VEGF) and insulin on eNOS-HSP90-Akt complex formation and eNOS activation were compared. BAPTA-AM inhibited VEGF- but not insulin-induced eNOS-HSP90-Akt complex formation and eNOS phosphorylation. Insulin caused rapid, transient increase in eNOS activity correlated temporally with the formation of eNOS-HSP90-Akt complex. GA prevented insulin-induced association of HSP90, Akt and CaM with eNOS and inhibited eNOS activation in BAECs. Both platelet-derived growth factor (PDGF) and insulin induced activation of Akt in BAECs, but only insulin caused HSP90-Akt-eNOS association and eNOS phosphorylation. These results demonstrate that HSP90 and Akt synergistically activate eNOS and suggest that this synergy contributes to Ca2+-independent eNOS activation in response to insulin.  相似文献   

8.
The expression of inducible nitric-oxide synthase (iNOS) and subsequent "high-output" nitric oxide (NO) production underlies the systemic hypotension, inadequate tissue perfusion, and organ failure associated with septic shock. Therefore, modulators of iNOS expression and activity, both endogenous and exogenous, are important in determining the magnitude and time course of this condition. We have shown previously that NO from the constitutive endothelial NOS (eNOS) is necessary to obtain maximal iNOS expression and activity following exposure of murine macrophages to lipopolysaccharide (LPS). Thus, eNOS represents an important regulator of iNOS expression in vitro. Herein, we validate this hypothesis in vivo using a murine model of sepsis. A temporal reduction in iNOS expression and activity was observed in LPS-treated eNOS knock-out (KO) mice as compared with wild-type animals; this was reflected in a more stable hemodynamic profile in eNOS KO mice during endotoxaemia. Furthermore, in human umbilical vein endothelial cells, LPS leads to the activation of eNOS through phosphoinositide 3-kinase- and Akt/protein kinase B-dependent enzyme phosphorylation. These data indicate that the pathogenesis of sepsis is characterized by an initial eNOS activation, with the resultant NO acting as a co-stimulus for the expression of iNOS, and therefore highlight a novel pro-inflammatory role for eNOS.  相似文献   

9.
Nitric oxide (NO) is thought to play an important role in the regulation of neonatal pulmonary vasculature. It has been suggested that neonates with pulmonary hypertension have a defective NO pathway. Therefore, we measured in 1-day-old piglets exposed to hypoxia (fraction of inspired O(2) = 0.10) for 3 or 14 days to induce pulmonary hypertension 1) the activity of NO synthase (NOS) via conversion of L-arginine to L-citrulline and the concentration of the NO precursor L-arginine in isolated pulmonary vessels, 2) the vasodilator response to the NO donor 3-morpholinosydnonimine-N-ethylcarbamide (SIN-1) and the cGMP analog 8-bromo-cGMP in isolated perfused lungs, and 3) the production of cGMP in response to SIN-1 in isolated perfused lungs. After 3 days of exposure to hypoxia, endothelial NOS (eNOS) activity was unaffected, whereas, after 14 days of hypoxia, eNOS activity was decreased in the cytosolic fraction of pulmonary artery (P < 0.05) but not of pulmonary vein homogenates. Inducible NOS activity was decreased in the cytosolic fraction of pulmonary artery homogenates after both 3 (P < 0.05) and 14 (P < 0.05) days of hypoxia but was unchanged in pulmonary veins. Pulmonary artery levels of L-arginine were unaffected by hypoxic exposure. After 3 days of exposure to hypoxia, the reduction in the dilator response to SIN-1 (P < 0.05) coincided with a decrease in cGMP production (P < 0.005), suggesting that soluble guanylate cyclase activity may be altered. When the exposure was prolonged to 14 days, dilation to SIN-1 remained decreased (P < 0.05) and, although cGMP production normalized, the dilator response to 8-bromo-cGMP decreased (P < 0.05), suggesting that, after prolonged exposure to hypoxia, cGMP-dependent mechanisms may also be impaired. In conclusion, neonatal hypoxia-induced pulmonary hypertension is associated with multiple disruptions in the NO pathway.  相似文献   

10.
Sphingosine 1-phosphate (S1P) and vascular endothelial growth factor (VEGF) elicit numerous biological responses including cell survival, growth, migration, and differentiation in endothelial cells mediated by the endothelial differentiation gene, a family of G-protein-coupled receptors, and fetal liver kinase-1/kinase-insert domain-containing receptor (Flk-1/KDR), one of VEGF receptors, respectively. Recently, it was reported that S1P or VEGF treatment of endothelial cells leads to phosphorylation at Ser-1179 in bovine endothelial nitric oxide synthase (eNOS), and this phosphorylation is critical for eNOS activation. S1P stimulation of eNOS phosphorylation was shown to involve G(i) protein, phosphoinositide 3-kinase, and Akt. VEGF also activates eNOS through Flk-1/KDR, phosphoinositide 3-kinase, and Akt, which suggested that S1P and VEGF may share upstream signaling mediators. We now report that S1P treatment of bovine aortic endothelial cells acutely increases the tyrosine phosphorylation of Flk-1/KDR, similar to VEGF treatment. S1P-mediated phosphorylation of Flk-1/KDR, Akt, and eNOS were all inhibited by VEGF receptor tyrosine kinase inhibitors and by antisense Flk-1/KDR oligonucleotides. Our study suggests that S1P activation of eNOS involves G(i), calcium, and Src family kinase-dependent transactivation of Flk-1/KDR. These data are the first to establish a critical role of Flk-1/KDR in S1P-stimulated eNOS phosphorylation and activation.  相似文献   

11.
Endothelial cell nitric-oxide (NO) synthase (eNOS), the enzyme responsible for synthesis of NO in the vasculature, undergoes extensive post-translational modifications that modulate its activity. Here we have identified a novel eNOS interactor, G-protein-coupled receptor (GPCR) kinase interactor-1 (GIT1), which plays an unexpected role in GPCR stimulated NO signaling. GIT1 interacted with eNOS in the endothelial cell cytoplasm, and this robust association was associated with stimulatory eNOS phosphorylation (Ser(1177)), enzyme activation, and NO synthesis. GIT1 knockdown had the opposite effect. Additionally, GIT1 expression was reduced in sinusoidal endothelial cells after liver injury, consistent with previously described endothelial dysfunction in this disease. Re-expression of GIT1 after liver injury rescued the endothelial phenotype. These data emphasize the role of GPCR signaling partners in eNOS function and have fundamental implications for vascular disorders involving dysregulated eNOS.  相似文献   

12.
We have recently demonstrated that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) increases endothelial nitric oxide synthase (eNOS) phosphorylation, NOS activity, and nitric oxide (NO) synthesis in cultured human umbilical vein endothelial cells (HUVEC), without inducing apoptotic cell death. Although an important factor that regulates eNOS activity is its localization within the cells, little is known about the role of TRAIL in the regulation of eNOS trafficking among cellular compartments and the cytoskeleton involvement in this machinery. Then, we did both quantitative and semi-quantitative evaluations with biochemical assays and immune fluorescence microscopy in the presence of specific inhibitors of NOS activity as well as of cytoskeletal microtubule structures. In our cellular model, TRAIL treatment not only increased NO levels but also caused a time-dependent NO migration of fluorescent spots from the plasma membrane to the inner part of the cells. In unstimulated cells, most of the eNOS was localized at the cell membranes. However, within 10 min following addition of TRAIL, nearly all the cells showed an increased cytoplasm localization of eNOS which appeared co-localized with the Golgi apparatus at a higher extent than in unstimulated cells. These effects were associated to an increased formation of trans-cytoplasm stress fibers with no significant changes of the microtubule network. Conversely, microtubule disruption and Golgi scattering induced with Nocodazole treatment inhibited TRAIL-increased NOS activity, indicating that, on cultured HUVEC, TRAIL ability to affect NO production by regulating eNOS sub-cellular distribution is mediated by cytoskeleton and Golgi complex modifications.  相似文献   

13.
Persistent pulmonary hypertension of newborn (PPHN) is associated with decreased nitric oxide (NO) release and impaired pulmonary vasodilation. We investigated the hypothesis that decreased association of heat shock protein 90 (HSP90) with endothelial NO synthase (eNOS) impairs NO release and vasodilation in PPHN. The responses to the NOS agonist ATP were investigated in fetal lambs with PPHN induced by prenatal ligation of ductus arteriosus, and in sham ligation controls. ATP caused dose-dependent vasodilation in control pulmonary resistance arteries, and this response was attenuated in PPHN vessels. The response of control pulmonary arteries to ATP was attenuated by NG-nitro-l-arginine methyl ester (l-NAME), a NOS antagonist, and geldanamycin, an inhibitor of HSP90-eNOS interaction. The attenuated response to ATP observed in PPHN was improved by pretreatment of vessels with l-NAME or 4,5-dihydroxy-1,3-benzene-disulfonate, a superoxide scavenger. Pulmonary arteries from PPHN lambs had decreased basal levels of HSP90 in association with eNOS. Association of HSP90 with eNOS and NO release increased in response to ATP in control pulmonary artery endothelial cells, but not in cells from PPHN lambs. Decreased HSP90-eNOS interactions may contribute to the impaired NO release and vasodilation observed in the ductal ligation model of PPHN.  相似文献   

14.
15.
Urokinase plasminogen activator (uPA) and PA inhibitor type 1 (PAI-1) are elevated in acute lung injury, which is characterized by a loss of endothelial barrier function and the development of pulmonary edema. Two-chain uPA and uPA-PAI-1 complexes (1-20 nM) increased the permeability of monolayers of human pulmonary microvascular endothelial cells (PMVECs) in vitro and lung permeability in vivo. The effects of uPA-PAI-1 were abrogated by the nitric-oxide synthase (NOS) inhibitor L-NAME (N(D)-nitro-L-arginine methyl ester). Two-chain uPA (1-20 nM) and uPA-PAI-1 induced phosphorylation of endothelial NOS-Ser(1177) in PMVECs, which was followed by generation of NO and the nitrosylation and dissociation of β-catenin from VE-cadherin. uPA-induced phosphorylation of eNOS was decreased by anti-low density lipoprotein receptor-related protein-1 (LRP) antibody and an LRP antagonist, receptor-associated protein (RAP), and when binding to the uPA receptor was blocked by the isolated growth factor-like domain of uPA. uPA-induced phosphorylation of eNOS was also inhibited by the protein kinase A (PKA) inhibitor, myristoylated PKI, but was not dependent on PI3K-Akt signaling. LRP blockade and inhibition of PKA prevented uPA- and uPA-PAI-1-induced permeability of PMVEC monolayers in vitro and uPA-induced lung permeability in vivo. These studies identify a novel pathway involved in regulating PMVEC permeability and suggest the utility of uPA-based approaches that attenuate untoward permeability following acute lung injury while preserving its salutary effects on fibrinolysis and airway remodeling.  相似文献   

16.
The activity of endothelial nitric-oxide synthase (eNOS) is regulated by its subcellular localization, phosphorylation and through its interaction with different proteins. The association of eNOS with caveolin-1 (Cav) is believed to maintain eNOS in an inactive state; however, increased association of eNOS to heat shock protein 90 (hsp90) is observed following activation. In this study, we investigate the relationship between caveolin and hsp90 as opposing regulatory proteins on eNOS function. Immunoprecipitation of Cav-1 from bovine lung microvascular endothelial cells shows that eNOS and hsp90 are present in the Cav-1 complex. eNOS and hsp90 from the lysate also interact with exogenous glutathione S-transferase-linked caveolin-1 (GST-Cav), and the addition of calcium-activated calmodulin (CaM) to the GST-Cav complex partially inhibited the association of eNOS and hsp90. Purified eNOS associates with GST-Cav specifically through the caveolin-scaffolding domain (residues 82-101); however, the addition of CaM slightly, but nonstatistically, reduces eNOS binding to GST-Cav. When hsp90 is present in the binding reaction, the addition of increasing concentrations of CaM significantly displaces eNOS and hsp90 from GST-Cav. eNOS enzymatic activity is also less sensitive to inhibition by the caveolin scaffolding peptide (residues 82-101) when eNOS is prebound to hsp90. Collectively, our results show that the actions of CaM on eNOS dissociation from caveolin are facilitated in the presence of hsp90.  相似文献   

17.
Accumulating evidence suggests that chronic stress can be a cofactor for the initiation and progression of cancer. Here we evaluated the role of endothelial nitric oxide synthase (eNOS) in stress-promoted tumour growth of murine B16F10 melanoma cell line in C57BL/6 mice. Animals subjected to restraint stress showed increased levels adrenocorticotropic hormone, enlarged adrenal glands, reduced thymus weight and a 3.61-fold increase in tumour growth in respect to no-stressed animals. Tumour growth was significantly reduced in mice treated with the β-antagonist propranolol. Tumour samples obtained from stressed mice displayed high levels of vascular endothelial growth factor (VEGF) protein in immunohistochemistry. Because VEGF can induce eNOS increase, and nitric oxide is a relevant factor in angiogenesis, we assessed the levels of eNOS protein by Western blot analysis. We found a significant increase in eNOS levels in tumour samples from stressed mice, indicating an involvement of this enzyme in stress-induced tumour growth. Accordingly, chronic stress did not promote tumour growth in eNOS(-/-) mice. These results disclose for the first time a pivotal role for eNOS in chronic stress-induced initiation and promotion of tumour growth.  相似文献   

18.
Endothelial nitric oxide synthase (eNOS or NOS3) is the main responsible for nitric oxide (NO) production in vascular system and different polymorphisms have been identified in epidemiological studies. Trying to test the eNOS genetic variation in general populations we studied the 27-bp VNTR in intron 4 and G894T substitution in exon 7 markers in 6 Western Mediterranean populations (3 from Iberian Peninsula, 1 from North Africa, and 2 from Sardinia) and a sample from Ivory Coast. The VNTR frequencies in Western Mediterranean and Ivory Coast fit well into the ranges previously described for Europeans and Sub-Saharans respectively, and a typical African allele has been detected in polymorphic frequencies in the Berber sample. The G894T substitution presents the highest frequencies described for the T allele in the North Mediterranean populations. Linkage disequilibrium is present between both markers in all populations except in the Ivory Coast sample. The variation found for these polymorphisms indicates that they may be a useful tool for population studies even at microgeographical level.  相似文献   

19.
20.

Objective

Exenatide belongs to a new therapeutic class in the treatment of diabetes (incretin mimetics), allowing glucose-dependent glycaemic control in Type 2 diabetes. Randomised controlled trial data suggest that exenatide is as effective as insulin glargine at reducing HbA1c in combination therapy with metformin and sulphonylureas; with reduced weight but higher incidence of adverse gastrointestinal events. The objective of this study is to evaluate the cost effectiveness of exenatide versus insulin glargine using RCT data and a previously published model of Type 2 diabetes disease progression that is based on the United Kingdom Prospective Diabetes Study; the perspective of the health-payer of the United Kingdom National Health Service.

Methods

The study used a discrete event simulation model designed to forecast the costs and health outcome of a cohort of 1,000 subjects aged over 40 years with sub-optimally-controlled Type 2 diabetes, following initiation of either exenatide, or insulin glargine, in addition to oral hypoglycaemic agents. Sensitivity analysis for a higher treatment discontinuation rate in exenatide patients was applied to the cohort in three different scenarios; (1) either ignored or (2) exenatide-failures excluded or (3) exenatide-failures switched to insulin glargine. Analyses were undertaken to evaluate the price sensitivity of exenatide in terms of relative cost effectiveness. Baseline cohort profiles and effectiveness data were taken from a published randomised controlled trial.

Results

The relative cost-effectiveness of exenatide and insulin glargine was tested under a variety of conditions, in which insulin glargine was dominant in all cases. Using the most conservative of assumptions, the cost-effectiveness ratio of exenatide vs. insulin glargine at the current UK NHS price was -£29,149/QALY (insulin glargine dominant) and thus exenatide is not cost-effective when compared with insulin glargine, at the current UK NHS price.

Conclusion

This study evaluated the relative cost effectiveness of insulin glargine versus exenatide in the management of Type 2 diabetes using a published model. Given no significant difference in glycaemic control and applying the additional effectiveness of exenatide over insulin glargine, with respect to weight loss, and using the current UK NHS prices, insulin glargine was found to be dominant over exenatide in all modelled scenarios. With current clinical evidence, exenatide does not appear to represent a cost-effective treatment option for patients with Type 2 diabetes when compared to insulin glargine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号