首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary High glucose concentrations result in high levels of 2,3-butanediol, improved yield and productivity, and a decrease in cell growth in batch cultures of Klebsiella oxytoca. A maximum of 84.2 g butanediol/l and a yield of 0.5 was obtained with an initial glucose concentration of 262.6g/l. Adding the substrate in two steps in a modified fed-batch operation resulted in 85.5 g butanediol/l, 6.4 g acetoin/l and 3.4 g ethanol/l with a net yield of 0.5. Increasing the cell density to 60g/l resulted in productivities as high as 3.22 g/l.h.  相似文献   

2.
Summary The effect of succinic acid on the growth of Klebsiella oxytoca and its production of 2,3-butanediol was studied. Increasing succinic acid from 0 g/L to 30 g/L increased the final butanediol concentration. The maximum butanediol productivity occurred at an initial succinic acid concentration of approximately 10 g/L.  相似文献   

3.
Production of 2,3-butanediol from D-xylose by Klebsiella oxytoca ATCC 8724   总被引:1,自引:0,他引:1  
It is known that 2,3-butanediol is a potentially valuable chemical feedstock that can be produced from the sugars present in hemicellulose and celluose hydrolysates. Klebsiella oxytoca is able to ferment most pentoses, hexoses, and disaccharides. Butanediol appears to be a primary metabolite, excreted as a product of energy methabolism. The theoretical maximum yield of butanediol from monosaccharides is 0.50 g/g. This article describes the effects of pH, xylose concentration, and the oxygen transfer rate on the bioconversion of D-xylose to 2,3-butanediol. Product inhibition by butanediol is also examined. The most important variable affecting the kinetics of this system appears to be the oxygen transfer rate. A higher oxygen supply favors the formation of cell mass at the expense of butanediol. Decreasing the oxygen supply rate increases the butanediol yield, but decreases the overall conversion rate due to a lower cell concentration.  相似文献   

4.
Klebsiella oxytoca naturally produces a large amount of 2,3-butanediol (2,3-BD), a promising bulk chemical with wide industrial applications, along with various byproducts. In this study, the in silico gene knockout simulation of K. oxytoca was carried out for 2,3-BD overproduction by inhibiting the formation of byproducts. The knockouts of ldhA and pflB genes were targeted with the criteria of maximization of 2,3-BD production and minimization of byproducts formation. The constructed K. oxytoca ΔldhA ΔpflB strain showed higher 2,3-BD yields and higher final concentrations than those obtained from the wild-type and ΔldhA strains. However, the simultaneous deletion of both genes caused about a 50 % reduction in 2,3-BD productivity compared with K. oxytoca ΔldhA strain. Based on previous studies and in silico investigation that the agitation speed during 2,3-BD fermentation strongly affected cell growth and 2,3-BD synthesis, the effect of agitation speed on 2,3-BD production was investigated from 150 to 450 rpm in 5-L bioreactors containing 3-L culture media. The highest 2,3-BD productivity (2.7 g/L/h) was obtained at 450 rpm in batch fermentation. Considering the inhibition of acetoin for 2,3-BD production, fed-batch fermentations were performed using K. oxytoca ΔldhA ΔpflB strain to enhance 2,3-BD production. Altering the agitation speed from 450 to 350 rpm at nearly 10 g/L of acetoin during the fed-batch fermentation allowed for the production of 113 g/L 2,3-BD, with a yield of 0.45 g/g, and for the production of 2.1 g/L/h of 2,3-BD.  相似文献   

5.
Production of 2,3-butanediol by Klebsiella oxytoca is influenced by the degree of oxygen limitation. During batch culture studies, two phases of growth are observed: energy-coupled growth, during which cell growth and oxygen supply are coupled; and, energy-uncoupled growth, which arises when the degree of oxygen limitation reaches a critical value. Optimal 2,3-butanediol productivity occurs during the energy-coupled growth phase. In this article, a control system which maintains the batch culture at a constant level of oxygen limitation in the energy-coupled growth regime has been designed. Control, which involves feedback control on the oxygen transfer coefficient, is achieved by continually increasing the partial pressure of oxygen in the feed gas, which in turn continually increases the oxygen transfer rate. Control has resulted in a balanced state of growth, a repression of ethanol formation, and an increase in 2,3-butanediol productivity of 18%. (c) 1993 John Wiley & Sons, Inc.  相似文献   

6.
Klebsiella is one of the genera that has shown unbeatable production performance of 2,3-butanediol (2,3-BD), when compared to other microorganisms. In this study, two Klebsiella strains, K. pneumoniae (DSM 2026) and K. oxytoca (ATCC 43863), were selected and evaluated for 2,3-BD production by batch and fed-batch fermentations using glucose as a carbon source. Those strains' morphologies, particularly their capsular structures, were analyzed by scanning electron microscopy (SEM). The maximum titers of 2,3-BD by K. pneumoniae and K. oxytoca during 10 h batch fermentation were 17.6 and 10.9 g L(-1), respectively; in fed-batch cultivation, the strains showed the maximum titers of 50.9 and 34.1 g L(-1), respectively. Although K. pneumoniae showed higher productivity, SEM showed that it secreted large amounts of capsular polysaccharide, increasing pathogenicity and hindering the separation of cells from the fermentation broth during downstream processing.  相似文献   

7.
The microbial production of 1,3-propaneidol (1,3-PD) by Klebsiella pneumoniae in continuous fermentation was investigated under low, medium and high glycerol concentrations in the absence and presence of oxygen. The production of 1,3-PD increased with increasing glycerol concentrations, reaching a maximum (266 mmol l−1) under high glycerol concentration (760 mmol l−1) with air sparging at 0.04 vvm. The yield of 1,3-PD, however, decreased gradually with increasing glycerol concentrations, with the highest yield (0.52 mol mol−1) obtained for low glycerol concentration (270 mmol l−1) under anaerobic condition. Enzyme activity assays showed that the specific activity of glycerol dehydratase was highest (0.04 U mg−1) for culture sparged with 0.04 vvm air under high glycerol concentration. The specific activities of glycerol dehydrogenase and 1,3-propanediol oxidoreductase were also improved for all glycerol concentrations and in the presence of oxygen, implying that the dha operon was not repressed under microaerobic conditions. Analysis of metabolic fluxes showed that more carbon flux was shifted to the oxidative pathway with increasing glycerol concentrations, resulting in a reduced flux to 1,3-PD formation. However, the increases in carbon fluxes were not evenly distributed among the oxidative branches of the pathway. Furthermore, ethanol and acetic acid levels were slightly increased whereas 2,3-butanediol and lactic levels were greatly enhanced.  相似文献   

8.
This paper deals with the production of 2,3- butanediol by K. oxytoca in batch cultures. The effect of urea on various kinetic parameters was studied by replacing the ammonium salts in the medium with the corresponding nitrogen equivalent in the form of urea. The specific growth rate and the product yield in an unacclimatised batch culture were found to be 0.29 h?1 and 0.26 g·g?1 respectively. The acclimatised batch cultures on the other hand behaved similar to that grown using the original medium with a specific growth rate of 0.66 h?1 and the product yield of 0.345 g·g?1. However the cultures were unable to grow when urea was used both as the carbon and nitrogen source.  相似文献   

9.
Shin SH  Kim S  Kim JY  Lee S  Um Y  Oh MK  Kim YR  Lee J  Yang KS 《Journal of bacteriology》2012,194(9):2371-2372
Here we report the full genome sequence of Klebsiella oxytoca KCTC 1686, which is used in production of 2,3-butanediol. The KCTC 1686 strain contains 5,974,109 bp with G+C content of 56.05 mol% and contains 5,488 protein-coding genes and 110 structural RNAs.  相似文献   

10.
A variety of microorganism species are able naturally to produce 2,3-butanediol (2,3-BDO), although only a few of them are suitable for consideration as having potential for mass production purposes. Klebsiella pneumoniae (K. pneumoniae) is one such strain which has been widely studied and used industrially to produce 2,3-BDO. In the central carbon metabolism of K. pneumoniae, the 2,3-BDO synthesis pathway is dominated by three essential enzymes, namely acetolactate decarboxylase, acetolactate synthase, and butanediol dehydrogenase, which are encoded by the budA, budB, and budC genes, respectively. The mechanisms of the three enzymes have been characterized with regard to their function and roles in 2,3-BDO synthesis and cell growth (Blomqvist et al. in J Bacteriol 175(5):1392–1404, 1993), while a few studies have focused on the cooperative mechanisms of the three enzymes and their mutual interactions. Therefore, the K. pneumoniae KCTC2242::ΔwabG wild-type strain was utilized to reconstruct seven new mutants by single, double, and triple overexpression of the three enzymes key to this study. Subsequently, continuous cultures were performed to obtain steady-state metabolism in the organisms and experimental data were analyzed by metabolic flux analysis (MFA) to determine the regulation mechanisms. The MFA results showed that the seven overexpressed mutants all exhibited enhanced 2,3-BDO production, and the strain overexpressing the budBA gene produced the highest yield. While the enzyme encoded by the budA gene produced branched-chain amino acids which were favorable for cell growth, the budB gene enzyme rapidly enhanced the conversion of acetolactate to acetoin in an oxygen-dependent manner, and the budC gene enzyme catalyzed the reversible conversion of acetoin to 2,3-BDO and regulated the intracellular NAD+/NADH balance.  相似文献   

11.
2,3-Butanediol (2,3-BDO) is an organic compound with a wide range of industrial applications. Although Escherichia coli is often used for the production of organic compounds, the wild-type E. coli does not contain two essential genes in the 2,3-BDO biosynthesis pathway, and cannot ferment 2,3-BDO. Therefore, a 2,3-BDO biosynthesis mutant strain of Escherichia coli was constructed and cultured. To determine the optimum culture factors for 2,3-BDO production, experiments were conducted under different culture environments ranging from strongly acidic to neutral pH. The extracellular metabolite profiles were obtained using high-performance liquid chromatography (HPLC), and the intracellular metabolite profiles were analyzed by ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry (UPLC/ Q-TOF-MS). Metabolic flux analysis (MFA) was used to integrate these profiles. The metabolite profiles showed that 2,3-BDO production favors an acidic environment (pH 5), whereas cell mass favors a neutral environment. Furthermore, when the pH of the culture fell below 5, both the cell growth and 2,3-BDO production were inhibited.  相似文献   

12.
Microbial preference for glucose implies incomplete and/or slow utilization of lignocellulose hydrolysates, which is caused by the regulatory mechanism named carbon catabolite repression (CCR). In this study, a 2,3-butanediol (2,3-BD) producing Klebsiella oxytoca strain was engineered to eliminate glucose repression of xylose utilization. The crp(in) gene, encoding the mutant cyclic adenosine monophosphate (cAMP) receptor protein CRP(in), which does not require cAMP for functioning, was characterized and overexpressed in K. oxytoca. The engineered recombinant could utilize a mixture of glucose and xylose simultaneously, without CCR. The profiles of sugar consumption and 2,3-BD production by the engineered recombinant, in glucose and xylose mixtures, were examined and showed that glucose and xylose could be consumed simultaneously to produce 2,3-BD. This study offers a metabolic engineering strategy to achieve highly efficient utilization of sugar mixtures derived from the lignocellulosic biomass for the production of bio-based chemicals using enteric bacteria.  相似文献   

13.
A backpropagation neural network (BPN) was applied for the control study of 2,3-butanediol fermentation (2,3-BDL) carried by Klebsiella oxytoca. The measurements of cell mass and glucose were not included in the network models, instead, only the on-line measured product concentrations from the MIMS (membrane introduction mass spectrometer) were involved. Oxygen composition was chosen to be the control variable for this fermentation system for the formation of 2,3-BDL is regulated by oxygen. Oxygen composition was directly correlated to the measured product concentrations. A two-dimensional (number of input nodes by number of data sets) moving window to supply data for on-line, dynamic learning of this fermentation system was applied. The input nodes of the networks were also properly selected. Two neural network control schemes for this 2,3-BDL fermentation were discussed and compared in this work. Fermentations often exist time delay due to the measurement and their slow reaction nature. Hence, the order of time delay for the network controller was also investigated.  相似文献   

14.
15.
The ability of Klebsiella oxytoca NRRL-B199 to use either lactose or the mixture of glucose and galactose as substrate for the production of 2,3-butanediol was studied in batch fermentations with different conditions of aeration and pH. 2,3-butanediol was undetected, or present in minute concentration in the fermentation broths with lactose, while it was the main product from glucose+galactose with final concentrations of up to 18.8 g/l in media at pH 6.0. Under conditions optimal for 2,3-butanediol synthesis, when aeration limited growth, the rate of biomass growth was more tightly related to the aeration rate in lactose medium than in glucose+galactose medium. These relations suggest that the growth rate is very low on lactose but still considerable on glucose+galactose when aeration rate tends toward zero. Correspondingly, the metabolism is more oxidative in the former medium, yielding mainly acetate as product.Abbreviations CDW cell dry weight  相似文献   

16.
Klebsiella pneumoniae is known to produce meso-2,3-butanediol and 2S,3S-butanediol, whereas 2R,3R-butanediol was detected in the culture broth of K. pneumoniae CGMCC 1.6366. The ratio of 2R,3R-butanediol to all isomers obtained using glycerol as the carbon source was higher than that obtained using glucose as the carbon source. Therefore, enzymes involved in glycerol metabolism are likely related to 2R,3R-butanediol formation. In vitro reactions show that glycerol dehydrogenase catalyzes the stereospecific conversion of R-acetoin to 2R,3R-butanediol and S-acetoin to meso-2,3-butanediol. Butanediol dehydrogenase exhibits high (S)-enantioselectivity in ketone reduction. Genes encoding glycerol dehydrogenase, α-acetolactate decarboxylase, and butanediol dehydrogenase were individually disrupted in K. pneumoniae CGMCC 1.6366, and the 2,3-butanediol synthesis characteristics of these mutants were investigated. K. pneumoniae ΔdhaD lost the ability to synthesize 2R,3R-butanediol. K. pneumoniae ΔbudA showed reduced 2R,3R-butanediol synthesis. However, K. pneumoniae ΔbudC produced a high level of 2R,3R-butanediol, and R-acetoin was accumulated in the broth. The metabolic characteristics of these mutants and in vitro experiment results demonstrated the mechanism of the 2,3-butanediol stereoisomer synthesis pathway. Glycerol dehydrogenase, encoded by dhaD, exhibited 2R,3R-butanediol dehydrogenase activity and was responsible for 2R,3R-butanediol synthesis from R-acetoin. This enzyme also contributed to meso-2,3-butanediol synthesis from S-acetoin. Butanediol dehydrogenase, encoded by budC, was the only enzyme that catalyzed the conversion of diacetyl to S-acetoin and further to 2S,3S-butanediol.  相似文献   

17.
Fermentation efficiency and nutrient costs are both significant factors in process economics for the microbial conversion of cellulosic biomass to commodity chemicals such as ethanol. In this study, we have developed a more industrial medium (OUM1) composed of 0.5% corn steep liquor (dry weight basis) supplemented with mineral salts (0.2%), urea (0.06%), and glucose (9%). Although the growth of strain P2 was vigorous in this medium, approximately 14% of substrate carbon was diverted into 2,3-butanediol and acetoin under the low pH conditions needed for optimal cellulase activity during simultaneous saccharification. Deleting the central region of the budAB genes encoding alpha-acetolactate synthase and alpha-acetolactate decarboxylase eliminated the butanediol and acetoin coproducts and increased ethanol yields by 12%. In OUM1 medium at pH 5.2, strain BW21 produced over 4% ethanol in 48 h (0.47 g ethanol per g glucose). Average productivity (48 h), ethanol titer, and ethanol yield for BW21 in OUM1 medium (pH 5.2) exceeded that of the parent (strain P2) in rich laboratory medium (Luria broth).  相似文献   

18.
Cyanide has been proved to be degraded by Klebsiella oxytoca. In order to examine the physiological responses of cyanide degradation by this bacterium, two-dimensional (2-DE) electrophoresis approach and MALDI–TOF–MS allow us to identify 106 proteins spots that were significantly altered in the presence of 1 mM cyanide in relative to that in 1 mM ammonia when K. oxytoca grown at the late-log phase. Among them, 27 proteins were successfully identified. These proteins were involved in carbohydrate metabolism, nucleotide metabolism, amino acid metabolism, nitrogen metabolism, stress responses, oxidation–reduction reactions, transporters, and miscellaneous function. Some proteins related with regulation of nitrogen assimilation pathways (glutamine synthetase), oxidative stress repairing (catalase), and protection (neutral trehalase and glycosyltransferase) could improve the effectiveness of cyanide biodegradation. Although the nitrogenase was suggested to participate in cyanide degradation in our previous study, this enzyme induction was not observed as expected. These findings could provide new insights into the inducible mechanisms underlying the capacity of K. oxytoca to tolerate cyanide stress.  相似文献   

19.
以筛选的肺炎克雷伯氏菌(Klebsiella pneumoniae UV-86)为对象,考察供氧条件分别对菌体生长、葡萄糖和木糖双底物利用和产物合成的影响.研究发现生物量随氧供应量增加而增加.不同供氧条件对菌体消耗葡萄糖过程的影响较小,而代谢木糖的能力随氧供应量的增大而增强.微氧条件下2,3-丁二醇的生物合成能力最强,2,3-丁二醇产量在1.5 vvm下达到最高为30.1 g/L,是好氧时的2.5倍,最大体积产率为0.485 g/(L·h).不同条件下两底物产物分布有所区别,木糖代谢中乙酸生产增强.因此根据不同阶段代谢特点选择适合的供氧策略可以提高过程产量和产率.  相似文献   

20.
Summary Previously steam explosion had been used to enhance the enzymatic hydrolysis of lignocellulosic substrates to glucose. The conditions for pretreating aspen wood chips were optimized so that highest amounts of undegraded hemicellulose could be obtained after washing the steam exploded chips. The hemicellulose rich water soluble fractions showing highest pentosan yields were then acid hydrolysed to their composite sugars. Approximately 65–75% of the total reducing sugars detected in the wood hydrolysates were in the form of monosaccharides with D-xylose being the major component. Klebsiella pneumoniae was grown in media containing these wood hydrolysates as the substrate and 2,3-butanediol yields of 0.4–0.5 g per g of monosaccharide utilised were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号