首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies showed that, in wild-type (MATa) cells, alpha-factor causes an essential rise in cytosolic Ca2+. We show that calcineurin, the Ca2+/calmodulin-dependent protein phosphatase, is one target of this Ca2+ signal. Calcineurin mutants lose viability when incubated with mating pheromone, and overproduction of constitutively active (Ca(2+)-independent) calcineurin improves the viability of wild-type cells exposed to pheromone in Ca(2+)-deficient medium. Thus, one essential consequence of the pheromone-induced rise in cytosolic Ca2+ is activation of calcineurin. Although calcineurin inhibits intracellular Ca2+ sequestration in yeast cells, neither increased extracellular Ca2+ nor defects in vacuolar Ca2+ transport bypasses the requirement for calcineurin during the pheromone response. These observations suggest that the essential function of calcineurin in the pheromone response may be distinct from its modulation of intracellular Ca2+ levels. Mutants that do not undergo pheromone-induced cell cycle arrest (fus3, far1) show decreased dependence on calcineurin during treatment with pheromone. Thus, calcineurin is essential in yeast cells during prolonged exposure to pheromone and especially under conditions of pheromone-induced growth arrest. Ultrastructural examination of pheromone-treated cells indicates that vacuolar morphology is abnormal in calcineurin-deficient cells, suggesting that calcineurin may be required for maintenance of proper vacuolar structure or function during the pheromone response.  相似文献   

2.
Highly purified vesicles of rabbit myocardium sarcolemma with predominant inside-out orientation possess the Ca2+-calmodulin-dependent protein kinase activity. At optimal concentrations of calmodulin (0.5 microM) and Ca2+ (0.1 mM), the activity of protein kinase is 0.21 nmol 32P X min X mg of protein. The Km(app) value for ATP is 3.0 X 10(-6) M, V = 0.27 nmol 32P X mg of protein X min. Endogenous Ca2+-calmodulin-dependent protein kinase phosphorylates four protein substrates in sarcolemmal vesicles (Mr = 145, 22, 11.5, and 6-8 KD). Studies with passive efflux of Ca2+ from the SL vesicles showed that the Ca2+-calmodulin-dependent phosphorylation of protein components of sarcolemma inhibits this reaction.  相似文献   

3.
Ca2+ ATPases deplete the cytosol of Ca2+ ions and are crucial to cellular Ca2+ homeostasis. The PMC1 gene of Saccharomyces cerevisiae encodes a vacuole membrane protein that is 40% identical to the plasma membrane Ca2+ ATPases (PMCAs) of mammalian cells. Mutants lacking PMC1 grow well in standard media, but sequester Ca2+ into the vacuole at 20% of the wild-type levels. pmc1 null mutants fail to grow in media containing high levels of Ca2+, suggesting a role of PMC1 in Ca2+ tolerance. The growth inhibitory effect of added Ca2+ requires activation of calcineurin, a Ca2+ and calmodulin-dependent protein phosphatase. Mutations in calcineurin A or B subunits or the inhibitory compounds FK506 and cyclosporin A restore growth of pmc1 mutants in high Ca2+ media. Also, growth is restored by recessive mutations that inactivate the high-affinity Ca(2+)-binding sites in calmodulin. This mutant calmodulin has apparently lost the ability to activate calcineurin in vivo. These results suggest that activation of calcineurin by Ca2+ and calmodulin can negatively affect yeast growth. A second Ca2+ ATPase homolog encoded by the PMR1 gene acts together with PMC1 to prevent lethal activation of calcineurin even in standard (low Ca2+) conditions. We propose that these Ca2+ ATPase homologs are essential in yeast to deplete the cytosol of Ca2+ ions which, at elevated concentrations, inhibits yeast growth through inappropriate activation of calcineurin.  相似文献   

4.
Calcineurin, or PP2B, plays a critical role in mediating Ca2+-dependent signaling in many cell types. In yeast cells, this highly conserved protein phosphatase regulates aspects of ion homeostasis and cell wall synthesis. We show that calcineurin mutants are sensitive to high concentrations of Mn2+ and identify two genes, CCC1 and HUM1, that, at high dosages, increase the Mn2+ tolerance of calcineurin mutants. CCC1 was previously identified by complementation of a Ca2+-sensitive (csg1) mutant. HUM1 (for "high copy number undoes manganese") is a novel gene whose predicted protein product shows similarity to mammalian Na+/Ca2+ exchangers. hum1 mutations confer Mn2+ sensitivity in some genetic backgrounds and exacerbate the Mn2+ sensitivity of calcineurin mutants. Furthermore, disruption of HUM1 in a calcineurin mutant strain results in a Ca2+-sensitive phenotype. We investigated the effect of disrupting HUM1 in other strains with defects in Ca2+ homeostasis. The Ca2+ sensitivity of pmc1 mutants, which lack a P-type ATPase presumed to transport Ca2+ into the vacuole, is exacerbated in a hum1 mutant strain background. Also, the Ca2+ content of hum1 pmc1 cells is less than that of pmc1 cells. In contrast, the Ca2+ sensitivity of vph1 mutants, which are specifically defective in vacuolar acidification, is not significantly altered by disruption of Hum1p function. These genetic interactions suggest that Hum1p may participate in vacuolar Ca2+/H+ exchange. Therefore, we prepared vacuolar membrane vesicles from wild-type and hum1 cells and compared their Ca2+ transport properties. Vacuolar membrane vesicles from hum1 mutants lack all Ca2+/H+ antiport activity, demonstrating that Hum1p catalyzes the exchange of Ca2+ for H+ across the yeast vacuolar membrane.  相似文献   

5.
The PMC1 gene in Saccharomyces cerevisiae encodes a vacuolar Ca2+ ATPase required for growth in high-Ca2+ conditions. Previous work showed that Ca2+ tolerance can be restored to pmc1 mutants by inactivation of calcineurin, a Ca2+/calmodulin-dependent protein phosphatase sensitive to the immunosuppressive drug FK506. We now report that calcineurin decreases Ca2+ tolerance of pmc1 mutants by inhibiting the function of VCX1, which encodes a vacuolar H+/Ca2+ exchanger related to vertebrate Na+/Ca2+ exchangers. The contribution of VCX1 in Ca2+ tolerance is low in strains with a functional calcineurin and is high in strains which lack calcineurin activity. In contrast, the contribution of PMC1 to Ca2+ tolerance is augmented by calcineurin activation. Consistent with these positive and negative roles of calcineurin, expression of a vcx1::lacZ reporter was slightly diminished and a pmc1::lacZ reporter was induced up to 500-fold by processes dependent on calcineurin, calmodulin, and Ca2+. It is likely that calcineurin inhibits VCX1 function mainly by posttranslational mechanisms. Activities of VCX1 and PMC1 help to control cytosolic free Ca2+ concentrations because their function can decrease pmc1::lacZ induction by calcineurin. Additional studies with reporter genes and mutants indicate that PMR1 and PMR2A, encoding P-type ion pumps required for Mn2+ and Na+ tolerance, may also be induced physiologically in response to high-Mn2+ and -Na+ conditions through calcineurin-dependent mechanisms. In these situations, inhibition of VCX1 function may be important for the production of Ca2+ signals. We propose that elevated cytosolic free Ca2+ concentrations, calmodulin, and calcineurin regulate at least four ion transporters in S. cerevisiae in response to several environmental conditions.  相似文献   

6.
In non-excitable cells, one major route for Ca2+ influx is through store-operated Ca2+ channels in the plasma membrane. These channels are activated by the emptying of intracellular Ca2+ stores, and in some cell types store-operated influx occurs through Ca2+ release-activated Ca2+ (CRAC) channels. Here, we report that intracellular Ca2+ modulates CRAC channel activity through both positive and negative feedback steps in RBL-1 cells. Under conditions in which cytoplasmic Ca2+ concentration can fluctuate freely, we find that store-operated Ca2+ entry is impaired either following overexpression of a dominant negative calmodulin mutant or following whole-cell dialysis with a calmodulin inhibitory peptide. The peptide had no inhibitory effect when intracellular Ca2+ was buffered strongly at low levels. Hence, Ca2+-calmodulin is not required for the activation of CRAC channels per se but is an important regulator under physiological conditions. We also find that the plasma membrane Ca2+ATPase is the dominant Ca2+ efflux pathway in these cells. Although the activity of the Ca2+ pump is regulated by calmodulin, the store-operated Ca2+ entry is more sensitive to inhibition by the calmodulin mutant than by Ca2+ extrusion. Hence, these two plasmalemmal Ca2+ transport systems may differ in their sensitivities to endogenous calmodulin. Following the activation of Ca2+ entry, the rise in intracellular Ca2+ subsequently feeds back to further inhibit Ca2+ influx. This slow inactivation can be activated by a relatively brief Ca2+ influx (30-60 s); it reverses slowly and is not altered by overexpression of the calmodulin mutant. Hence, the same messenger, intracellular Ca2+, can both facilitate and inactivate Ca2+ entry through store-operated CRAC channels and through different mechanisms.  相似文献   

7.
The calmodulin activation of the (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) in human erythrocyte membranes was studied in the range of 1 nM to 40 microM of purified calmodulin. The apparent calmodulin-affinity of the ATPase was strongly dependent on Ca2+ and decreased approx. 1000-times when the Ca2+ concentration was reduced from 112 to 0.5 microM. The data of calmodulin (Z) activation were analyzed by the aid of a kinetic enzyme model which suggests that 1 molecule of calmodulin binds per ATPase unit and that the affinities of the calcium-calmodulin complexes (CaiZ) decreases in the order of Ca3Z greater than Ca4Z greater than Ca2Z greater than or equal to CaZ. Furthermore, calmodulin dissociates from the calmodulin-saturated Ca2+-ATPase in the range of 10(-7)-10(-6) M Ca2+, even at a calmodulin concentration of 5 microM. The apparent concentration of calmodulin in the erythrocyte cytosol was determined to be 3 to 5 microM, corresponding to 50-80-times the cellular concentration of Ca2+-ATPase, estimated to be approx. 10 nmol/h membrane protein. We therefore conclude that most of the calmodulin is dissociated from the Ca2+-transport ATPase in erythrocytes at the prevailing Ca2+ concentration (probably 10(-7)-10(-8) M) in vivo, and that the calmodulin-binding and subsequent activation of the Ca2+-ATPase requires that the Ca2+ concentration rises to 10(-6)-10(-5) M.  相似文献   

8.
Treating the mouse intestine with the calmodulin antagonist W-7 and KN-93, an inhibitor of Ca2+ -calmodulin-dependent protein kinase II (CaMK II), reduced the sensitivity of the host to the action of Escherichia coli heat-stable enterotoxin II (STII). CaMK II activity in mouse intestinal cells increased after exposure to STII. These results indicate that CaMK II is involved in the mechanism of action of STII.  相似文献   

9.
The mating pheromone, alpha-factor, of the yeast Saccharomyces cerevisiae binds to the heterotrimeric G protein-coupled cell surface receptor of MATa cells and induces cellular responses necessary for mating. In higher eukaryotic cells, many hormones and growth factors rapidly mobilize a second messenger, Ca2+, by means of receptor-G protein signaling. Although striking similarities between the mechanisms of the receptor-G protein signaling in yeast and higher eukaryotes have long been known, it is still uncertain whether the pheromone rapidly mobilizes Ca2+ necessary for early events of the pheromone response. Here we reexamine this problem using sensitive methods for detecting Ca2+ fluxes and mobilization, and find no evidence that there is rapid Ca2+ influx leading to a rapid increase in the cytosolic free Ca2+ concentration. In addition, the yeast PLC1 deletion mutant lacking phosphoinositide-specific phospholipase C, a key enzyme for generating Ca2+ signals in higher eukaryotic cells, responds normally to the pheromone. These findings suggest that the receptor-G protein signaling does not utilize Ca2+ as a second messenger in the early stage of the pheromone response pathway. Since the receptor-G protein signaling does stimulate Ca2+ influx after early events have finished and this stimulation is essential for late events in the pheromone response pathway [Iida et al., (1990) J. Biol. Chem., 265: 13391-13399] Ca2+ may be used only once in the signal transduction pathway in unicellular eukaryotes such as yeast.  相似文献   

10.
Plant and fungal calmodulin: Ca2+-dependent regulation of plant NAD kinase   总被引:3,自引:0,他引:3  
Although little is known about the role(s) of second messengers, including free Ca2+, in plant cells there has been increasing evidence for a role for Ca2+ in metabolic regulation in plants. The recent demonstration that the Ca2+-binding protein, calmodulin exists in extracts of higher plants and basidiomycete fungi provides a basis for understanding Ca2+-dependent metabolic regulation in plant cells. In this review we summarize the similarities and differences of plant, fungal and mammalian calmodulin. We also discuss the known in vitro functions of calmodulin in higher plants. A Ca2+-calmodulin-dependent NAD kinase has been purified to homogeneity from extracts of pea seedlings and shown to be absolutely dependent upon calmodulin and microM levels of free Ca2+ for activity. The available evidence suggest that this Ca2+-calmodulin-dependent NAD kinase is the major form of plant NAD kinase and that this regulatory enzyme is localized in the chloroplast. A model is presented which predicts that the rate of photosynthesis is regulated by a receptor-mediated change in the level of chloroplastic free Ca2+ upon illumination. Free Ca2+, acting as a second messenger, forms a Ca2+-calmodulin complex thus converting calmodulin to its active conformation. This Ca2+-calmodulin complex then activates chloroplastic NAD kinase resulting in an increased NADP/NAD ratio.  相似文献   

11.
Plasma membrane Ca2(+)-ATPase of Saccharomyces cerevisiae was solubilized and partially purified by calmodulin-affinity chromatography. The activity of Ca2(+)-ATPase isolated from MATa cells was inhibited by physiological concentrations of the mating pheromone alpha-factor in a dose-dependent manner. The enzyme prepared from a receptor-deficient sterile mutant cells (delta ste-2) was similarly inhibited by alpha-factor, but the enzyme from MAT alpha cells was resistant to the mating pheromone. We suggest that the inhibition may be involved in the alpha-factor-induced increase of Ca2+ uptake reaction of MATa cells.  相似文献   

12.
Two forms of soluble phosphodiesterase of cyclic nucleotides separating by DEAE-cellulose ion-exchange chromatography and not only differing in physicochemical and catalytic parameters but also differently regulated by calmodulin are found in the doe myometrium. Calmodulin with 10(-7)-10(-5) M concentrations of Ca2+ promotes the two-fold activation of the 3':5'-AMP (but not of 3':5'-GMP) hydrolysis by the first form of phosphodiesterase. Trifluoperazine (10 microM) lowers the activating action of calmodulin. The second form of soluble phosphodiesterase is not sensitive to the action of both calmodulin and Ca2+. 3':5'-GMP (10 microM) inhibits the 3':5'-AMP hydrolysis by the first form of phosphodiesterase; calmodulin exerts no effect on this process. The data obtained testify to the possible participation of Ca2+ and calmodulin in Ca2+-calmodulin-dependent phosphodiesterase regulation of the content of cyclic nucleotides (3':5'-AMP, in particular) in the doe myometrium.  相似文献   

13.
The transient receptor potential-like ion channel from Drosophila melanogaster was originally identified as a calmodulin binding protein (Philips et al., 1992) involved in the dipterian phototransduction process. We used a series of fusion proteins and an epitope expression library of transient receptor potential-like fusion proteins to characterize calmodulin binding regions in the transient receptor potential-like channel through the use of [125I]calmodulin and biotinylated calmodulin and identified two distinct sites at the C-terminus of the transient receptor potential-like ion channel. Calmodulin binding site 1, predicted from searching of the primary structure for amphiphilic helices (Philips et al., 1992), covers a 16 amino acid sequence (S710-I725) and could only be detected through biotinylated calmodulin. Calmodulin binding site 2 comprises at least 13 amino acids (K859ETAKERFQRVAR871) and binds both [125I]calmodulin and biotinylated calmodulin. Both sites (i) bind calmodulin at least in a one to one stoichiometry, (ii) differ in their affinity for calmodulin revealing apparent Ki values of 12.3 nM (calmodulin binding site 1) and 1.7 nM (calmodulin binding site 2), respectively, (iii) bind calmodulin only in the presence of Ca2+ with 50% of site 1 and site 2, respectively, occupied by calmodulin in the presence of 0.1 microM (calmodulin binding site 1) and 3.3 microM Ca2+ (calmodulin binding site 2) and give evidence that (iv) a Ca2+-calmodulin-dependent mechanism contributes to transient receptor potential-like cation channel modulation when expressed in CHO cells.  相似文献   

14.
A calmodulin-binding protein from sea urchin eggs consisting of two subunits (55 and 17K-daltons) was identified as a Ca2+-dependent phosphoprotein phosphatase similar to calcineurin in mammalian brain and to phosphatase 2B in skeletal muscle. Peptide mappings showed that the 55K subunit was different from 61K subunit of calcineurin, whereas the 17K subunit was similar to 19K subunit of calcineurin but different from calmodulin. The 55K + 17K protein of sea urchin eggs dephosphorylated 32P-inhibitor-1 in a Ca2+- and calmodulin-dependent manner. Vmax and Km for inhibitor-1 in the presence of Ca2+ and calmodulin were 2,100 pmol Pi/min/mg and 2.7 microM. Ca2+-dependent phosphatase activity for inhibitor-1 was detected in homogenates of both unfertilized and fertilized eggs, but was not detected in isolated cortices and mitotic apparatus.  相似文献   

15.
During the mating process of yeast cells, two Ca2+ influx pathways become activated. The resulting elevation of cytosolic free Ca2+ activates downstream signaling factors that promote long term survival of unmated cells, but the roles of Ca2+ in conjugation have not been described. The high affinity Ca2+ influx system is composed of Cch1p and Mid1p and sensitive to feedback inhibition by calcineurin, a Ca2+/calmodulin-dependent protein phosphatase. To identify components and regulators of the low affinity Ca2+ influx system (LACS), we screened a collection of pheromone-responsive genes that when deleted lead to defects in LACS activity but not high affinity Ca2+ influx system activity. Numerous factors implicated in polarized morphogenesis and cell fusion (Fus1p, Fus2p, Rvs161p, Bni1p, Spa2p, and Pea2p) were found to be necessary for LACS activity. Each of these factors was also required for activation of the cell integrity mitogen-activated protein kinase cascade during the response to alpha-factor. Interestingly a polytopic plasma membrane protein, Fig1p, was required for LACS activity but not required for activation of Mpk1p mitogen-activated protein kinase. Mpk1p was not required for LACS activity, suggesting Mpk1p and Fig1p define two independent branches in the pheromone response pathways. Fig1p-deficient mutants exhibit defects in the cell-cell fusion step of mating, but unlike other fus1 and fus2 mutants the fusion defect of fig1 mutants can be largely suppressed by high Ca2+ conditions, which bypass the requirement for LACS. These findings suggest Fig1p is an important component or regulator of LACS and provide the first evidence for a role of Ca2+ signals in the cell fusion step of mating.  相似文献   

16.
Beta-phenylethylamine (PEA) induced an increase in cytosolic free calcium ion concentration ([Ca2+]c) in Saccharomyces cerevisiae cells monitored with transgenic aequorin, a Ca2+-dependent photoprotein. The PEA-induced [Ca2+]c increase was dependent on the concentrations of PEA applied, and the Ca2+ mostly originated from an extracellular source. Preceding the Ca2+ influx, H2O2 was generated in the cells by the addition of PEA. Externally added H2O2 also induced a [Ca2+]c increase. These results suggest that PEA induces the [Ca2+]c increase via H2O2 generation. The PEA-induced [Ca2+]c increase occurred in the mid1 mutant with a slightly smaller peak than in the wild-type strain, indicating that Mid1, a stretch-activated nonselective cation channel, may not be mainly involved in the PEA-induced Ca2+ influx. When PEA was applied, the MATa mid1 mutant was rescued from alpha-factor-induced death in a Ca2+-limited medium, suggesting that the PEA-induced [Ca2+]c increase can reinforce calcium signaling in the mating pheromone response pathway.  相似文献   

17.
Calmodulin is a ubiquitous Ca(2+) sensing protein that binds to and modulates the sarcoplasmic reticulum Ca(2+) release channel, ryanodine receptor (RYR). Here we assessed the effects of calmodulin on the local Ca(2+) release properties of RYR in permeabilized frog skeletal muscle fibers. Fluorescently labeled recombinant calmodulin in the internal solution localized at the Z-line/triad region. Calmodulin (0.05-5.0 micro M) in the internal solution (free [Ca(2+)](i) approximately 50-100 nM) initiated a highly cooperative dose-dependent increase in Ca(2+) spark frequency, with a half-maximal activation (K) of 1.1 micro M, a Hill coefficient (n) of 4.2 and a fractional maximal increase in frequency (R) of 17-fold. A non-Ca(2+) binding mutant of calmodulin elicited a similar highly cooperative dose-dependent increase in spark frequency (K = 1.0 micro M; n = 3.7; R = 12-fold). Spatiotemporal properties of Ca(2+) sparks were essentially unaffected by either wild-type or mutant calmodulin. An N-terminal extension of calmodulin, (N+3)calmodulin, that binds to but does not activate RYR at nM [Ca(2+)] in sarcoplasmic reticulum vesicles, prevented the calmodulin-induced increase in spark frequency. These data suggest that exogenous Ca(2+)-free calmodulin cooperatively sensitizes the Ca(2+) release channel to open, but that Ca(2+) binding to the added calmodulin does not play a significant role in the termination of Ca(2+) sparks.  相似文献   

18.
Bovine brain contains calmodulin-dependent cyclic nucleotide phosphodiesterase isozymes which are composed of two distinct subunits: Mr 60,000 and 63,000. The 60-kDa but not the 63-kDa subunit-containing isozyme can be phosphorylated by cAMP-dependent protein kinase resulting in decreased affinity of this subunit toward calmodulin (Sharma, R. K., and Wang, J. H. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 2603-2607). In contrast, purified 63-kDa subunit-containing isozyme has been found to be phosphorylated by a preparation of bovine brain calmodulin-binding proteins in the presence of Ca2+ and calmodulin. The phosphorylation resulted in the maximal incorporation of 2 mol of phosphate/mol of the phosphodiesterase subunit with a 50% decrease in the enzyme affinity toward calmodulin. At a constant calmodulin concentration of 6 nM, the phosphorylated isozyme required a higher concentration of Ca2+ for activation than the nonphosphorylated phosphodiesterase. The Ca2+ concentrations at 50% activation by calmodulin of the nonphosphorylated and phosphorylated isozymes were 1.1 and 1.9 microM, respectively. Phosphorylation can be reversed by the calmodulin-dependent phosphatase, calcineurin, but not by phosphoprotein phosphatase 1. The results suggest that the Ca2+ sensitivities of brain calmodulin-dependent cyclic nucleotide phosphodiesterase isozymes can be modulated by protein phosphorylation and dephosphorylation mechanisms in response to different second messengers.  相似文献   

19.
The Ca2+-calmodulin-dependent interaction of phosphodiesterase with phenyl-Sepharose was demonstrated. BSA caused incomplete competitive inhibition of phosphodiesterase activation by calmodulin. The 17-fold increase of the constant for phosphodiesterase activation by calmodulin was accompanied by an insignificant rise in the maximum rate of cAMP hydrolysis; in this case the value of the inhibition constant amounted to Ki approximately 6 microM. In the absence of calmodulin saturating concentrations of BSA reduced the enzyme activity nearly 3-4-fold. The effect of BSA on phosphodiesterase was incompetitive with respect to cAMP (Ki approximately 1.4 microM). Both phenomena are characteristic of incompetitive binding of BSA to the enzyme with respect to cAMP and calmodulin. Gel filtration data reflect the changes in the enzyme molecular weight during its interaction with BSA. All the above reactions of the enzyme are reversible.  相似文献   

20.
There is increasing evidence to suggest that Ca2+-calmodulin dependent protein kinase (CaMK) regulates the sarcoplasmic reticulum (SR) function and thus plays an important role in modulating the cardiac performance. Because intracellular Ca2+-overload is an important factor underlying cardiac dysfunction in a heart disease, its effect on SR CaMK was examined in the isolated rat heart preparations. Ca2+-depletion for 5 min followed by Ca2+-repletion for 30 min, which is known to produce intracellular Ca2+-overload, was observed to attenuate cardiac function as well as SR Ca2+-uptake and Ca2+-release activities. Attenuated SR function in the heart was associated with reduced CaMK phosphorylation of the SR Ca2+-cycling proteins such as Ca2+-release channel, Ca2+-pump ATPase, and phospholamban, decreased CaMK activity, and depressed levels of SR Ca2+-cycling proteins. These results indicate that alterations in cardiac performance and SR function following the occurrence of intracellular Ca2+-overload may partly be due to changes in the SR CaMK activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号