首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat kidney cortex mesangial cells (MES) and Chinese hamster ovary cells (CHO) responded to hypertonicity (600 mosmol/kg) in culture by accumulating sorbitol. The accumulation of sorbitol was due to increased aldose reductase (AR) activity, apparently brought about by increased levels of AR mRNA and protein. The levels of AR mRNA increased approximately 60-fold in MES cells and 30-fold in CHO cells by 24 h in culture media (300 mosmol/kg supplemented with 150 mM NaCl, 600 mosmol/kg total). AR activity also markedly increased (14- to 16-fold above control), but MES took 4 days and CHO 6 days to reach this maximum. Other osmolytes, raffinose and sorbitol (at concentrations of 250 to 300 mM) elicited the same response as that of 150 mM NaCl. These data show that AR expression is induced in MES and CHO cells under hypertonic conditions. Of special interest is the induction of large amounts of AR in rat kidney cortex mesangial cells, a target tissue of diabetes and a site where excessive accumulation of sorbitol is suspected to be a critical factor in diabetic nephropathy.  相似文献   

2.
Cells generally respond to long-term hyperosmotic stress by accumulating nonperturbing organic osmolytes. Unlike bacteria, in which molecular mechanisms involved in the increased accumulation of osmolytes have been identified, those in multicellular organisms are virtually unknown. In mammals, during antidiuresis, cells of the renal inner medulla are exposed to high and variable extracellular NaCl. Under these conditions, the cells contain a high level of sorbitol and other osmolytes which help balance the high extracellular osmolality. PAP-HT25 is a continuous line of cells derived from rabbit renal inner medulla. When medium osmolality is increased by raising the NaCl concentration, these cells accumulate sorbitol. The sorbitol is synthesized from glucose in a reaction catalyzed by aldose reductase. When the medium is made hyperosmotic, aldose reductase activity increases because of a larger increase in the amount of enzyme. This increase is produced by the accelerated rate of synthesis of aldose reductase protein. The purpose of the present studies was to examine the mechanism of this increase in aldose reductase protein by measuring the relative abundance of aldose reductase mRNA. A cDNA clone coding for rabbit kidney aldose reductase was isolated. Antisense RNA probes transcribed from this clone hybridized specifically with a 1.5-1.6 kilobase mRNA in Northern blots. Cells grown chronically in hyperosmotic medium had a relative abundance of this specific mRNA which was six times that of cells grown in isoosmotic medium. When cells grown in isoosmotic medium were switched to hyperosmotic medium, the level of aldose reductase mRNA peaked (18-fold) at 18-24 h. The induction of aldose reductase mRNA by osmotic stress was reversible. Our finding of increased abundance of a specific mRNA in direct response to hyperosmotic stress represents the first report of such an effect in animals.  相似文献   

3.
1. The regulation of epithelial cell volume is an essential requirement for normal tissue function and the maintenance of cellular integrity. 2. Renal papillary epithelial cells utilize an organic to compensate for the shrinkage associated with exposure to hypertonic solutions. 3. These cells synthesize the polyol, sorbitol, to increase their intracellular solute content. 4. Sorbitol is synthesized from glucose by the enzyme aldose reductase; exposure of the cells to hypertonic media causes aldose reductase synthesis and subsequent sorbitol generation over a two or three day period. 5. The intracellular signal for the formation of aldose reductase is not yet identified.  相似文献   

4.
5.
L-929 cells acclimated to media made hyperosmotic (600 mosmol/kgH2O) by addition of NaCl, sorbitol, or mannitol show, on SDS-polyacrylamide gels, a markedly enhanced protein band at 40 kDa, most likely corresponding to the enzyme aldose reductase. The effect was not observed in cells acclimated to a medium rendered hyperosmotic by addition of proline. The major organic osmolyte accumulated is sorbitol in cells acclimated to high-sorbitol or high-NaCl medium, proline in cells acclimated to high-proline medium. Cells acclimated to any of these hyperosmotic media display unaltered Na+ levels and similarly increased K+ levels and decreased Cl levels. These results are interpreted in terms of the mechanisms involved in aldose reductase induction and in regulation of the enzyme activity in long-term acclimation to hyperosmotic media. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Cells adapt to hyperosmotic conditions by several mechanisms, including accumulation of sorbitol via induction of the polyol pathway. Failure to adapt to osmotic stress can result in apoptotic cell death. In the present study, we assessed the role of aldose reductase, the key enzyme of the polyol pathway, in cardiac myocyte apoptosis. Hyperosmotic stress, elicited by exposure of cultured rat cardiac myocytes to the nonpermeant solutes sorbitol and mannitol, caused identical cell shrinkage and adaptive hexose uptake stimulation. In contrast, only sorbitol induced the polyol pathway and triggered stress pathways as well as apoptosis-related signaling events. Sorbitol resulted in activation of the extracellular signal-regulated kinase (ERK), p54 c-Jun N-terminal kinase (JNK), and protein kinase B. Furthermore, sorbitol treatment resulting in induction and activation of aldose reductase, decreased expression of the antiapoptotic protein Bcl-xL, increased DNA fragmentation, and glutathione depletion. Apoptosis was attenuated by aldose reductase inhibition with zopolrestat and also by glutathione replenishment with N-acetylcysteine. In conclusion, our data show that hypertonic shrinkage of cardiac myocytes alone is not sufficient to induce cardiac myocyte apoptosis. Hyperosmolarity-induced cell death is sensitive to the nature of the osmolyte and requires induction of aldose reductase as well as a decrease in intracellular glutathione levels.  相似文献   

7.
GRB-PAP1 is a continuous line of epithelial cells derived from a rabbit renal inner medulla. Elevation of the NaCl concentration in the medium bathing these cells strongly induced the expression of a soluble protein with an apparent molecular mass of 39 kDa. The protein, purified by affinity chromatography with Amicon Matrex Gel Orange A, had enzyme activity characteristic of aldose reductase (alditol:NADPH+ oxidoreductase, EC 1.1.1.21). Goat antiserum against this purified aldose reductase selected the 39-kDa band from immunoblots of cells grown in a medium containing high NaCl. When the osmolality of the medium was increased by adding NaCl, the amount of aldose reductase protein and the aldose reductase activity increased together from very low to sustained high levels over several days. The aldose reductase protein was more than 10% of the soluble cell protein when cells were propagated in medium made hyperosmotic by adding NaCl to increase medium osmolality to 600 mosm.kg-1.  相似文献   

8.
9.
A lens epithelial cell line established from a transgenic mouse synthesizes high levels of the enzyme aldose reductase which converts sugars to polyols. This enzyme has been implicated in the formation of sugar cataracts in animals and with diabetic complications in man. The mouse aldose reductase has been characterized and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis has an apparent molecular mass of 38,000, similar to the enzyme in rat and man. The cellular enzyme is inhibited by two aldose reductase inhibitors: Sorbinil (IC50 = 1.8 X 10(-7) M) and Alcon 1576 (IC50 = 7.8 X 10(-8) M). The amount and the specific activity of the aldose reductase can be further increased in the cells by raising the osmolarity of the medium to 500 mOSM. Although the amount of aldose reductase is increased approximately sevenfold under these conditions, alpha-crystallin, one of the main lens specific proteins, remained at about the same concentration. No detectable increase in sorbitol was found within the cells, in contrast to published reports on renal cells in which this polyol increases under similar hyperosmotic conditions; however, in the lens cells there was a five-fold increase in the inositol content, suggesting that this polyol rather than sorbitol may be used to compensate for some of the changes in the osmolarity. The induction of the enzyme aldose reductase without the apparent accumulation of its product suggests a complex mechanism for osmoregulation in the lens cells.  相似文献   

10.
Proteomic analysis of Inner Medullary Collecting Duct (IMCD3) cells adapted to increasing levels of tonicity (300, 600, and 900 mosmol/kg H(2)O) by two-dimensional difference gel electrophoresis and mass spectrometry revealed several proteins as yet unknown to be up-regulated in response to hypertonic stress. Of these proteins, one of the most robustly up-regulated (22-fold) was S100A4. The identity of the protein was verified by high pressure liquid chromatography-mass spectrometry. Western blot analysis confirmed increased expression with increased tonicity, both acute and chronic. S100A4 protein expression was further confirmed by immunocytochemical analysis. Cells grown in isotonic conditions showed complete absence of immunostaining, whereas chronically adapted IMCD3 cells had uniform cytoplasmic localization. The protein is also regulated in vivo as in mouse kidney tissues S100A4 expression was many -fold greater in the papilla as compared with the cortex and increased further in the papilla upon 36 h of thirsting. Increased expression of S100A4 was also observed in the medulla and papilla, but not the cortex of a human kidney. Data from Affymetrix gene chip analysis and quantitative PCR also revealed increased S100A4 message in IMCD3 cells adapted to hypertonicity. The initial expression of message increased at 8-10 h following exposure to acute sublethal hypertonic stress (550 mosmol/kg H(2)O). Protein and message half-life in IMCD3 cells were 85.5 and 6.8 h, respectively. Increasing medium tonicity with NaCl, sucrose, mannitol, and choline chloride stimulated S100A4 expression, whereas urea did not. Silencing of S100A4 expression using a stable siRNA vector (pSM2; Open Biosystems) resulted in a 48-h delay in adaptation of IMCD3 cells under sublethal osmotic stress, suggesting S100A4 is involved in the osmoadaptive response. In summary, we describe the heretofore unrecognized up-regulation of a small calcium-binding protein, both in vitro and in vivo, whose absence profoundly delays osmoadaptation and slows cellular growth under hypertonic conditions.  相似文献   

11.
Aldose reductase activity is increased in neuroblastoma cells grown in media containing 30 mM fructose and/or 30 mM glucose. Neuroblastoma cells cultured in media supplemented with increased concentrations of glucose and fructose amass greater amounts of sorbitol than do cells exposed to media containing only high glucose concentrations. The increase in sorbitol content is dependent on the fructose and glucose concentration in the media. The increase in sorbitol content caused by exposing neuroblastoma cells to media containing 30 mM glucose/30 mM fructose is due to a protein synthesis sensitive mechanism and not to an alteration in the redox state. The addition of sorbinil to media containing 30 mM glucose blocks the increase in sorbitol content. In contrast, sorbinil treatment of media containing 30 mM glucose/30 mM fructose does not totally block the increase in sorbitol levels. myo-Inositol accumulation and incorporation into inositol phospholipids and intracellular myo-inositol content are decreased in cells chronically exposed to media containing 30 mM glucose or 30 mM glucose/30 mM fructose compared to cells cultured in unsupplemented media or media containing 30 mM fructose. However, maximal depletion of myo-inositol accumulation and intracellular content occurs earlier in cells exposed to media containing 30 mM glucose/30 mM fructose than in cells exposed to media supplemented with 30 mM glucose. Sorbinil treatment of media containing 30 mM glucose/30 mM fructose maintains cellular myo-inositol accumulation and incorporation into phospholipids at near normal levels. myo-Inositol content in neuroblastoma cells chronically exposed to media containing 30 mM glucose or 30 mM glucose/30 mM fructose recovers within 72 h when the cells are transferred to unsupplemented media or media containing 30 mM fructose. In contrast, the sorbitol content of cells previously exposed to media containing 30 mM glucose or 30 mM glucose/30 mM fructose then transferred into media containing 30 mM fructose remains elevated compared to the sorbitol content of cells transferred into unsupplemented media. These data suggest that fructose may be activating or increasing sorbinil-resistant aldose reductase activity as well as partially blocking sorbitol dehydrogenase activity. The presence of increased concentrations of fructose in combination with increased glucose levels may enhance alterations in cell metabolism and properties due to increased sorbitol levels.  相似文献   

12.
The mechanism by which COX2 inhibition decreases renal cell survival is poorly understood. In the present study we examined the effect of COX2 activity on organic osmolyte accumulation in renal medulla and in cultured mouse renal medullary interstitial cells (MMICs) and its role in facilitating cell survival. Hypertonicity increased accumulation of the organic osmolytes inositol, sorbitol, and betaine in cultured mouse medullary interstitial cells. Pretreatment of MMICs with a COX2-specific inhibitor (SC58236, 10 micromol/liter) dramatically reduced osmolyte accumulation (by 79 +/- 9, 57 +/- 12, and 96 +/- 10% for inositol, sorbitol, and betaine respectively, p < 0.05). Similarly, 24 h of dehydration increased inner medullary inositol, sorbitol, and betaine concentrations in vivo by 85 +/- 10, 197 +/- 28, and 190 +/- 24 pmol/microg of protein, respectively, but this increase was also blunted (by 100 +/- 5, 66 +/- 15, and 81 +/- 9% for inositol, sorbitol, and betaine, respectively, p < 0.05) by pretreatment with an oral COX2 inhibitor. Dehydrated COX2-/- mice also exhibited an impressive defect in sorbitol accumulation (88 +/- 9% less than wild type, p < 0.05) after dehydration. COX2 inhibition (COX2 inhibitor-treated or COX2-/- MMICs) dramatically reduced the expression of organic osmolyte uptake mechanisms including betaine (BGT1) and sodium-myo-inositol transporter and aldose reductase mRNA expression under hypertonic conditions. Importantly, preincubation of COX2 inhibitor-treated MMICs with organic osmolytes restored their ability to survive hypertonic stress. In conclusion, osmolyte accumulation in the kidney inner medulla is dependent on COX2 activity, and providing exogenous osmolytes reverses COX2-induced cell death. These findings may have implications for the pathogenesis of analgesic nephropathy.  相似文献   

13.
14.
Streptozotocin diabetes induces a 4-fold increase in the maximal velocity of inner medullary aldose reductase as determined in vitro but increases sorbital synthesis in intact inner medullary collecting duct (IMCD) cells only 1.3-fold [1]. In order to resolve this discrepancy we investigated the importance of intracellular factors in controlling the role of cellular sorbitol synthesis. These factors include glucose concentration, sorbitol concentration, the activity of the NADPH-regenerating pentose phosphate pathway, intracellular NADP and NADPH content, and intracellular reduced (GSH) and oxidized glutathione (GSSG). It was found that the apparent Km of cellular sorbitol production for glucose was identical in control and diabetic rats (56 ± 18 vs. 59 ± 14 mmol/l d-glucose), whereas Vmax increased by 31% in diabetes. In inner medullary collecting duct cells of diabetic rats containing 146 ± 5 μmol sorbitol/g protein, sorbitol synthesis slightly lower (?15%), compared to cells which had been sorbitol-depleted prior to the experiment (87 ± 4 μmol sorbitol/g protein). However, no inhibitory effect of sorbitol (up to 200 mmol/l) was observed on aldose reductase activity in vitro. In diabetic rats the content of NADPH was about 32% lower than in the control rats (3.8 ± 0.3 vs. 5.6 ± 0.4 μmol/g protein) and the ratio of NADPH/NADP was decreased from 25.6 ± 5.1 to 8.6 ± 1.7. In homogenates of the inner medulla the activity of 6-phospho-gluconate dehydrogenase (EC 1.1.1.43) was identical in both experimental groups, so the pentose phosphate shunt seems to be unaltered. GSH content in diabetic rats was also diminished (4.2 ± 0.67 μmol/g protein vs. 7.41 ± 0.5 μmol/g protein) and the GSH/GSSG ratio fell from 92.6 to 57.4. In enzyme tests in vitro an apparent Km of 7.3 ± 1.9 μmol/l of the aldose reductase for NADPH was found; NADP acted as competitive inhibitor with a apparent Ki of 183 ± 31 μmol/l. Aldose reductase activity was also found to be strongly inhibited by the SH-group reagent p-chloromercurybenzoesulfonate (apparent Ki = 0.85 · 10?6 mol/l). Combining the results obtained on the properties of the aldose reductase in vitro and the observation made in the intact cells, the investigators suggest that the decrease in NADPH/ NADP ratio, as well as changes in the redox state in the cells of diabetic animals, can play a significant role in the control of sorbitol synthesis.  相似文献   

15.
The current studies demonstrate that corticosteroidogenesis can be maintained by primary cultures of bovine adrenocortical cells under lipoprotein-depleted conditions. The cholesterol necessary as substrate for steroid synthesis was found to arise from de novo synthesis within these cells. Adrenocorticotropin (ACTH) increased 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity 5-fold within 12 h after addition to the medium. The increase in activity apparently represented accumulation of enzyme as determined by protein blotting and immunodetection. The predominant immunodetectable species of HMG-CoA reductase from bovine adrenal cells was 97,000 daltons; no higher molecular mass species was detectable. The ACTH induction of HMG-CoA reductase activity could be prevented after inhibition of cholesterol conversion to pregnenolone with clotrimazole. These results are suggestive that ACTH increases adrenocortical cholesterol biosynthesis and HMG-CoA reductase activity after conversion of a cellular pool of cholesterol and/or oxysterol into steroid. The increased rate of cholesterol biosynthesis is then capable of maintaining ACTH-promoted steroid production. This is the first study, in vitro, to demonstrate an ACTH-promoted accumulation of HMG-CoA reductase of adrenocortical cells.  相似文献   

16.
The effect of high concentrations of glucose on Na, K-ATPase activity and the polyol pathway was studied using cultured bovine aortic endothelial cells. Na, K-ATPase activity was expressed as ouabain-sensitive K+ uptake. A significant decrease in Na, K-ATPase activity with an intracellular accumulation of sorbitol was found in confluent endothelial cells incubated with 400 mg/dl glucose for 96 h. However, there was no significant change in the Na, K-ATPase activity or sorbitol content of the cells incubated with 100 mg/dl glucose plus 300 mg/dl mannitol. The decrease in Na, K-ATPase induced by the high glucose concentration was restored by the simultaneous addition of 10(-4) M ponalrestat (ICI 128,436; Statil), an aldose reductase inhibitor. The addition of this agent also significantly reduced the increase in sorbitol induced by high glucose levels. These results suggest that the decrease in Na, K-ATPase activity induced in cultured aortic endothelial cells by high concentrations of glucose may be caused in part by the accumulation of sorbitol.  相似文献   

17.
The effects of zenarestat, 3-(4-bromo-2-fluorobenzyl)-7-chloro-3,4-dihydro-2,4-dioxo-1(2H)-quinazolineacetic acid, an aldose reductase inhibitor (ARI), on F-wave conduction abnormalities, nerve blood flow (NBF) reduction and sorbitol accumulation were studied in streptozotocin-induced diabetic rats. Two weeks after the induction of diabetes, zenarestat was given once a day for two weeks. In diabetic control rats, marked accumulation of sorbitol, reduction of NBF and prolongation of minimal F-wave latency (FWL) were observed as compared to normal rats. Zenarestat, at a dose of 32 mg/kg, inhibited sorbitol concentration to nearly the normal rat level and significantly improved not only NBF but also minimal FWL. At a dose of 3.2 mg/kg, sorbitol accumulation was inhibited by approximately 40% and there was a tendency to increase in NBF; however, minimal FWL was not improved at all. These data suggest that a highly inhibition of the nerve sorbitol accumulation is requisite for the treatment of diabetic peripheral neuropathy.  相似文献   

18.
Abstract: The effect of long-term (2 weeks) exposure to 0–50 m M glucose and 0–1 m M sorbitol on myo -inositol metabolism was studied in cultured rat Schwann cells. Experiments were carried out to determine the effect of sorbinil and ascorbic acid on myo -inositol uptake in rat Schwann cells cultured in the presence of increased extracellular glucose or sorbitol. myo -Inositol uptake and its incorporation into phospholipids decreased significantly when cells were grown in ≥30 m M glucose for a period of 2 weeks. This inhibitory effect was partly blocked by sorbinil, an aldose reductase inhibitor, in a dose-dependent fashion. Significant prevention was achieved with 0.5 and 1 m M sorbinil. Ascorbic acid also prevented the reduction in myo -inositol uptake due to excess extracellular glucose, at 3 and 30 µ M concentrations, but not at 300 µ M . Neither sorbinil nor ascorbic acid could prevent the alterations in myo -inositol transport in cells exposed to high sorbitol levels for the same period of time. These data suggest that glucose-induced alteration of myo -inositol transport in Schwann cells is mediated, at least in part, via sorbitol accumulation. This myo -inositol transport impairment is prevented by sorbinil and also by ascorbic acid. Ascorbic acid may hold a fresh promise for the treatment/prevention of diabetic neuropathy/complications, at least as an adjunct therapy along with known aldose reductase inhibitors.  相似文献   

19.
The insulin mimetic effect of vanadate inin vitro incubation of erythrocytes with high glucose concentrations showed an increase in sorbitol accumulation and glucose utilization using U-14C-glucose. Aldose reductase inhibitors and vanadate addition reversed the sorbitol accumulation, whereas insulin could not reverse it. Increased glucose utilization was also normalized with vanadium compounds. Increased activity of aldose reductase and sorbitol levels in diabetic animals were also normalized with vanadate treatment.  相似文献   

20.
Chinese hamster ovary cells grown in medium containing low-density lipoprotein (LDL) express high acyl coenzyme A:cholesterol acyltransferase (ACAT) activity as measured by an [3H]oleate pulse. Removal of LDL from the medium causes rapid inactivation of ACAT activity; the t1/2 for the initial inactivation rate is 0.8 h. Preincubation with protein synthesis inhibitors (cycloheximide or emetine) for 2 h or longer lengthens the t1/2 for the initial inactivation rate to approximately 2.1 h. When LDL is removed for more than 10 h, the cells contain only 3% of the original ACAT activity. Cycloheximide under this condition causes an 8-fold increase in ACAT activity; the increase approaches a maximum in 6-8 h. The extent of ACAT activation by cycloheximide inversely depends on exogenous sterol present in the medium; LDL diminishes the activation, while cationized LDL or 25-hydroxycholesterol completely abolishes the activation. Adding LDL back to the sterol-free medium causes a 40-70-fold increase in ACAT activity; however, the activation of LDL is not further augmented if the cells are pretreated with cycloheximide. The above observations are qualitatively confirmed by ACAT assays in vitro with cell homogenates. LDL or cycloheximide has no effect on the rates of 3H-labeled triglyceride and 3H-labeled polar lipid synthesis. Efflux of prelabeled cholesterol from cells is cycloheximide-insensitive. Rates of degradation of [3H]-leucine-pulse-labeled total protein in cells grown with or without LDL are identical. The above results imply the existence of at least one specific short-lived factor that directly or indirectly inhibits ACAT activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号