首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pretreatment of rats by ellipticines enhanced the microsomal concentration of cytochrome P-450, benzo[a]pyrene (BP) metabolism and activation and, to a smaller extent, ethoxycoumarin deethylation, but not acetanilide hydroxylation. This increased BP biotransformation was essentially due to the formation of bay-region metabolites, BP 9,10-diol, BP 7,8-diol and 9-hydroxy-BP, or to the formation of BP 7,8-diol-9,10-epoxide- and of 9-hydroxy-BP 4,5-oxide-DNA adducts. In the ellipticine series, 9-fluoroellipticine (9-FE) presents a slight inducing potency compared with the parent and 9-hydroxy molecules. Pretreatment of mice with 9-hydroxyellipticine (9-OHE) led also to an increased mutagenicity of BP and to an augmentation of skin carcinogenesis by 7,12-dimethylbenz[a]anthracene (DMBA). These results clearly show that 9-OHE induces the biosynthesis of cytochrome P-450 which markedly stimulates the mutagenic and carcinogenic potentialities of polycyclic aromatic hydrocarbons (PAH).  相似文献   

2.
Ellipticine (E) and its 9-hydroxy derivative inhibit strongly various liver monooxygenase activities mediated by microsomes from control and phenobarbital (PB), benzo[alpha]pyrene (BP) or Aroclor 1254 (Aroclor)-pretreated rats. The inhibition constants, Ki, are remarkably low, and often smaller than 1 micron, particularly in the case of microsomes containing cytochrome P-448. The inhibitory potency (I50) of 9-hydroxyellipticine (9-OHE) is larger (about ten-fold) than the one of classical inhibitors (metyrapone or 7,8-benzoflavone (7,8-BF)), whatever the activities studied and the induction of microsomes. Differences exist between the mechanisms of inhibition according to the form of cytochrome P-450 present in microsomes of differently pretreated rats; whichever the activities studied, one observes: (a) a competitive inhibition towards the activity of non-induced or PB-induced microsomes and (b) a non-competitive inhibition towards the activity of Aroclor or BP-induced microsomes, at variance with 7,8-BF. These results are in good agreement with the interaction properties of the ellipticines with microsomal cytochromes P-450.  相似文献   

3.
The mutagenic activities of trans-7,8-dihydro-7,8-dihydroxybenzo[a]-pyrene (BP 7,8-diol) and of trans-3,4-dihydroxy-7,12-dimethylbenz[a]-anthracene (DMBA 3,4-diol) towards S. typhimurium TA100 were measured in assays that were carried out on a micro-scale in liquid medium in the presence of microsomal fractions prepared from mouse skin or rat liver. In the presence of an NADPH-generating system, microsomal enzymes converted both diols into mutagens that were probably the respective 'bay-region' diol-epoxides. The rate of the enzyme-catalysed conversion of the BP 7,8-diol into mutagens by microsomal preparations from mouse epidermis was similar to that occurring with microsomes from rat liver. Pretreatment of mice by the topical application of benz[a]anthracene (BA) or 7,12-dimethylbenz[a]-anthracene (DMBA) increased the mutagenic activity of BP 7,8-diol mediated by mouse skin microsomal preparations by 2-fold and this was paralleled by a 4-fold increase in epidermal aryl hydrocarbon (benzo[a]pyrene) hydroxylase (AHH) activity. The results are discussed in relation to the high susceptibility of mouse skin to polycyclic aromatic hydrocarbon (PAH) carcinogenesis.  相似文献   

4.
Some pharmacological properties of ellipticine (E) and its derivatives linked to their interaction with cytochrome P-450 have been investigated with human liver microsomes. 9-Hydroxyellipticine (9-OHE) interacts with human liver cytochrome P-450 exhibiting a type II spectrum (λmax: 428 nm, Ks = 1.1 μM). After incubation with human liver microsomes the E was converted to 9-OHE; 7-hydroxyellipticine was not produced. The cytotoxic effect of this biotransformation has been evaluated on leukemic L1210 cells, in vitro, and found to be equal to those elicited by liver microsomes of control or phenobarbital (PB) pretreated rats. Moreover, 9-OHE and 9-fluoroellipticine (9-FE) strongly inhibit the benzo[a]pyrene hydroxylase (AHH) activity of human liver microsomes (I50 = 2.6 μM and 1.6 μM, respectively) as well as the mutagenesis induced by the polycyclic aromatic hydrocarbon 2-acetylaminofluorene (AAF); 1 μg/plate of each of these compounds is able to inhibit by more than 50% the mutagenicity of 5 μg/plate AAF.  相似文献   

5.
Products that appeared to be mainly benzo[a]pyrene 7,8-oxide and benzo[a]pyrene 9,10-oxide were synthesized and their chemical and biochemical properties were investigated. The oxides were unstable and readily rearranged to phenols. They were converted by rat liver homogenates and microsomal preparations into phenols and dihydrodiols, but glutathione conjugates were not formed in appreciable amounts. The dihydrodiols formed from benzo[a]pyrene 7,8- and 9,10-oxide by rat liver microsomal preparations were identical in their chromatographic and spectrographic properties with dihydrodiols formed when benzo[a]pyrene was metabolized by rat liver homogenates. 9,10-Dihydrobenzo[a]pyrene 7,8-oxide and 7,8-dihydrobenzo[a]pyrene 9,10-oxide were also synthesized. They were converted by rat liver homogenates and microsomal preparations into the related cis- and trans-dihydroxy compounds. Glutathione conjugates were formed from the oxides by rat liver homogenates. Both 7,8- and 9,10-dihydrobenzo[a]pyrene were metabolized by rat liver homogenates to mainly the trans-isomers of the related dihydroxy compounds. In experiments with boiled homogenates, the benzo[a]pyrene oxides were converted into phenols, whereas the dihydrobenzo[a]pyrene oxides yielded small amounts of the related dihydroxy compounds.  相似文献   

6.
Rat liver microsomal enzyme(s) that catalyze mutagenic activation of a carcinogenic aminoazo dye, 3-methoxy-4-aminoazobenzene (3-MeO-AAB), was studied by virtue of the Salmonella typhimurium TA98 assay using o-aminoazotoluene (OAT) as the control. Male Wistar rats were pretreated with phenobarbital (PB), 3-methylcholanthrene (MC) or polychlorinated biphenyl (PCB), and the liver microsomal activities for mutagenic activation of 3-MeO-AAB and OAT were examined. In agreement with the reported results on several carcinogenic aromatic amines, MC pretreatment resulted in greater activation of microsomal activity in the OAT mutagenesis (about a 4-fold increase as compared to the untreated control) than did PB (1.5-fold increase). By contrast, the mutagenic activation of 3-MeO-AAB is found to be more efficiently catalyzed by those enzyme(s) that are induced by PB pretreatment (4-fold increase) than by those that are induced by MC (1.8-fold increase). The induced enzymes that principally mediate the mutagenic activation of these azo dyes are indicated to be cytochrome P-450s, because the mutagenic activation was strongly inhibited by addition of cytochrome P-450 inhibitors such as 2-diethylaminoethyl-2,2-diphenylvalerate (SKF 525A) and 7,8-benzoflavone. These data suggest that 3-MeO-AAB is a unique carcinogenic aromatic amine as a substrate for mutagenic activation via catalysis of those cytochrome P-450s that are induced by PB pretreatment.  相似文献   

7.
Polycyclic aromatic hydrocarbons are metabolically activated by microsomal enzymes to reactive metabolites which covalently bind to DNA. The qualitative and quantitative nature of the hydrocarbon-deoxyribonucleoside adducts formed are markedly dependent on the balance of the oxidative and conjugating enzymes present in the activation system. Thus, utilising rat liver microsomes, to metabolically activate benzo(a)pyrene, the major hydrocarbon-deoxyribonucleoside adduct formed is due to metabolic activation of 9-hydroxybenzo(a)pyrene. In striking contrast to this when isolated rat hepatocytes are used to metabolically activate [3H]-benzo(a)pyrene, 9-hydroxybenzo(a)pyrene is conjugated primarily with UDPglucuronic acid and the major hydrocarbon-deoxyribonucleoside adduct formed is due to further metabolism of 7,8-dihydro-7,8-dihydroxybenzo(a)pyrene. Thus the balance and nature of conjugating enzymes present in a tissue will, by determining the nature and amounts of adducts formed, also modulate the biological susceptibility of a particular tissue or cell. In this regard it may be of particular interest that whereas in isolated rat hepatocytes and short-term organ cultures of rodent lung and trachea conjugation with UDPglucuronic acid is quantitatively the major route of conjugation, with short-term organ culture of human lung, sulphate ester conjugation of phenolic substrates appears to be a major route of metabolism. Thus in vivo or in microsome or cell mediated mutagenesis assays of polycyclic aromatic hydrocarbons the susceptibility of a particular cell or tissue will be dependent in part on the relative activities of the oxidative and conjugating enzymes.  相似文献   

8.
Rats were treated with nitrogen-containing phenanthrene (3,4-, 5,6-, or 7,8-benzoquinoline) or anthracene (acridine or quinacrine) derivatives at a dose of 75 mg/kg, daily for 3 days. The hepatic drug metabolizing enzyme response ranged from no induction (quinacrine) through low (5,6-benzoquinoline), intermediate (acridine), and high (3,4-benzoquinoline) magnitude increases of only phase II enzymes, to induction of both phase I and phase II enzymes (7,8-benzoquinoline). The phase I enzyme response of 7,8-benzoquinoline was an induction of CYP1A. All three benzoquinolines, but neither anthracene derivative, elevated NAD(P)H quinone oxidoreductase activity. A similar pattern but of lesser magnitude was seen with glutathione S-transferase activity. 3,4-Benzoquinoline was the only agent to significantly increase microsomal epoxide hydrolase activity (2.3-fold). Both 3,4- and 7,8-benzoquinoline increased UDP-glucuronosyltransferase activity toward 4-nitrophenol (40% and 70%, respectively), but only the 3,4-isomer increased activity toward morphine (75%), diclofenac (75%), and testosterone (23%), and only the 7,8-isomer increased activity toward chloramphenicol (105%). 3,4-Benzoquinoline elevated the hepatic mRNA concentration of UGT2B1 but not UGT1*6. Acridine treatment increased UDP-glucuronosyltransferase activity toward morphine (47%), 1-naphthol (28%), testosterone (19%), and estrone (19%). Quinacrine failed to elevate any UDP-glucuronosyltransferase activity and depressed activities toward testosterone and estrone by 20%. This study shows that some tricyclic aromatic compounds containing a single heterocyclic nitrogen atom have the potential for use as chemoprotective agents based upon their ability to selectively induce only phase II enzymes. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 11: 297–303, 1997.  相似文献   

9.
When aromatic hydrocarbon (Ah)-responsive and -non-responsive strains of mice were pretreated with 3-methylcholanthrene (MC) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), vitamin C reduced the microsomal aryl hydrocarbon hydroxylase (AHH) activity. The AHH inhibitors 7,8-benzoflavone (7,8-BF) and 3-methylsulfonyl-3',4,4',5-tetrachlorobiphenyl (3-MSF-3',4,4',5-tetraCB) showed various inhibitory effects depending upon the types of microsomes, whereas vitamin C exhibited inhibition irrespective of the types of microsomes. 7,8-BF and 3-MSF-3',4,4',5-tetraCB as well as vitamin C suppressed the reverse mutation of the Salmonella typhimurium tester strains TA98 and TA100 induced by benzo[a]pyrene.  相似文献   

10.
Breast cancer patients frequently develop metastases. This process requires the degradation of extracellular matrix proteins which act as a barrier to tumour cell passage. These proteins can be degraded by proteases, mainly the matrix metalloproteinases (MMPs). MMP-2 and -9 which are frequently detected in breast cancer tissues. ProMMPs are released from cancer cells, and their activation is considered to be a crucial step in metastases development. In breast cancer, estrogen metabolism is altered favouring the accumulation of 2- and 4-hydroxyestradiol (2- and 4-OHE(2)). These estradiol metabolites can generate free radicals. Since reactive species are known activators of proMMPs, this study was designed to determine if the free radicals generated by 2- and 4-OHE(2) can activate proMMP-2 and -9. Activation of MMPs by hydroxyestradiol was determined by monitoring the cleavage of a fluorogenic peptide and by zymography analysis. Both estradiol metabolites activated the MMP-2 and -9. 4-OHE(2) was a more potent activator than 2-OHE(2), which reflects its higher capacity to generate free radicals. ProMMPs activation was mainly mediated through O(2)*-, although the free radical HO* also activated the proMMPs but to a lesser extent. ProMMPs activation was not observed with estrogens that cannot generate free radicals, i.e. estradiol, estrone, 2- and 4-methoxyestradiol, and 16alpha-hydroxyestrone. These results demonstrate that 2- and 4-OHE(2) at a concentration as low as 10(-8)M can activate the proMMP-2 and -9 and might play an important role in the invasion of breast cancer cells.  相似文献   

11.
Five distinct hydrocarbon-deoxyribonucleoside adducts are separated by high pressure liquid chromatography after reaction of benzo[alpha]pyrene with calf thymus DNA in the presence of liver microsomes from 3-methylcholanthrene treated rats. The two major adducts co-chromatography with deoxyribonucleoside adducts obtained after hydrolysis of calf thymus DNA previously reacted with liver microsomal metabolically activated 9-hydroxy-benzo[alpha]pyrene or trans-7,8-dihydro-7,8-dihydroxybenzo[alpha]pyrene. High magnesium ion concentrations in the microsomal incubations cause a significant decrease in the covalent binding of the hydrocarbon to DNA but do not affect the qualitative distribution of the individual benzo[alpha]pyrene-deoxyribonucleoside adducts.  相似文献   

12.
The isoenzymes of human and rat lung glutathione S-transferase (GST) differ among themselves in their activities towards the epoxides of benzo(a)pyrene (BP). The Ya' and Yc-type subunits of rat lung GST exhibit maximum activities towards BP-4,5-oxide and BP-7,8-oxide suggesting that these two subunits are preferentially involved in the detoxification of highly reactive epoxides and diol-epoxides of polycyclic aromatic hydrocarbons (PAH). The studies with human lung GST isoenzymes indicate that BP-4,5-oxide, and BP-7,8-oxide are preferred substrates for the cationic (pI 8.3) form of the enzyme. Identification of compounds which can selectively induce these isoenzymes of GST could prove useful as inhibitors of PAH induced neoplasia.  相似文献   

13.
It is possible to assay for trans-7,8-dihydroxy 7,8-dihydrobenzo[a]-pyrene (BP-7,8-dihydrodiol) in complex metabolite mixtures produced during microsomal metabolism of benzo[a]pyrene (BP) because only the BP-7,8-dihydrodiol metabolite will produce significant chemiluminescence (CL) in the NaOCl-H2O2 singlet oxygen-generating system. The limiting CL sensitivity is 30 pmol in a 1-ml CL reaction mixture. CL assays for BP-7,8-dihydrodiol in microsomal reaction solutions gave concentrations identical with those determined by calibrated high-performance liquid chromatography.  相似文献   

14.
L A Sheean  R A Meigs 《Steroids》1983,41(2):225-241
Human placental microsomes converted epitestosterone to estradiol-17 alpha at rates of 23-48 pmol/min X mg protein with a Km of 113 microM. Activity was inhibited 70-90% by concentrations of CO, metyrapone, n-octylamine, 7,8-benzoflavone and 7-ethoxycoumarin which had no effect on the aromatization of 4-androstene-3, 17-dione. Conversely, cyanide and azide were more effective inhibitors of the conversion of the latter androgen. A variety of neutral steroids inhibited the aromatization of epitestosterone with 19-norsteroids being particularly effective, but competitive effects could not be demonstrated. Both 17 beta-hydroxy-4-estren-3-one and 16 alpha-hydroxy-4-androstene-3,17-dione caused a mixed inhibition. A number of phenolic steroids were also inhibitory with 16-oxo compounds being particularly effective. Inhibition by estrone was non-competitive (Ki = 16 microM). The aromatization of epitestosterone resembles placental microsomal oxidase activities against estrone and benzo [a]pyrene in its inhibitor specificity and epitestosterone may be the native substrate for an oxidase also active in the metabolism of aromatic xenobiotic chemicals.  相似文献   

15.
That enzyme fractions derived from animals chronically fed alcohol can alter the metabolism of carcinogenic xenobiotic compounds has been documented. To further understand this relationship the mutagenicity of 3 aromatic amines was determined in the Ames test, employing activation systems derived from rats maintained on an alcohol-containing liquid diet, an isocaloric control liquid diet or Aroclor 1254-pretreated animals fed standard laboratory chow. Depending upon protein and substrate concentrations, S9 from ethanol-fed rats was 30-50% less efficient than S9 from pair-fed rats in activating arylamines (2-aminofluorene, 2-aminoanthracene and 2-acetylaminofluorene) to mutagens in Salmonella typhimurium TA98 and TA100. Cytosolic fractions from ethanol-fed animals always resulted in greater arylamine activation than that of controls whereas the opposite was true of the microsomal compartment in which the ethanol-treated group was consistently less active than the controls. The cytosolic N-acetyltransferase activities with respect to 2 different substrates, isoniazid and 2-aminofluorene, were unaffected by ethanol consumption, indicating that this activity probably does not account for the different activation profiles exhibited by the ethanol and pair-fed cytosolic systems. Both the cytosolic and microsomal compartments are required for maximal expression of the mutagenicity of each arylamine however, each compartment can activate arylamines independently of the other. Reconstituting cytosol with microsomes from ethanol- and pair-fed rats, but not Aroclor-pretreated rats, resulted in a synergistic activation of the aromatic amines and displayed an effect similar to that of S9. Compared to Aroclor pretreatment and pair-fed controls, microsomes from ethanol-fed rats displayed the least capacity for activating any of the arylamines to mutagens. Microsomes from Aroclor-pretreated rats accounted for at least 80% of the S9-mediated activation of each of the arylamines to mutagenic metabolites which was in marked contrast to the contribution of the microsomal fractions to the S9 activity in the ethanol- (5-20% of S9 activity) and pair-fed systems (22-30% of S9 activity). The data indicate that 2 opposing reactions occur in S9, a cytosolic activity that augments and a microsomal activity that attenuates the mutagenicity of arylamines. Both activities are modified by ethanol consumption and Aroclor pretreatment.  相似文献   

16.
The effects of various pretreatments in vivo (3MC, PB, 2 and 4FAA) and of various inhibitors in vitro (7,8 BF, SKF525A and MN R) on the activity of rat liver microsomal BP hydroxylase were analyzed and correlated with the S-9 mediated mutagenicity of BP. 3MC is the only treatment which both induces and modifies the hydroxylase activity; it also specifically increases the enzyme mediated mutagenicity. Miconazole R which inhibits all the tested microsomal preparations, also reduces the mutagenicity mediated by all the S-9 preparations whereas the inhibitory effects of 7,8 BF and SKF525A are limited respectively to enzyme preparations from 3MC induced and control or PB treated rats.  相似文献   

17.
Mutagenic effect of styrene and styrene-7,8-oxide was studied with the isolated perfused rat liver as metabolizing system and Chinese hamster V79 cells as genetic target cells. Styrene-7,8-oxide which is mutagenic per se was rapidly metabolized by the perfused rat liver. Thus no mutagenic effect was detected neither in the perfusion medium nor in the bile. However when styrene was added to the perfusion system, an increase in V79 mutants was observed regardless of where in the circulating perfusion medium the V79 cells were placed: the same effect was obtained with V79 cells close to the liver as well as at a distance from the liver. No mutagenic effect was observed in the bile. Simultaneous analysis of the styrene-7,8-oxide concentration in the perfusion medium, suggest that this metabolite is not the cause of the mutagenic effect observed during perfusion with styrene.The effect of the two test compounds on some liver functions was also studied. Both styrene and styrene-7,8-oxide changed the bile flow without affecting bile acid secretion: styrene caused a reduction in bile flow as compared to control perfusions and styrene-7,8-oxide increased the bile flow. Styrene, but not styrene-7,8-oxide, reduced gluconeogenesis from lactate. Styrene had no effect on the liver's capacity to incorporate amino acids into plasma proteins, whereas styrene-7,8-oxide reduced the amino acid incorporation. The microsomal cytochrome P-450 content was not affected by the two test compounds. No alteration in microsomal N- and C-oxygenation of N, N-dimethylaniline (DMA) was observed with styrene-7,8-oxide or the lower styrene dose used (240 μmol), whereas the higher styrene concentration (480 μmol) reduced N-oxygenation and thus also the total DMA metabolism.It is suggested that the results on styrene and styrene-7,8-oxide found here using the liver perfusion/cell culture system mimic the metabolism expected to be found in the intact animal, thus indicating that styrene-7,8-oxide is not the principal mutagenic metabolite of styrene in vivo.  相似文献   

18.
Different coumarin/thiocoumarin derivatives, that is, 7-hydroxy-4-methylcoumarin, 7,8-dihydroxy-4-methylcoumarin, 7-acetoxy-4-methylcoumarin, 7,8-diacetoxy-4-methylcoumarin, 7-hydroxy-4-methylthiocoumarin, 7,8-dihydroxy-4-methylthiocoumarin, 7-acetoxy-4-methylthiocoumarin and 7,8-diacetoxy-4-methylthiocoumarin were synthesized and evaluated for their effects on TNF-alpha induced expression of intercellular adhesion molecule-1 (ICAM-1) on endothelial cells and on NADPH-catalyzed rat liver microsomal lipid peroxidation with a view to identify modulators for expression of cell adhesion molecules and to establish structure-activity relationship. We found that dihydroxy and diacetoxy derivatives of thiocoumarin were more potent in comparison to the corresponding coumarin derivatives in inhibiting TNF-alpha-induced expression of ICAM-1. However, coumarin derivatives were found to be more potent in comparison to the corresponding thiocoumarins in inhibiting microsomal lipid peroxidation. We have also tested the intermediate compounds 7,8-dibenzyloxy-4-methylcoumarin and 7,8-dibenzyloxy-4-methylthiocoumarin for their inhibitory activity on TNF-alpha-induced ICMA-1 expression. We found that dibenzyloxy-4-methylthiocoumarin is better than dibenzyloxy-4-methylcoumarin. The mechanisms underlying the observed activities of coumarins and thiocoumarins have been discussed with reference to their structures. Such structure-function relationship studies may help in developing molecules with better anti-inflammatory and anti-oxidant activities.  相似文献   

19.
Fagaronine and nitidine are natural benzo[c] phenanthridinium alkaloids, which display antileukemic activity. Both act as topoisomerase I and topoisomerase II inhibitors. The objective of the present study was to prepare noncharged isosters of these compounds, with replacement of the aromatic A ring by a pyridine ring, present in other topoisomerase I inhibitors. Various 7,8- and 8,9-dimethoxy and metylenedioxy benzo[c][1,7] and [1,8]phenanthrolines were readily synthesized by benzyne-mediated cyclization of the corresponding substituted N-(2-halobenzyl)-5-quinolinamines or 5-isoquinolinamines. In both series, compounds bearing oxygenated substituents at positions 8 and 9 exhibited cytotoxic properties towards L1210 murine leukemia cells, which may result from their capacities to intercalate into DNA. Topoisomerase I inhibition was observed for all active compounds.  相似文献   

20.
A sensitive and specific assay for the determination of the catecholestrogens 2-hydroxyestradiol (2-OHE2) and 4-hydroxyestradiol (4-OHE2) using gas chromatography with electron-capture detection (GC–ECD) is described. The formation of 2- and 4-OHE2 was assessed following activation of 17β-estradiol in the microsomal fraction of female rat livers. The analytes were isolated by solid-phase extraction, derivatized to their heptafluorobutyryl esters with heptafluorobutyric acid anhydride, and subjected to solvent exchange prior to analysis; this resulted in minimal chromatographic interference, long column life, and stable derivatized analytes. Derivatized catechols were separated and confirmed with dual column chromatography (DB-5 and DB-608) and quantitated using GC–ECD. The DB-608 column was preferred for quantitation as it provided better 4-OHE2 resolution from interference. Key validation parameters for the assay include sensitivity, intra- and inter-assay precision, and accuracy. Instrument sensitivity and limits of detection (LOD) and quantitation (LOQ) were determined statistically from fortification data approaching expected limits. For 2-OHE2 and 4-OHE2, respective values for these parameters were; instrument sensitivities of 0.4 and 0.7 pg, LODs of 0.8 and 1.3 ng/mg, and LOQs of 2.6 and 4.3 ng/mg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号