首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
M. A. Hoyt  L. He  L. Totis    W. S. Saunders 《Genetics》1993,135(1):35-44
The kinesin-related products of the CIN8 and KIP1 genes of Saccharomyces cerevisiae redundantly perform an essential function in mitosis. The action of either gene-product is required for an outwardly directed force that acts upon the spindle poles. We have selected mutations that suppress the temperature-sensitivity of a cin8-temperature-sensitive kip1-δ strain. The extragenic suppressors analyzed were all found to be alleles of the KAR3 gene. KAR3 encodes a distinct kinesin-related protein whose action antagonizes Cin8p/Kip1p function. All seven alleles analyzed were altered within the region of KAR3 that encodes the putative force-generating (or ``motor') domain. These mutations also suppressed the inviability associated with the cin8-δ kip1-δ genotype, a property not shared by a deletion of KAR3. Other properties of the suppressing alleles revealed that they were not null for function. Six of the seven were unaffected for the essential karyogamy and meiosis properties of KAR3 and the seventh was dominant for the suppressing trait. Our findings suggest that despite an antagonistic relationship between Cin8p/Kip1p and Kar3p, aspects of their mitotic roles may be similar.  相似文献   

2.
Two Saccharomyces cerevisiae kinesin-related motors, Cin8p and Kip1p, perform an essential role in the separation of spindle poles during spindle assembly and a major role in spindle elongation. Cin8p and Kip1p are also required to prevent an inward spindle collapse prior to anaphase. A third kinesin-related motor, Kar3p, may act antagonistically to Cin8p and Kip1p since loss of Kar3p partially suppresses the spindle collapse in cin8 kip1 mutants. We have tested the relationship between Cin8p and Kar3p by overexpressing both motors using the inducible GAL1 promoter. Overexpression of KAR3 results in a shrinkage of spindle size and a temperature-dependent inhibition of the growth of wild-type cells. Excess Kar3p has a stronger inhibitory effect on the growth of cin8 kip1 mutants and can completely block anaphase spindle elongation in these cells. In contrast, overexpression of CIN8 leads to premature spindle elongation in all cells tested. This is the first direct demonstration of antagonistic motors acting on the intact spindle and suggests that spindle length is determined by the relative activity of Kar3p-like and Cin8p/Kip1p-like motors.  相似文献   

3.
Spindle orientation and nuclear migration are crucial events in cell growth and differentiation of many eukaryotes. Here we show that KIP3, the sixth and final kinesin-related gene in Saccharomyces cerevisiae, is required for migration of the nucleus to the bud site in preparation for mitosis. The position of the nucleus in the cell and the orientation of the mitotic spindle was examined by microscopy of fixed cells and by time-lapse microscopy of individual live cells. Mutations in KIP3 and in the dynein heavy chain gene defined two distinct phases of nuclear migration: a KIP3-dependent movement of the nucleus toward the incipient bud site and a dynein-dependent translocation of the nucleus through the bud neck during anaphase. Loss of KIP3 function disrupts the unidirectional movement of the nucleus toward the bud and mitotic spindle orientation, causing large oscillations in nuclear position. The oscillatory motions sometimes brought the nucleus in close proximity to the bud neck, possibly accounting for the viability of a kip3 null mutant. The kip3 null mutant exhibits normal translocation of the nucleus through the neck and normal spindle pole separation kinetics during anaphase. Simultaneous loss of KIP3 and kinesin-related KAR3 function, or of KIP3 and dynein function, is lethal but does not block any additional detectable movement. This suggests that the lethality is due to the combination of sequential and possibly overlapping defects. Epitope-tagged Kip3p localizes to astral and central spindle microtubules and is also present throughout the cytoplasm and nucleus.  相似文献   

4.
We have used anti-peptide antibodies raised against highly conserved regions of the kinesin motor domain to identify kinesin-related proteins in the fission yeast Schizosaccharomyces pombe. Here we report the identification of a new kinesin-related protein, which we have named pkl1. Sequence homology and domain organization place pkl1 in the Kar3/ncd subfamily of kinesin-related proteins. Bacterially expressed pkl1 fusion proteins display microtubule-stimulated ATPase activity, nucleotide-sensitive binding, and bundling of microtubules. Immunofluorescence studies with affinity-purified antibodies indicate that the pkl1 protein localizes to the nucleus and the mitotic spindle. Pkl1 null mutants are viable but have increased sensitivity to microtubule-disrupting drugs. Disruption of pkl1+ suppresses mutations in another kinesin-related protein, cut7, which is known to act in the spindle. Overexpression of pkl1 to very high levels causes a similar phenotype to that seen in cut7 mutants: V-shaped and star-shaped microtubule structures are observed, which we interpret to be spindles with unseparated spindle poles. These observations suggest that pkl1 and cut7 provide opposing forces in the spindle. We propose that pkl1 functions as a microtubule-dependent motor that is involved in microtubule organization in the mitotic spindle.  相似文献   

5.
Proper positioning of the mitotic spindle is often essential for cell division and differentiation processes. The asymmetric cell division characteristic of budding yeast, Saccharomyces cerevisiae, requires that the spindle be positioned at the mother–bud neck and oriented along the mother–bud axis. The single dynein motor encoded by the S. cerevisiae genome performs an important but nonessential spindle-positioning role. We demonstrate that kinesin-related Kip3p makes a major contribution to spindle positioning in the absence of dynein. The elimination of Kip3p function in dyn1Δ cells severely compromised spindle movement to the mother–bud neck. In dyn1Δ cells that had completed positioning, elimination of Kip3p function caused spindles to mislocalize to distal positions in mother cell bodies. We also demonstrate that the spindle-positioning defects exhibited by dyn1 kip3 cells are caused, to a large extent, by the actions of kinesin- related Kip2p. Microtubules in kip2Δ cells were shorter and more sensitive to benomyl than wild-type, in contrast to the longer and benomyl-resistant microtubules found in dyn1Δ and kip3Δ cells. Most significantly, the deletion of KIP2 greatly suppressed the spindle localization defect and slow growth exhibited by dyn1 kip3 cells. Likewise, induced expression of KIP2 caused spindles to mislocalize in cells deficient for dynein and Kip3p. Our findings indicate that Kip2p participates in normal spindle positioning but antagonizes a positioning mechanism acting in dyn1 kip3 cells. The observation that deletion of KIP2 could also suppress the inviability of dyn1Δ kar3Δ cells suggests that kinesin-related Kar3p also contributes to spindle positioning.  相似文献   

6.
Two Saccharomyces cerevisiae genes, CIN8 and KIP1 (a.k.a. CIN9), were identified by their requirement for normal chromosome segregation. Both genes encode polypeptides related to the heavy chain of the microtubule-based force-generating enzyme kinesin. Cin8p was found to be required for pole separation during mitotic spindle assembly at 37 degrees C, although overproduced Kip1p could substitute. At lower temperatures, the activity of at least one of these proteins was required for cell viability, indicating that they perform an essential but redundant function. Cin8p was observed to be a component of the mitotic spindle, colocalizing with the microtubules that lie between the poles. Taken together, these findings suggest that these proteins interact with spindle microtubules to produce an outwardly directed force acting upon the poles.  相似文献   

7.
In higher plants, pollen tubes and root hairs share an ancient growth process named tip growth. We have isolated three allelic Arabidopsis mutant lines showing kinky-shaped pollen tubes and, when homozygous, showing shorter and thicker root hairs. The ultrastructure of pollen tubes in these kinky pollen (kip) mutants is similar to that of the wild type; however, time-lapse studies suggest that aberrant pollen tube shape is caused by periodic growth arrests alternated with phases of tube axis reorientation. The KIP gene encodes a protein of 2587 amino acids that is predicted to be targeted to the secretory pathway. KIP mRNA was detected in all organs investigated but was most abundant in pollen and roots. KIP has putative homologues in many eukaryotes, including mammals and yeast, and is similar to the Arabidopsis SABRE gene, whose mutation causes a dwarf phenotype. The phenotype of the kip/sab double mutant suggests related functions for both genes, however, the KIP protein is mostly required for tip-growth.  相似文献   

8.
The roles of two kinesin-related proteins, Kip2p and Kip3p, in microtubule function and nuclear migration were investigated. Deletion of either gene resulted in nuclear migration defects similar to those described for dynein and kar9 mutants. By indirect immunofluorescence, the cytoplasmic microtubules in kip2Δwere consistently short or absent throughout the cell cycle. In contrast, in kip3Δ strains, the cytoplasmic microtubules were significantly longer than wild type at telophase. Furthermore, in the kip3Δ cells with nuclear positioning defects, the cytoplasmic microtubules were misoriented and failed to extend into the bud. Localization studies found Kip2p exclusively on cytoplasmic microtubules throughout the cell cycle, whereas GFP-Kip3p localized to both spindle and cytoplasmic microtubules. Genetic analysis demonstrated that the kip2Δ kar9Δ double mutants were synthetically lethal, whereas kip3Δ kar9Δ double mutants were viable. Conversely, kip3Δ dhc1Δ double mutants were synthetically lethal, whereas kip2Δ dhc1Δ double mutants were viable. We suggest that the kinesin-related proteins, Kip2p and Kip3p, function in nuclear migration and that they do so by different mechanisms. We propose that Kip2p stabilizes microtubules and is required as part of the dynein-mediated pathway in nuclear migration. Furthermore, we propose that Kip3p functions, in part, by depolymerizing microtubules and is required for the Kar9p-dependent orientation of the cytoplasmic microtubules.  相似文献   

9.
The spindle assembly checkpoint prevents cells from initiating anaphase until the spindle has been fully assembled. We previously isolated mitotic arrest deficient (mad) mutants that inactivate this checkpoint and thus increase the sensitivity of cells to benomyl, a drug that interferes with mitotic spindle assembly by depolymerizing microtubules. We have cloned the MAD1 gene and show that when it is disrupted yeast cells have the same phenotype as the previously isolated mad1 mutants: they fail to delay the metaphase to anaphase transition in response to microtubule depolymerization. MAD1 is predicted to encode a 90-kD coiled-coil protein. Anti-Mad1p antibodies give a novel punctate nuclear staining pattern and cell fractionation reveals that the bulk of Mad1p is soluble. Mad1p becomes hyperphosphorylated when wild-type cells are arrested in mitosis by benomyl treatment, or by placing a cold sensitive tubulin mutant at the restrictive temperature. This modification does not occur in G1- arrested cells treated with benomyl or in cells arrested in mitosis by defects in the mitotic cyclin proteolysis machinery, suggesting that Mad1p hyperphosphorylation is a step in the activation of the spindle assembly checkpoint. Analysis of Mad1p phosphorylation in other spindle assembly checkpoint mutants reveals that this response to microtubule- disrupting agents is defective in some (mad2, bub1, and bub3) but not all (mad3, bub2) mutant strains. We discuss the possible functions of Mad1p at this cell cycle checkpoint.  相似文献   

10.
The budding yeast Saccharomyces cerevisiae provides a unique opportunity for study of the microtubule-based motor proteins that participate in mitotic spindle function. The genome of Saccharomyces encodes a relatively small and genetically tractable set of microtubule-based motor proteins. The single cytoplasmic dynein and five of the six kinesin-related proteins encoded have been implicated in mitotic spindle function. Each motor protein is unique in amino acid sequence. On account of functional overlap, no single motor is uniquely required for cell viability, however. The ability to create and analyze multiple mutants has allowed experimental dissection of the roles performed by each mitotic motor. Some of the motors operate within the nucleus to assemble and elongate the bipolar spindle (kinesin-related Cin8p, Kip1p, Kip3p and Kar3p). Others operate on the cytoplasmic microtubules to effect spindle and nuclear positioning within the cell (dynein and kinesin-related Kip2p, Kip3p and Kar3p). The six motors apparently contribute three fundamental activities to spindle function: motility, microtubule cross-linking and regulation of microtubule dynamics.  相似文献   

11.
Mutations in the REM1 gene of Saccharomyces cerevisiae confer a semidominant hyper-recombination and hypermutable phenotype upon mitotic cells ( GOLIN and ESPOSITO 1977). These effects have not been observed in meiosis. We have examined the interactions of rem1 mutations with rad6-1, rad50 -1, rad52-1 or spo11 -1 mutations in order to understand the basis of the rem1 hyper-rec phenotype. The rad mutations have pleiotropic phenotypes; spo11 is only defective in sporulation and meiosis. The RAD6, RAD50 and SPO11 genes are not required for spontaneous mitotic recombination; mutations in the RAD52 gene cause a general spontaneous mitotic Rec- phenotype. Mutations in RAD50 , RAD52 or SPO11 eliminate meiotic recombination, and mutations in RAD6 prevent spore formation. Evidence for the involvement of RAD6 in meiotic recombination is less clear. Mutations in all three RAD genes confer sensitivity to X rays; the RAD6 gene is also required for UV damage repair. To test whether any of these functions might be involved in the hyper-rec phenotype conferred by rem1 mutations, double mutants were constructed. Double mutants of rem1 spo11 were viable and demonstrated rem1 levels of mitotic recombination, suggesting that the normal meiotic recombination system is not involved in producing the rem1 phenotype. The rem1 rad6 double mutant was also viable and had rem1 levels of mitotic recombination. Neither rem1 rad50 nor rem1 rad52 double mutants were viable. This suggests that rem1 causes its hyper-rec phenotype because it creates lesions in the DNA that are repaired using a recombination-repair system involving RAD50 and RAD52.  相似文献   

12.
We have identified a mutant allele of the DAM1 gene in a screen for mutations that are lethal in combination with the mps1-1 mutation. MPS1 encodes an essential protein kinase that is required for duplication of the spindle pole body and for the spindle assembly checkpoint. Mutations in six different genes were found to be lethal in combination with mps1-1, of which only DAM1 was novel. The remaining genes encode a checkpoint protein, Bub1p, and four chaperone proteins, Sti1p, Hsc82p, Cdc37p, and Ydj1p. DAM1 is an essential gene that encodes a protein recently described as a member of a microtubule binding complex. We report here that cells harboring the dam1-1 mutation fail to maintain spindle integrity during anaphase at the restrictive temperature. Consistent with this phenotype, DAM1 displays genetic interactions with STU1, CIN8, and KAR3, genes encoding proteins involved in spindle function. We have observed that a Dam1p-Myc fusion protein expressed at endogenous levels and localized by immunofluorescence microscopy, appears to be evenly distributed along short mitotic spindles but is found at the spindle poles at later times in mitosis.  相似文献   

13.
Aneuploid colon cancer cells have a robust spindle checkpoint   总被引:7,自引:0,他引:7       下载免费PDF全文
Colon cancer cells frequently display minisatellite instability (MIN) or chromosome instability (CIN). While MIN is caused by mismatch repair defects, the lesions responsible for CIN are unknown. The observation that CIN cells fail to undergo mitotic arrest following spindle damage suggested that mutations in spindle checkpoint genes may account for CIN. However, here we show that CIN cells do undergo mitotic arrest in response to spindle damage. Although the maximum mitotic index achieved by CIN lines is diminished relative to MIN lines, CIN cells clearly have a robust spindle checkpoint. Consistently, mutations in spindle checkpoint genes are rare in human tumours. In contrast, the adenomatous polyposis coli (APC) gene is frequently mutated in CIN cells. Significantly, we show here that expression of an APC mutant in MIN cells reduces the mitotic index following spindle damage to a level observed in CIN cells, suggesting that APC dysfunction may contribute to CIN.  相似文献   

14.
We isolated novel classes of Schizosaccharomyces pombe cold-sensitive dis mutants that block mitotic chromosome separation (nine mapped in the dis1 gene and one each in the dis2 and dis3 genes). Defective phenotype at restrictive temperature is similar among the mutants; the chromosomes condense and anomalously move to the cell ends in the absence of their disjoining so that they are unequally distributed at the two cell ends. Synchronous culture analyses indicate that the cells can enter into mitosis at normal timing but become lethal during mitosis. In comparison with the wild-type mitosis, defects are found in the early spindle structure, the mitotic chromosome structure, the poleward chromosome movement by the spindle elongation and the telophase spindle degradation. The dis mutants lose at permissive temperature an artificial minichromosome at higher rates than occur in the wild type. We found that all the dis mutants isolated are supersensitive to caffeine at permissive temperature. Furthermore, the mutant cells in the presence of caffeine produce a phenotype similar to that obtained at restrictive temperature. We suggest that the dis genes are required for the sister chromatid separation at the time of mitosis and that caffeine might affect the dis gene expression. We cloned, in addition to the dis2+ and dis3+ genes, multicopy extragenic suppressor sequences which complement dis1 and dis2 mutations. A complex regulatory system may exist for the execution of the dis+ gene functions.  相似文献   

15.
M D Rose  G R Fink 《Cell》1987,48(6):1047-1060
Molecular analysis of the KAR1 gene of yeast has shown that it is required for both mitosis and conjugation. The gene was originally identified by mutations that prevent nuclear fusion. By in vitro mutagenesis and gene replacement we have demonstrated that the gene is an essential cell division cycle gene. Temperature-sensitive mutant strains show defects in spindle pole body duplication and chromosome disjunction. Overproduction of the gene product blocks spindle pole body duplication, producing a cell cycle arrest phenotype similar to that of the Kar- temperature-sensitive mutations. Long, aberrant extranuclear microtubules are formed in the temperature-sensitive mutants arrested at the nonpermissive temperature as well as in kar1-1 during conjugation. These observations suggest that the KAR1 gene is required for the normal function of both the intranuclear and extranuclear microtubules.  相似文献   

16.
The Saccharomyces cerevisiae kinesin-related motor Kar3p, though known to be required for karyogamy, plays a poorly defined, nonessential role during vegetative growth. We have found evidence suggesting that Kar3p functions to limit the number and length of cytoplasmic microtubules in a cell cycle–specific manner. Deletion of KAR3 leads to a dramatic increase in cytoplasmic microtubules, a phenotype which is most pronounced from START through the onset of anaphase but less so during late anaphase in synchronized cultures. We have immunolocalized HA-tagged Kar3p to the spindle pole body region, and fittingly, Kar3p was not detected by late anaphase. A microtubule depolymerizing activity may be the major vegetative role for Kar3p. Addition of the microtubule polymerization inhibitors nocodazol or benomyl to the medium or deletion of the nonessential α-tubulin TUB3 gene can mostly correct the abnormal microtubule arrays and other growth defects of kar3 mutants, suggesting that these phenotypes result from excessive microtubule polymerization. Microtubule depolymerization may also be the mechanism by which Kar3p acts in opposition to the anaphase B motors Cin8p and Kip1p. A preanaphase spindle collapse phenotype of cin8 kip1 mutants, previously shown to involve Kar3p, is markedly delayed when microtubule depolymerization is inhibited by the tub2-150 mutation. These results suggest that the Kar3p motor may act to regulate the length and number of microtubules in the preanaphase spindle.  相似文献   

17.
T. Stearns  M. A. Hoyt    D. Botstein 《Genetics》1990,124(2):251-262
Three new genes affecting microtubule function in Saccharomyces cerevisiae were isolated by screening for mutants displaying supersensitivity to the antimicrotubule drug benomyl. Such mutants fall into six complementation groups: TUB1, TUB2 and TUB3, the three tubulin genes of yeast, and three new genes, which we have named CIN1, CIN2 and CIN4. Mutations in each of the CIN genes were also independently isolated by screening for mutants with increased rates of chromosome loss. Strains bearing mutations in the CIN genes are approximately tenfold more sensitive than wild type to both benomyl and to the related antimicrotubule drug, nocodazole. This phenotype is recessive for all alleles isolated. The CIN1, CIN2 and CIN4 genes were cloned by complementation of the benomyl-supersensitive phenotype. Null mutants of each of the genes are viable, and have phenotypes similar to those of the point mutants. Genetic evidence for the involvement of the CIN gene products in microtubule function comes from the observation that some tubulin mutations are suppressed by cin mutations, while other tubulin mutations are lethal in combination with cin mutations. Additional genetic experiments with cin mutants suggest that the three genes act together in the same pathway or structure to affect microtubule function.  相似文献   

18.
The previously described CLB1 and CLB2 genes encode a closely related pair of B-type cyclins. Here we present the sequences of another related pair of B-type cyclin genes, which we term CLB3 and CLB4. Although CLB1 and CLB2 mRNAs rise in abundance at the time of nuclear division, CLB3 and CLB4 are turned on earlier, rising early in S phase and declining near the end of nuclear division. When all possible single and multiple deletion mutants were constructed, some multiple mutations were lethal, whereas all single mutants were viable. All lethal combinations included the clb2 deletion, whereas the clb1 clb3 clb4 triple mutant was viable, suggesting a key role for CLB2. The inviable multiple clb mutants appeared to have a defect in mitosis. Conditional clb mutants arrested as large budded cells with a G2 DNA content but without any mitotic spindle. Electron microscopy showed that the spindle pole bodies had duplicated but not separated, and no spindle had formed. This suggests that the Clb/Cdc28 kinase may have a relatively direct role in spindle formation. The two groups of Clbs may have distinct roles in spindle formation and elongation.  相似文献   

19.
The Saccharomyces cerevisiae kinesin-related gene products Cin8p and Kip1p function to assemble the bipolar mitotic spindle. The cytoplasmic dynein heavy chain homologue Dyn1p (also known as Dhc1p) participates in proper cellular positioning of the spindle. In this study, the roles of these motor proteins in anaphase chromosome segregation were examined. While no single motor was essential, loss of function of all three completely halted anaphase chromatin separation. As combined motor activity was diminished by mutation, both the velocity and extent of chromatin movement were reduced, suggesting a direct role for all three motors in generating a chromosome-separating force. Redundancy for function between different types of microtubule-based motor proteins was also indicated by the observation that cin8 dyn1 double- deletion mutants are inviable. Our findings indicate that the bulk of anaphase chromosome segregation in S. cerevisiae is accomplished by the combined actions of these three motors.  相似文献   

20.
A characteristic feature of mitotic spindles is the congression of chromosomes near the spindle equator, a process mediated by dynamic kinetochore microtubules. A major challenge is to understand how precise, submicrometer-scale control of kinetochore micro­tubule dynamics is achieved in the smallest mitotic spindles, where the noisiness of microtubule assembly/disassembly will potentially act to overwhelm the spatial information that controls microtubule plus end–tip positioning to mediate congression. To better understand this fundamental limit, we conducted an integrated live fluorescence, electron microscopy, and modeling analysis of the polymorphic fungal pathogen Candida albicans, which contains one of the smallest known mitotic spindles (<1 μm). Previously, ScCin8p (kinesin-5 in Saccharomyces cerevisiae) was shown to mediate chromosome congression by promoting catastrophe of long kinetochore microtubules (kMTs). Using C. albicans yeast and hyphal kinesin-5 (Kip1p) heterozygotes (KIP1/kip1∆), we found that mutant spindles have longer kMTs than wild-type spindles, consistent with a less-organized spindle. By contrast, kinesin-8 heterozygous mutant (KIP3/kip3∆) spindles exhibited the same spindle organization as wild type. Of interest, spindle organization in the yeast and hyphal states was indistinguishable, even though yeast and hyphal cell lengths differ by two- to fivefold, demonstrating that spindle length regulation and chromosome congression are intrinsic to the spindle and largely independent of cell size. Together these results are consistent with a kinesin-5–mediated, length-dependent depolymerase activity that organizes chromosomes at the spindle equator in C. albicans to overcome fundamental noisiness in microtubule self-assembly. More generally, we define a dimensionless number that sets a fundamental physical limit for maintaining congression in small spindles in the face of assembly noise and find that C. albicans operates very close to this limit, which may explain why it has the smallest known mitotic spindle that still manifests the classic congression architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号