首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel analytical approach involving the addition of an ionic liquid into the mobile phase of the thin-layer chromatography (TLC) system during the optimization of chromatographic separation of peptides was demonstrated. Different behavior of peptides in the TLC sytem was observed after the addition of 1,3-dimethylimidazolium methyl sulfate to the eluent in comparison to the system without the ionic liquid. The objective of the work was to study the effect of the addition of different contents of ionic liquid to the mobile phase comprising mostly water and to observe the behavior of peptides' retention. The potential usefulness of environmentally friendly ionic liquids for the optimization of separation of peptides was demonstrated. An increase of R(f) values was observed with increasing the ionic liquid content in the mobile phase. The benefits of the used approach were related to the separation achieved. Finally, quantitative structure-retention relationships (QSRR) were used for the studies on the predictions of peptides' retention in the TLC systems with the addition of ionic liquid in terms of the predictions performed recently in HPLC systems.  相似文献   

2.
Chemistry and applicability of ionic liquids (IL), - organic salts with low melting point - are in the focus of interest today. The ILs with melting point below room temperature are expected to be good solvents. Their applicability in organic synthetic work, in separation processes as well as in electrochemistry is very promising. In the work reported here the voltammetric behavior of ferrocene in 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM+ PF6-) ionic liquid has been investigated. Conventional size and micro platinum and carbon electrodes were employed in CV and in chronoamperometric measurements. Karl Fischer method was used for the determination of water content of the solvent. Voltammetric measurements without addition of background electrolyte could be carried out in (BMIM+ PF6-) ionic liquid. A broad potential window could be used. Concentration dependence of the electrochemically determined diffusion coefficient of the ferrocene was observed.  相似文献   

3.
Protic ionic liquids (PILs) are currently being shown to be as interesting and valuable to chemical manipulations as the well-known aprotic ionic liquids (APIL). PILs have the additional advantage that the proton activity (PA) can be adjusted by the choice of Bronsted base and Bronsted acid used in their formation. In the absence of solvent, the PA plays the role of pH in ordinary solutions. Previously, we have shown that solution of proteins in ionic-liquid-rich solutions conveys surprising stabilization against hydrolysis and aggregation, permitting multiple unfold/refold cycles without loss to aggregation. Here, we show that the denaturing temperatures of both hen egg white lysozyme and ribonuclease A are sensitive to the PA of the PIL as much as they are to pH in aqueous solutions. A maximum stability for more basic solutions is found, and the unfolding process is well described by the two-state (cooperative) model. Finally, we show that, by PA tuning, the PILs can select folding pathways featuring the postulated intermediates so that they are fully populated during the unfolding process. The intermediates are themselves capable of multiple unfold/refold cycles with little loss per cycle to aggregation process.  相似文献   

4.
It has been proposed previously that protic ionic liquids (PILs) such as diethylmethylammonium triflate could be used as the electrolytes in nonhumidified, intermediate temperature H2 fuel cells, potentially offering the prospect of high conductivity and performance, even under anhydrous conditions. In this contribution, a combination of electroanalytical chemistry and fuel‐cell polarization analyses is used to demonstrate for the first time that the pure PILs cannot support proton shuttling between the electrodes of fuel cells. Only through the inclusion of dissolved acidic or basic proton shuttles can viable protic ionic fuel cells be fabricated, which has major consequences for the use of these neoteric electrolytes in fuel cells.  相似文献   

5.
The structural stability of cytochrome c has been studied in alkylammonium formate (AAF) ionic liquids such as methylammonium formate (MAF) and ethylammonium formate (EAF) by fluorescence and circular dichroism (CD) spectroscopy. At room temperature, the native structure of cytochrome c is maintained in relatively high ionic liquid concentrations (50-70% AAF/water or AAF/phosphate buffer pH 7.0) in contrast with denaturation of cytochrome c in similar solutions of methanol or acetonitrile with water or buffer cosolvents. Fluorescence and CD spectra indicate that the conformation of cytochrome c is maintained in 20% AAF-80% water from 30 to 50 °C. No such temperature stability is found in 80% AAF-20% water. About one-third of the enzyme activity of cytochrome c in 80% AAF-20% water can be maintained as compared with phosphate buffer, and this is greater than the activities measured in corresponding methanol and acetonitrile aqueous solutions. This biophysical study shows that AAFs have potential application as organic solvent replacements at moderate temperature in the mobile phase for the separation of proteins in their native form by reversed phase liquid chromatography.  相似文献   

6.
Adsorption of water and ethanol on wheat starch and wheat gluten has been studied in the temperature range of 60–150 °C using inverse gas chromatography (IGC). From the chromatographic retention data it is able to calculate the separation factors for the two solutes and obtain values for thermodynamic parameters such as Gibbs free energy (ΔGs) and the enthalpy (ΔHs) of adsorption of water and ethanol. The results indicate that water is adsorbed more strongly than ethanol at all temperatures, and the low temperature is found to facilitate the adsorptive separation of water from ethanol. It is also shown that the starch definitely plays a crucial role for the water and ethanol separation, despite that wheat flour includes both gluten and starch. The wheat starch is seen to have potential application in biomass water–ethanol separation to obtain fuel ethanol through the preferential adsorption of water from aqueous ethanol.  相似文献   

7.
The selective separation of whey proteins was studied using colloidal gas aphrons generated from the cationic surfactant cetyl trimethyl ammonium bromide (CTAB). From the titration curves obtained by zeta potential measurements of individual whey proteins, it was expected to selectively adsorb the major whey proteins, i.e., bovine serum albumin, alpha-lactalbumin, and beta-lactoglobulin to the aphrons and elute the remaining proteins (lactoferrin and lactoperoxidase) in the liquid phase. A number of process parameters including pH, ionic strength, and mass ratio of surfactant to protein (M(CTAB)/M(TP)) were varied in order to evaluate their effect on protein separation. Under optimum conditions (2 mmol/l CTAB, M(CTAB)/M(TP) = 0.26-0.35, pH 8, and ionic strength = 0.018 mol/l), 80-90% beta-lactoglobulin was removed from the liquid phase as a precipitate, while about 75% lactoferrin and lactoperoxidase, 80% bovine serum albumin, 95% immunoglobulin, and 65% alpha-lactalbumin were recovered in the liquid fraction. Mechanistic studies using zeta potential measurements and fluorescence spectroscopy proved that electrostatic interactions modulate only partially the selectivity of protein separation, as proteins with similar surface charges do not separate to the same extent between the two phases. The selectivity of recovery of beta-lactoglobulin probably occurs in two steps: the first being the selective interaction of the protein with opposite-charged surfactant molecules by means of electrostatic interactions, which leads to denaturation of the protein and subsequent formation and precipitation of the CTAB-beta-lactoglobulin complex. This is followed by the separation of CTAB-beta-lactoglobulin aggregates from the bulk liquid by flotation in the aphron phase. In this way, CGAs act as carriers which facilitate the removal of protein precipitate.  相似文献   

8.
Astaxanthin, as an outstanding antioxidant reagent, was successfully extracted from shrimp waste by the ionic liquids based ultrasonic-assisted extraction. Seven kinds of imidazolium ionic liquids with different cations and anions were investigated in this work and one task-specific ionic liquid in ethanol with 0.50 mol L−1 was selected as the solvent. At the optimized ultrasonic extraction conditions, the extraction amount of astaxanthin increased 98% (92.7 μg g−1) compared to the conventional method (46.7 μg g−1). Furthermore, the extracted solution was isolated through the solid-phase extraction with a molecularly imprinted polymer sorbent. After loading the samples on molecularly imprinted polymer cartridge, the different washing and elution solvents, such as water, methanol, n-hexane, acetone and dichloromethane, were evaluated, and finally, astaxanthin was separated from the shrimp waste extract.  相似文献   

9.
A computer-controlled headspace gas chromatograph was used to monitor the progress of ethanol production from both aerobic batch and anaerobic continuous fermentations. Using an automatic, electropneumatic sampling system, aliquots of fermentation headspace gas were injected directly onto the column for quantitative ethanol determinations every six minutes. A sample volume of 1 mL permitted liquid ethanol concentrations from 2 to 100 g/L to be measured with better than 3% standard deviation on five repeated injections. Provided fermenter liquid temperature and ionic strength were maintained constant, the signal-tohyphen;concentration ratio remained linear to 80 g/L ethanol. This quantitative gas chromatographic (GC) method is suitable for accurate, precise analysis of multiple solvent fermentations, and is limited only by the elution rate and separating capacity of the GC column.  相似文献   

10.
Water immiscible ionic liquids as solvents for whole cell biocatalysis   总被引:9,自引:0,他引:9  
Whole cell biocatalysis can effectively be used for the production of enantiomerically pure compounds, but efficiency is often low. Toxicity and poor solubility of substrates and products are the main obstacles. In this study, water immiscible ionic liquids are shown to have no damaging effects on the cell membranes of Escherichia coli and Saccharomyces cerevisiae. Thus, they can be used as biocompatible solvents for microbial biotransformations exemplified by an increase in yield of chiral alcohol synthesis. As key point to the success of these processes, the distribution ratio of the reactants between the ionic liquid and the aqueous phase was identified. The use of ionic liquids as substrate reservoir and in situ extracting agent for the asymmetric reduction of various ketones resulted in an increase of chemical yield from <50% to 80-90% in simple batch processes. (R)-1-(4-chlorophenyl)ethanol was produced at a higher initial reaction rate in the biphasic system (>50 microM s(-1) L(-1)) compared to the aqueous system. This result demonstrates that good mass transfer rates can be obtained despite the relatively high viscosity of ionic liquids.  相似文献   

11.
Graphene oxide (GO)-based materials have shown promise as water-permeating membranes in pervaporation separation. However, the feed permeation and surface affinity of single-layer nanoporous GO sheet for liquid mixtures remain unresolved. Here, the pressure-driven molecular transport of pure ethanol and pure water, as well ethanol-water mixtures, crossing through single-layer nanoporous GO sheet was studied by non-equilibrium molecular dynamics simulations. We show that single-layer GO sheet with controlled pore sizes can effectively reject ethanol and allow water permeation with high permeability. This means that porous GO sheets could act as an effective dehydration membrane, therefore providing the initial barrier for ethanol passage in GO-based membrane. The pore size effect was considered as the separation mechanism. Both ethanol and water molecules in the mixture show comparable affinity with GO surfaces. The hydrogen-bonding coupling interaction between mixture and surface functional groups provide addition influence on the molecular transport through GO pores.  相似文献   

12.
Selecting an appropriate separation technique is essential for the application of in situ product removal (ISPR) technology in biological processes. In this work, a three-stage systematic design method is proposed as a guide to integrate ionic liquid (IL)-based separation techniques into ISPR. This design method combines the selection of a suitable ISPR processing scheme, the optimal design of an IL-based liquid–liquid extraction (LLE) system followed by process simulation and evaluation. As a proof of concept, results for a conventional acetone–butanol–ethanol fermentation are presented (40,000 ton/year butanol production). In this application, ILs tetradecyl(trihexyl)phosphonium tetracyanoborate ([TDPh][TCB]) and tetraoctylammonium 2-methyl-1-naphthoate ([TOA] [MNaph]) are identified as the optimal solvents from computer-aided IL design (CAILD) method and reported experimental data, respectively. The dynamic simulation results for the fermentation process show that, the productivity of IL-based in situ (fed-batch) process and in situ (batch) process is around 2.7 and 1.8fold that of base case. Additionally, the IL-based in situ (fed-batch) process and in situ (batch) process also have significant energy savings (79.6% and 77.6%) when compared to the base case.  相似文献   

13.
The stereospecific reduction of 6-Br-β-tetralone to its corresponding alcohol (S)-6-Br-β-tetralol was carried out by the yeast Trichosporon capitatum MY1890 and by the bacterium Rhodococcus erythropolis MA7213, using a range of ionic liquids chosen for the diversity of their composition. The decrease in cell viability of both types of cell upon exposure to ionic liquids was found to be between that determined for cells residing purely in fermentation media, and cells residing in a two-phase mixture of media and organic solvent (toluene). For T. capitatum MY1890 bioconversions, the water miscible hydrophilic ionic liquid [Emim][TOS] gave a reaction profile comparable to that observed in the previously studied water-ethanol (10% v/v) system, in terms of overall rate of reaction (0.2 g (prod) L-1 h-1) and conversion (100%). Of the hydrophobic ionic liquids evaluated, [Oc3MeN][BTA] gave the best conversion of 60%, but at a much reduced rate, suggesting solute mass transfer from the ionic liquid phase was rate limiting. For bioconversions carried out with R. erythropolis MA7213 employing 20% v/v [Emim][TOS] as a co-solvent, the conversion yield doubled, and a four-fold increase in initial rate was found compared to the standard ethanol co-solvent. This was attributed to improved cell viability and reduced aggregation of the R. erythropolis MA7213 compared to T. capitatum MY1890. Overall, this study demonstrates the feasibility of using ionic liquids for whole cell biocatalysis, however, no obvious link is apparent between the physico-chemical properties of ionic liquids, their influence on cell viability, and their efficacy as media for bioconversions.  相似文献   

14.
15.
Industrialized nations face a critical problem in replacing the sources of liquid fuels that traditionally have been supplied by petroleum. One solution that has gained increasing support in this country is the use of ethanol produced by fermentation of renewable biomass as an extender in, or supplement to, gasoline for transportation fuel. Distillation, the present method of separating ethanol from the fermentation broth, is an energy-intensive one and frequently uses more energy than is available from the ethanol recovered. There are many investigations under way to find alternative, less energy-intensive techniques for the ethanol-water separation. The separations method described in this article involves the use of solid materials to preferentially remove ethanol from fermentation broths. Subsequent stripping of the ethanol from the sorbent with a dry gas reduces dramatically the energy required for the separation. Three solid sorbents have been investigated experimentally. Their sorption/desorption characteristics are described, and their incorporation in an ethanol recovery process is evaluated. Three sorbents were investigated: two commercially available divinylbenzene crosslinked polystyrene resins in bead form (one with a nominal surface area of 300 m(2)/g, the other with 750 m(2)/g) and an experimental proprietary molecular sieve with hydrophobic properties. Equilibrium adsorption isotherms for two of the sorbents were obtained at ambient temperature (21 degrees C) for ethanol-water solutions containing up to 12 wt. % ethanol. In addition, 40 degrees C isotherms were obtained for the polystyrene sorbents. Although different, the equilibrium isotherms for the sorbents indicated that ethanol could be preferentially sorbed from a dilute solution. Column breakthrough curves indicated very favorable kinetics. Desorption of the ethanol was readily effected with warm (60-80 degrees C), dry nitrogen.  相似文献   

16.
In this paper, a novel l -glutamate based immobilized chiral ionic liquid (SBA-IL (Glu)) was prepared by chemical bonding method and applied as a solid sorbent for chiral separation of amlodipine. The performance of SBA-IL (Glu) was investigated for the absorption of (S)-amlodipine and separation of amlodipine enantiomer. The static experiment showed that equilibrium adsorption was achieved within 80 minutes, and the saturation adsorptions capacity was 12 mg/g. The complex was then packed in a glass chromatographic column for the separation of amlodipine and the enantiomeric excess (%ee) of (S)-amlodipine reached 24.67%. The immobilized ionic liquids exhibit good reusability, and the separation efficiency remains 18.24% after reused five times, which allows potential scale-up for the chiral separation of amlodipine.  相似文献   

17.
Nanofibrillar aerogels were prepared from cellulose, spruce wood and from mixtures of cellulose, lignin and xylan. The lignocellulosic polymers were first dissolved in an ionic liquid and coagulated from solution by adding aqueous ethanol. The obtained gel was washed with ethanol and liquid carbon dioxide and finally dried by releasing the carbon dioxide from the porous structure at supercritical temperature to obtain the aerogel. The bulk densities of the biopolymer aerogels ranged from 25 to 114 g/l and the internal surface areas (BET) from 108 to 539 m2/g depending on the biopolymer mix and on the polymer concentration in the ionic liquid solution. All aerogels were compressible and consisted of nanofibrillar biomaterial network with open-pore structure.  相似文献   

18.
A novel method for chiral separation of flurbiprofen enantiomers was developed using aqueous two‐phase extraction (ATPE) coupled with biphasic recognition chiral extraction (BRCE). An aqueous two‐phase system (ATPS) was used as an extracting solvent which was composed of ethanol (35.0% w/w) and ammonium sulfate (18.0% w/w). The chiral selectors in ATPS for BRCE consideration were L‐dioctyl tartrate and L‐tryptophan, which were screened from amino acids, β‐cyclodextrin derivatives, and L‐tartrate esters. Factors such as the amounts of L‐dioctyl tartrate and L‐tryptophan, pH, flurbiprofen concentration, and the operation temperature were investigated in terms of chiral separation of flurbiprofen enantiomers. The optimum conditions were as follows: L‐dioctyl tartrate, 80 mg; L‐tryptophan, 40 mg; pH, 4.0; flurbiprofen concentration, 0.10 mmol/L; and temperature, 25 °C. The maximum separation factor α for flurbiprofen enantiomers could reach 2.34. The mechanism of chiral separation of flurbiprofen enantiomers is discussed and studied. The results showed that synergistic extraction has been established by L‐dioctyl tartrate and L‐tryptophan, which enantioselectively recognized R‐ and S‐enantiomers in top and bottom phases, respectively. Compared to conventional liquid–liquid extraction, ATPE coupled with BRCE possessed higher separation efficiency and enantioselectivity without the use of any other organic solvents. The proposed method is a potential and powerful alternative to conventional extraction for separation of various enantiomers. Chirality 27:650–657, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
Acetone–butanol–ethanol (ABE) fermentation with a hyper‐butanol producing Clostridium acetobutylicum JB200 was studied for its potential to produce a high titer of butanol that can be readily recovered with gas stripping. In batch fermentation without gas stripping, a final butanol concentration of 19.1 g/L was produced from 86.4 g/L glucose consumed in 78 h, and butanol productivity and yield were 0.24 g/L h and 0.21 g/g, respectively. In contrast, when gas stripping was applied intermittently in fed‐batch fermentation, 172 g/L ABE (113.3 g/L butanol, 49.2 g/L acetone, 9.7 g/L ethanol) were produced from 474.9 g/L glucose in six feeding cycles over 326 h. The overall productivity and yield were 0.53 g/L h and 0.36 g/g for ABE and 0.35 g/L h and 0.24 g/g for butanol, respectively. The higher productivity was attributed to the reduced butanol concentration in the fermentation broth by gas stripping that alleviated butanol inhibition, whereas the increased butanol yield could be attributed to the reduced acids accumulation as most acids produced in acidogenesis were reassimilated by cells for ABE production. The intermittent gas stripping produced a highly concentrated condensate containing 195.9 g/L ABE or 150.5 g/L butanol that far exceeded butanol solubility in water. After liquid–liquid demixing or phase separation, a final product containing ~610 g/L butanol, ~40 g/L acetone, ~10 g/L ethanol, and no acids was obtained. Compared to conventional ABE fermentation, the fed‐batch fermentation with intermittent gas stripping has the potential to reduce at least 90% of energy consumption and water usage in n‐butanol production from glucose. Biotechnol. Bioeng. 2012; 109: 2746–2756. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Introduction – Liquiritin and glycyrrhizin are valuable components of licorice. An effective separation and determination procedure is needed to separate the liquiritin and glycyrrhizin from the licorice extract. Methodology – A polymer‐confined, ionic liquid sorbent was developed using a process involving polymerisation and modification. The obtained porous particles were used as a sorbent in a solid‐phase extraction process to isolate liquiritin and glycyrrhizin from licorice with different washing and elution solvents. The porous alkyl‐pyridinium polymer sorbent was compared with the C18 sorbent. Results – A simple and convenient method was established to the selectively separate and determinate of liquiritin and glycyrrhizin using a porous ionic liquid‐based polymer coupled with HPLC. Additionally, this study evaluated the application of this sorbent for the detection of these two compounds in commercial medicines. Conclusion – This method was a viable tool that was compatible with the existing HPLC methods and was used to separate and analyse the content of liquiritin and glycyrrhizin in licorice. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号