首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of sex is still a major unsolved puzzle in biology. One of the most promising theoretical models to answer this question is the Red Queen hypothesis. The Red Queen hypothesis proposes a fast adaptation of pathogens to common genotypes and therefore a negative frequency-dependent selection against common genotypes. Clonal organisms should be especially endangered when co-occurring with closely related sexual species. In this context, major histocompatibility (MHC) genes have been discussed to be auspicious candidates that could provide the genetic basis on which selection for immune competence could act. In this study, we investigated MHC variability in a clonal teleost fish: the Amazon molly, Poecilia formosa . The Amazon molly is an ideal candidate to test the Red Queen hypothesis as it is a clonal species but co-occurs with a closely related sexual species and should therefore be especially susceptible to pathogen infection. We found that allele numbers did in general not differ between sexual and clonal 'species' but that genotypic variability is reduced in the clonally reproducing fish, especially in the polyploids. We conclude that in clonal organisms, genotype frequency might be more important for immune competence than MHC allele number. Amazon mollies and their co-occurring parental species clearly fulfil a prerequisite of the Red Queen hypothesis and should therefore provide an ideal system to experimentally test this basic principle probably underlying the evolution of sex.  相似文献   

2.
One of the leading hypotheses for the maintenance of sexual reproduction is the Red Queen hypothesis. The underlying premise of the Red Queen hypothesis is that parasites rapidly evolve to infect common host genotypes. This response by parasites could result in the long-term maintenance of genetic variation and may favor sexual reproduction over asexual reproduction. The underlying ideas present a wonderful microcosm for teaching evolution. Here I present the reasons for why sex is anomalous for evolutionary theory, the rationale underlying the Red Queen hypothesis, and some empirical studies of the Red Queen hypothesis using a freshwater snail. The empirical results are consistent with the Red Queen hypothesis. In addition, the distribution of sexual and asexual reproduction in the snail leads naturally to thinking about coevolution in a geographic mosaic of parasite-mediated natural selection.  相似文献   

3.
The advantage of producing novel variation to keep apace of coevolving species has been invoked as a major explanation for the evolution and maintenance of sex (the Red Queen hypothesis). Recent theoretical investigations of the Red Queen hypothesis have focused on the effects of recombination in haploid species, finding that species interactions rarely favor the evolution of sex unless selection is strong. Yet by focusing on haploids, these studies have ignored a potential advantage of sex in diploids: generating novel combinations of alleles at a particular locus through segregation. Here we investigate models of host-parasite coevolution in diploid species to determine whether the advantages of segregation might rescue the Red Queen hypothesis as a more general explanation for the evolution of sex. We find that the effects of segregation can favor the evolution of sex but only under some models of infection and some parameter combinations, almost always requiring inbreeding. In all other cases, the effects of segregation on selected loci favor reductions in the frequency of sex. In cases where segregation and recombination act in opposite directions, we found that the effects of segregation dominate as an evolutionary force acting on sex in diploids.  相似文献   

4.
The theory that coevolving hosts and parasites create a fluctuating selective environment for one another (i.e., produce Red Queen dynamics) has deep roots in evolutionary biology; yet empirical evidence for Red Queen dynamics remains scarce. Fluctuating coevolutionary dynamics underpin the Red Queen hypothesis for the evolution of sex, as well as hypotheses explaining the persistence of genetic variation under sexual selection, local parasite adaptation, the evolution of mutation rate, and the evolution of nonrandom mating. Coevolutionary models that exhibit Red Queen dynamics typically assume that hosts and parasites encounter one another randomly. However, if related individuals aggregate into family groups or are clustered spatially, related hosts will be more likely to encounter parasites transmitted by genetically similar individuals. Using a model that incorporates familial parasite transmission, we show that a slight degree of familial parasite transmission is sufficient to halt coevolutionary fluctuations. Our results predict that evidence for Red Queen dynamics, and its evolutionary consequences, are most likely to be found in biological systems in which hosts and parasites mix mainly at random, and are less likely to be found in systems with familial aggregation. This presents a challenge to the Red Queen hypothesis and other hypotheses that depend on coevolutionary cycling.  相似文献   

5.
Host recombination is dependent on the degree of parasitism   总被引:4,自引:0,他引:4  
Parasites and hosts are involved in a continuous coevolutionary process leading to genetic changes in both counterparts. To understand this process, it is necessary to track host responses, one of which could be an increase in sex and recombination, such as is proposed by the Red Queen hypothesis. In this theoretical framework, the inducible recombination hypothesis states that B-chromosomes (genome parasites that prosper in natural populations of many living beings) elicit an increase in host chiasma frequency that is favoured by natural selection because it increases the proportion of recombinant progeny, some of which could be resistant to both B-chromosome effects and B-accumulation in the germline. We have found a clear parallelism between host recombination and the evolutionary status of the B-chromosome polymorphism, which provides explicit evidence for inducible recombination and strong support for the Red Queen hypothesis.  相似文献   

6.
The widespread occurrence of sexual reproduction despite the two-fold disadvantage of producing males, is still an unsolved mystery in evolutionary biology. One explanatory theory, called the "Red Queen" hypothesis, states that sex is an adaptation to escape from parasites. A more recent hypothesis, the mate selection hypothesis, assumes that non-random mating, possible only with sex, accelerates the evolution of beneficial traits. This paper tests these two hypotheses, using an agent-based or "micro-analytic" evolutionary algorithm where host-parasite interaction is simulated adhering to biological reality. While previous simpler models testing the "Red Queen" hypothesis considered mainly haploid hosts, stable population density, random mating and simplified expression of fitness, our more realistic model allows diploidy, mate selection, live history constraints and variable population densities. Results suggest that the Red Queen hypothesis is not valid for more realistic evolutionary scenarios and that each of the two hypotheses tested seem to explain partially but not exhaustively the adaptive value of sex. Based on the results we suggest that sexual populations in nature should avoid both, maximizing outbreeding or maximizing inbreeding and should acquire mate selection strategies which favour optimal ranges of genetic mixing in accordance with environmental challenges.  相似文献   

7.
Sexual outcrossing is costly relative to selfing and asexuality, yet it is ubiquitous in nature, a paradox that has long puzzled evolutionary biologists. The Red Queen Hypothesis argues that outcrossing is maintained by antagonistic interactions between host and parasites. Most tests of this hypothesis focus on the maintenance of outcrossing in hosts. The Red Queen makes an additional prediction that parasitic taxa are more likely to be outcrossing than their free‐living relatives. We test this prediction in the diverse Nematode phylum using phylogenetic comparative methods to evaluate trait correlations. In support of the Red Queen, we demonstrate a significant correlation between parasitism and outcrossing in this clade. We find that this correlation is driven by animal parasites, for which outcrossing is significantly enriched relative to both free‐living and plant parasitic taxa. Finally, we test hypotheses for the evolutionary history underlying the correlation of outcrossing and animal parasitism. Our results demonstrate that selfing and asexuality are significantly less likely to arise on parasitic lineages than on free‐living ones. The findings of this study are consistent with the Red Queen Hypothesis. Moreover, they suggest that the maintenance of genetic variation is an important factor in the persistence of parasitic lineages.  相似文献   

8.
Antagonistic coevolution between hosts and parasites can involve rapid fluctuations of genotype frequencies that are known as Red Queen dynamics. Under such dynamics, recombination in the hosts may be advantageous because genetic shuffling can quickly produce disproportionately fit offspring (the Red Queen hypothesis). Previous models investigating these dynamics have assumed rather simple models of genetic interactions between hosts and parasites. Here, we assess the robustness of earlier theoretical predictions about the Red Queen with respect to the underlying host-parasite interactions. To this end, we created large numbers of random interaction matrices, analysed the resulting dynamics through simulation, and ascertained whether recombination was favoured or disfavoured. We observed Red Queen dynamics in many of our simulations provided the interaction matrices exhibited sufficient ‘antagonicity’. In agreement with previous studies, strong selection on either hosts or parasites favours selection for increased recombination. However, fast changes in the sign of linkage disequilibrium or epistasis were only infrequently observed and do not appear to be a necessary condition for the Red Queen hypothesis to work. Indeed, recombination was often favoured even though the linkage disequilibrium remained of constant sign throughout the simulations. We conclude that Red Queen-type dynamics involving persistent fluctuations in host and parasite genotype frequencies appear to not be an artefact of specific assumptions about host-parasite fitness interactions, but emerge readily with the general interactions studied here. Our results also indicate that although recombination is often favoured, some of the factors previously thought to be important in this process such as linkage disequilibrium fluctuations need to be reassessed when fitness interactions between hosts and parasites are complex.  相似文献   

9.
Auld SK  Hall SR  Duffy MA 《PloS one》2012,7(6):e39564
The Red Queen hypothesis can explain the maintenance of host and parasite diversity. However, the Red Queen requires genetic specificity for infection risk (i.e., that infection depends on the exact combination of host and parasite genotypes) and strongly virulent effects of infection on host fitness. A European crustacean (Daphnia magna)--bacterium (Pasteuria ramosa) system typifies such specificity and high virulence. We studied the North American host Daphnia dentifera and its natural parasite Pasteuria ramosa, and also found strong genetic specificity for infection success and high virulence. These results suggest that Pasteuria could promote Red Queen dynamics with D. dentifera populations as well. However, the Red Queen might be undermined in this system by selection from a more common yeast parasite (Metschnikowia bicuspidata). Resistance to the yeast did not correlate with resistance to Pasteuria among host genotypes, suggesting that selection by Metschnikowia should proceed relatively independently of selection by Pasteuria.  相似文献   

10.
Under the Red Queen hypothesis, host-parasite coevolution selects against common host genotypes. Although this mechanism might underlie the persistence of sexual reproduction, it might also maintain high clonal diversity. Alternatively, clonal diversity might be maintained by multiple origins of parthenogens from conspecific sexuals, a feature in many animal groups. Herein, we addressed the maintenance of overall genetic diversity by coevolving parasites, as predicted by the Red Queen hypothesis. We specifically examined the contribution of parasites to host clonal diversity and the frequency of sexually reproducing individuals in natural stream populations of Potamopyrgus antipodarum snails. We also tested the alternative hypothesis that clonal diversity is maintained by the input of clones by mutation from sympatric sexuals. Clonal diversity and the frequency of sexual individuals were both positively related to infection frequency. Surprisingly, although clones are derived by mutation from sexual snails, parasites explained more of the genotypic variation among parthenogenetic subpopulations. Our findings thus highlight the importance of parasites as drivers of clonal diversity, as well as sex.  相似文献   

11.
Asexual lineages can grow at a faster rate than sexual lineages. Why then is sexual reproduction so widespread? Much empirical evidence supports the Red Queen hypothesis. Under this hypothesis, coevolving parasites favour sexual reproduction by adapting to infect common asexual clones and driving them down in frequency. One limitation, however, seems to challenge the generality of the Red Queen: in theoretical models, parasites must be very virulent to maintain sex. Moreover, experiments show virulence to be unstable, readily shifting in response to environmental conditions. Does variation in virulence further limit the ability of coevolving parasites to maintain sex? To address this question, we simulated temporal variation in virulence and evaluated the outcome of competition between sexual and asexual females. We found that variation in virulence did not limit the ability of coevolving parasites to maintain sex. In fact, relatively high variation in virulence promoted parasite‐mediated maintenance of sex. With sufficient variation, sexual females persisted even when mean virulence fell well below the threshold virulence required to maintain sex under constant conditions. We conclude that natural variation in virulence does not limit the relevance of the Red Queen hypothesis for natural populations; on the contrary, it could expand the range of conditions over which coevolving parasites can maintain sex.  相似文献   

12.
Geographic parthenogenesis has been explained as resulting from parasite pressure (Red Queen hypothesis): several studies have found high degrees of sexuals where the prevalence of parasites is high. However, it is important to address whether prevalence of parasites mirrors risk of infection. We explored geographic parthenogenesis of Ips acuminatus bark beetles and their nematodes. Local climate is crucial for nematode stages outside the host, in spring and summer, and prevalence should thus be associated with those temperatures if prevalence reliably reflects exposure risk across populations. This was the case; however, high prevalence of a virulent nematode species was not associated with many sexuals, whereas highly sexual populations were characterized by high infection risk of benign nematodes. Low virulence of the latter makes Red Queen dynamics unlikely. Geographical patterns of parthenogenesis were instead associated with winter temperature and variance in temperature.  相似文献   

13.
Maintaining sexual reproduction in a highly competitive world is still one of the major mysteries of biology given the apparently high efficiency of asexual reproduction. Co-evolutionary theories such as the Red Queen hypothesis would suggest that the microbiomes in human reproductive systems, specifically the microbiomes contained in semen and vaginal fluids, should reach some level of homogeneity thanks to arguably the most conspicuous microbiome transmission between two sexes. The long-term sexual coevolution should favor the dynamic homogeneity or stability, which should also be beneficial for sexual reproduction such as sperm survival or fertilization on physiological/ecological time scale. We present a piece of quantitative evidence in the form of microbial community spatial heterogeneity to support the stability notion by analyzing three big datasets of the human vaginal, semen and gut microbiome. Methodologically, we applied a recent community-level extension to the classic Taylor's power law, which reached the rare status of ecological law and has found applications beyond biology. Both ecological and evolutionary theories, such as hologenome/holobiont and Red Queen, as well as consideration of first principles, would predict that microbiome transmissions between two sexes should have homogenizing effects on the composition and stability of the microbiomes in human reproductive systems, and therefore have similar variance structures. This is supported by the finding that the power law analysis revealed human vaginal and semen microbiomes exhibited the same scaling parameter size in their community spatial (inter-individual) heterogeneities, while the both exhibited significantly different heterogeneity scaling parameter size with the human gut microbiome.  相似文献   

14.
What are the causes of natural selection? Over 40 years ago, Van Valen proposed the Red Queen hypothesis, which emphasized the primacy of biotic conflict over abiotic forces in driving selection. Species must continually evolve to survive in the face of their evolving enemies, yet on average their fitness remains unchanged. We define three modes of Red Queen coevolution to unify both fluctuating and directional selection within the Red Queen framework. Empirical evidence from natural interspecific antagonisms provides support for each of these modes of coevolution and suggests that they often operate simultaneously. We argue that understanding the evolutionary forces associated with interspecific interactions requires incorporation of a community framework, in which new interactions occur frequently. During their early phases, these newly established interactions are likely to drive fast evolution of both parties. We further argue that a more complete synthesis of Red Queen forces requires incorporation of the evolutionary conflicts within species that arise from sexual reproduction. Reciprocally, taking the Red Queen''s perspective advances our understanding of the evolution of these intraspecific conflicts.  相似文献   

15.
The co-evolutionary arms race between host immune genes and parasite virulence genes is known as Red Queen dynamics. Temporal fluctuations in allele frequencies, or the 'turnover' of alleles at immune genes, are concordant with predictions of the Red Queen hypothesis. Such observations are often taken as evidence of host-parasite co-evolution. Here, we use computer simulations of the Major Histocompatibility Complex (MHC) of guppies (Poecilia reticulata) to study the turnover rate of alleles (temporal genetic differentiation, G'(ST)). Temporal fluctuations in MHC allele frequencies can be ≥≤order of magnitude larger than changes observed at neutral loci. Although such large fluctuations in the MHC are consistent with Red Queen dynamics, simulations show that other demographic and population genetic processes can account for this observation, these include: (1) overdominant selection, (2) fluctuating population size within a metapopulation, and (3) the number of novel MHC alleles introduced by immigrants when there are multiple duplicated genes. Synergy between these forces combined with migration rate and the effective population size can drive the rapid turnover in MHC alleles. We posit that rapid allelic turnover is an inherent property of highly polymorphic multigene families and that it cannot be taken as evidence of Red Queen dynamics. Furthermore, combining temporal samples in spatial F(ST) outlier analysis may obscure the signal of selection.  相似文献   

16.
The dominance of sex in Metazoa is enigmatic. Sexual species allocate resources to the production of males, while potentially facing negative effects such as the loss of well‐adapted genotypes due to recombination, and exposure to diseases and predators during mating. Two major hypotheses have been put forward to explain the advantages of parthenogenetic versus sexual reproduction in animals, that is, the Red Queen hypothesis and the Tangled Bank/Structured Resource Theory of Sex. The Red Queen hypothesis assumes that antagonistic predator—prey/ parasite–host interactions favor sex. The Structured Resource Theory of Sex predicts sexual reproduction to be favored if resources are in short supply and aggregated in space. In soil, a remarkable number of invertebrates reproduce by parthenogenesis, and this pattern is most pronounced in oribatid mites (Oribatida, Acari). Oribatid mites are abundant in virtually any soil across very different habitats, and include many sexual and parthenogenetic (thelytokous) species. Thereby, they represent an ideal model group to investigate the role of sexual versus parthenogenetic reproduction across different ecosystems and habitats. Here, we compiled data on oribatid mite communities from different ecosystems and habitats across biomes, including tropical rainforests, temperate forests, grasslands, arable fields, salt marshes, bogs, caves, and deadwood. Based on the compiled dataset, we analyzed if the percentage of parthenogenetic species and the percentage of individuals of parthenogenetic species are related to total oribatid mite density, species number, and other potential driving factors of the reproductive mode including altitude and latitude. We then interpret the results in support of either the Red Queen hypothesis or the Structured Resource Theory of Sex. Overall, the data showed that low density of oribatid mites due to harsh environmental conditions is associated with high frequency of parthenogenesis supporting predictions of the Structured Resource Theory of Sex rather than the Red Queen hypothesis.  相似文献   

17.
The Red Queen hypothesis predicts that sexual reproduction should be favoured when the risk of infection by parasites is high. However, this prediction may also be achieved independently by means of the reproductive assurance and the density-dependent transmission hypotheses because higher densities increase the chances of fertilization (i.e. mates are easier to find) and increase the risk of infection. Additionally, the Red Queen hypothesis makes a long-term prediction that infection should be genotype-specific, with time-lagged dynamics. In the present study, we attempt to consolidate these two predictions by investigating whether sexuality and parasitism alternate in a time-lagged fashion on an ecological time-scale. In a 3-year study, we examined the time-lagged dynamics between male frequencies, infection levels (by Centrocestus sp.), and snail densities of four natural populations of sexual and asexual Melanoides tuberculata snails. The results obtained provide no evidence of either prediction of the Red Queen hypothesis. We found partial support for reproductive assurance in a single population, and could not discriminate between the three hypotheses in another population. The remaining two populations did not support any of the hypotheses in question.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 537–544.  相似文献   

18.
The Red Queen hypothesis predicts that sexuality is favoured when virulent parasites adapt quickly to host genotypes. We studied a population of the flatworm Schmidtea polychroa in which obligate sexual and parthenogenetic individuals coexist. Infection rates by an amoeboid protozoan were consistently higher in parthenogens than in sexuals. Allozyme analysis showed that infection was genotype specific, with the second most common clone most infected. A laboratory measurement of fitness components failed to reveal high infection costs as required for the Red Queen. Although fertility was lower in more infected parthenogens, this effect can also be explained by the accumulation of mutations. We discuss these and other characteristics of our model system that may explain how a parasite with low virulence can show this pattern.  相似文献   

19.
The Red Queen coevolutionary hypothesis predicts that parasites drive oscillations in host genotype frequencies due to frequency-dependent selection where common hosts are at disadvantage. However, examples of this phenomenon in natural populations are scarce. To examine if the Red Queen theory operates in the wild, we studied the genetic structure of populations of the crustacean waterflea ( Daphnia ), in relation to their infection levels, for which we collected multiple samples from a variety of lakes. The most common clone in a given population was often underinfected. This advantage, however, did not remain stable over time. Instead, the most common clone decreased in frequency over subsequent generations, indicating that parasites can track common clones. Such decreases were not observed in uninfected populations. Moreover, host clonal evenness was higher across the set of infected lakes compared to uninfected lakes; suggesting that any common clone is selected against when parasites are present. These results strongly suggest that Red Queen dynamics do operate in the wild.  相似文献   

20.
The Red Queen hypothesis depicts evolution as the continual struggle to adapt. According to this hypothesis, new genes, especially those originating from nongenic sequences (i.e., de novo genes), are eliminated unless they evolve continually in adaptation to a changing environment. Here, we analyze two Drosophila de novo miRNAs that are expressed in a testis-specific manner with very high rates of evolution in their DNA sequence. We knocked out these miRNAs in two sibling species and investigated their contributions to different fitness components. We observed that the fitness contributions of miR-975 in Drosophila simulans seem positive, in contrast to its neutral contributions in D. melanogaster, whereas miR-983 appears to have negative contributions in both species, as the fitness of the knockout mutant increases. As predicted by the Red Queen hypothesis, the fitness difference of these de novo miRNAs indicates their different fates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号