首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The propeptides of the vitamin K dependent blood clotting and regulatory proteins contain a gamma-carboxylation recognition site that directs precursor forms of these proteins for posttranslational gamma-carboxylation. Peptides corresponding to the propeptide of prothrombin were synthesized and examined by circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMR). CD spectra indicate that these peptides have little or no secondary structure in aqueous solutions but that the addition of trifluoroethanol induces or stabilizes a structure containing alpha-helical character. The maximum helical content occurs at 35-40% trifluoroethanol. This trifluoroethanol-stabilized structure was solved by two-dimensional NMR spectroscopy. The NMR results demonstrate that residues -13 to -3 form an amphipathic alpha-helix. NMR spectra indicate that a similar structure is present at 5 degrees C, in the absence of trifluoroethanol. Of the residues previously implicated in defining the gamma-carboxylation recognition site, four residues (-18, -17, -16, and -15) are adjacent to the helical region and one residue (-10) is located within the helix. The potential role of the amphipathic alpha-helix in the gamma-carboxylation recognition site is discussed.  相似文献   

2.
The native state of common-type acylphosphatase (AcP) elicits two alpha-helices spanning residues 22-32 and 55-67 in the protein sequence. A peptide corresponding to the second alpha-helix (helix-2) of the protein was used to select phage antibodies consisting of a single chain fragment variable. The selection was performed in the presence of trifluoroethanol, a cosolvent known to induce the formation of helical structure in peptides and proteins. Phage scFv antibodies capable of binding the peptide specifically in a trifluoroethanol-induced alpha-helical conformation were isolated by affinity selection (biopanning). Some of these scFvs were also able to bind the native protein but not the peptide in a non-helical unstructured state. This indicates that the structural determinant recognized by the selected antibodies is the alpha-helical conformation of this specific region, rather than simply its amino acid sequence. This study shows that phage display libraries can be used to raise antibodies one can use as reagents able to target regions of a protein with a specific native-like secondary structure.  相似文献   

3.
With the purpose of establishing whether, as a general rule, regions of a protein chain that are helical in the native structure maintain, at least partially, the same helical structure when isolated in solution, we have prepared the 1-23 fragment of human hemoglobin alpha-chain, and studied its conformational properties in aqueous solution by CD and 1H-NMR. From the analysis of CD and NMR spectral changes with temperature, salt and addition of trifluoroethanol (TFE) it can be concluded that the 1-23 peptide forms a measurable population (18% at 22 degrees C (pH 5.6) TFE/H2O, 30:70 (v/v)) of an alpha-helix structure that spans the same residues that are helical in the native protein (namely, 6 to 17). These results, taken together with similar ones obtained previously in the 1-19, 21-42 and 50-61 RNAase fragments, support the idea that no helices other than the native ones are actually formed in solution by protein fragments. This implies that the final helical structure of a protein is present from the very beginning of the folding process, and also that such elements of secondary structure can act as primary nucleation centers.  相似文献   

4.
The 36 residue villin headpiece helical subdomain (HP36) is one of the fastest cooperatively folding proteins, folding on the microsecond timescale. HP36's simple three helix topology, fast folding and small size have made it an attractive model system for computational and experimental studies of protein folding. Recent experimental studies have explored the denatured state of HP36 using fragment analysis coupled with relatively low-resolution spectroscopic techniques. These studies have shown that there is apparently only a small tendency to form locally stabilized secondary structure. Here, we complement the experimental studies by using replica exchange molecular dynamics with explicit solvent to investigate the structural features of these peptide models of unfolded HP36. To ensure convergence, two sets of simulations for each fragment were performed with different initial structures, and simulations were continued until these generated very similar final ensembles. These simulations reveal low populations of native-like structure and early folding events that cannot be resolved by experiment. For each fragment, calculated J-coupling constants and helical propensities are in good agreement with experimental trends. HP-1, corresponding to residues 41 to 53 and including the first alpha-helix, contains the highest helical population. HP-3, corresponding to residues 62 through 75 and including the third alpha-helix, contains a small population of helical turn residing at the N terminus while HP-2, corresponding to residues 52 through 61 and including the second alpha-helix, formed little to no structure in isolation. Overall, HP-1 was the only fragment to adopt a native-like conformation, but the low population suggests that formation of significant structure only occurs after formation of specific tertiary interactions.  相似文献   

5.
To examine how a short secondary structural element derived from a native protein folds when in a different protein environment, we inserted an 11-residue beta-sheet segment (cassette) from human immunoglobulin fold, Fab new, into an alpha-helical coiled-coil host protein (cassette holder). This de novo design protein model, the structural cassette mutagenesis (SCM) model, allows us to study protein folding principles involving both short- and long-range interactions that affect secondary structure stability and conformation. In this study, we address whether the insertion of this beta-sheet cassette into the alpha-helical coiled-coil protein would result in conformational change nucleated by the long-range tertiary stabilization of the coiled-coil, therefore overriding the local propensity of the cassette to form beta-sheet, observed in its native immunoglobulin fold. The results showed that not only did the nucleating helices of the coiled-coil on either end of the cassette fail to nucleate the beta-sheet cassette to fold with an alpha-helical conformation, but also the entire chimeric protein became a random coil. We identified two determinants in this cassette that prevented coiled-coil formation: (1) a tandem dipeptide NN motif at the N-terminal of the beta-sheet cassette, and (2) the hydrophilic Ser residue, which would be buried in the hydrophobic core if the coiled-coil structure were to fold. By amino acid substitution of these helix disruptive residues, that is, either the replacement of the NN motif with high helical propensity Ala residues or the substitution of Ser with Leu to enhance hydrophobicity, we were able to convert the random coil chimeric protein into a fully folded alpha-helical coiled-coil. We hypothesized that this NN motif is a "secondary structural specificity determinant" which is very selective for one type of secondary structure and may prevent neighboring residues from adopting an alternate protein fold. These sequences with secondary structural specificity determinants have very strong local propensity to fold into a specific secondary structure and may affect overall protein folding by acting as a folding initiation site.  相似文献   

6.
Wang M  Shan L  Wang J 《Biopolymers》2006,83(3):268-279
Two synthetic peptides, SNasealpha1 and SNasealpha2, corresponding to residues G55-I72 and K97-A109, respectively, of staphylococcal nuclease (SNase), are adopted for detecting the role of helix alpha1 (E57-A69) and helix alpha2 (M98-Q106) in the initiation of folding of SNase. The helix-forming tendencies of the two SNase peptide fragments are investigated using circular dichroism (CD) and two-dimensional (2D) nuclear magnetic resonance (NMR) methods in water and 40% trifluoroethanol (TFE) solutions. The coil-helix conformational transitions of the two peptides in the TFE-H2O mixture are different from each other. SNasealpha1 adopts a low population of localized helical conformation in water, and shows a gradual transition to helical conformation with increasing concentrations of TFE. SNasealpha2 is essentially unstructured in water, but undergoes a cooperative transition to a predominantly helical conformation at high TFE concentrations. Using the NMR data obtained in the presence of 40% TFE, an ensemble of alpha-helical structures has been calculated for both peptides in the absence of tertiary interactions. Analysis of all the experimental data available indicates that formation of ordered alpha-helical structures in the segments E57-A69 and M98-Q106 of SNase may require nonlocal interactions through transient contact with hydrophobic residues in other parts of the protein to stabilize the helical conformations in the folding. The folding of helix alpha1 is supposed to be effective in initiating protein folding. The formation of helix alpha2 depends strongly on the hydrophobic environment created in the protein folding, and is more important in the stabilization of the tertiary conformation of SNase.  相似文献   

7.
The structure of the N-terminal transmembrane domain (residues 1-34) of subunit b of the Escherichia coli F0F1-ATP synthase has been solved by two-dimensional 1H NMR in a membrane mimetic solvent mixture of chloroform/methanol/H2O (4:4:1). Residues 4-22 form an alpha-helix, which is likely to span the hydrophobic domain of the lipid bilayer to anchor the largely hydrophilic subunit b in the membrane. The helical structure is interrupted by a rigid bend in the region of residues 23-26 with alpha-helical structure resuming at Pro-27 at an angle offset by 20 degrees from the transmembrane helix. In native subunit b, the hinge region and C-terminal alpha-helical segment would connect the transmembrane helix to the cytoplasmic domain. The transmembrane domains of the two subunit b in F0 were shown to be close to each other by cross-linking experiments in which single Cys were substituted for residues 2-21 of the native subunit and b-b dimer formation tested after oxidation with Cu(II)(phenanthroline)2. Cys residues that formed disulfide cross-links were found with a periodicity indicative of one face of an alpha-helix, over the span of residues 2-18, where Cys at positions 2, 6, and 10 formed dimers in highest yield. A model for the dimer is presented based upon the NMR structure and distance constraints from the cross-linking data. The transmembrane alpha-helices are positioned at a 23 degrees angle to each other with the side chains of Thr-6, Gln-10, Phe-14, and Phe-17 at the interface between subunits. The change in direction of helical packing at the hinge region may be important in the functional interaction of the cytoplasmic domains.  相似文献   

8.
Circular dichroism studies of seven helical oligopeptides containing alpha-aminoisobutyric acid (Aib) in methanol and trifluoroethanol (TFE) solutions are reported. Peptides ranging from 10 to 21 residues in length have been examined. In all cases distinct negative CD bands characteristic of helical peptides are obtained at approximately 220 and 205 nm corresponding to the n-pi and pi-pi transitions, respectively. The ratio R = [theta] pi-pi is less than 1.0 for all peptides studied. Using crystal structure and n.m.r. results for a 10 residue 3(10) helical peptide and literature values for an alpha-helical 11-residue peptide, it is shown that both helical conformations yield R values of approximately 0.8 in alcoholic solvents. The CD data are considered in the light of 1H n.m.r. studies on these oligopeptides. The results suggest that 3(10) and alpha-helical conformations cannot be distinguished by CD methods.  相似文献   

9.
The chain length dependence of helix formation of transmembrane peptides in lipids was investigated using fragments corresponding to the second transmembrane domain of the alpha-factor receptor from Saccharomyces cerevisiae. Seven peptides with chain lengths of 10 (M2-10; FKYLLSNYSS), 14 (M2-14), 18 (M2-18), 22 (M2-22), 26 (M2-26), 30 (M2-30) and 35 (M2-35; RSRKTPIFIINQVSLFLIILHSALYFKYLLSNYSS) residues, respectively, were synthesized. CD spectra revealed that M2-10 was disordered, and all of the other peptides assumed partially alpha-helical secondary structures in 99% trifluoroethanol (TFE)/H(2)O. In 50% TFE/H(2)O, M2-30 assumed a beta-like structure. The other six peptides exhibited the same CD patterns as those found in 99% TFE/H(2)O. In 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (4:1 ratio) vesicles, M2-22, M2-26, and M2-35 formed alpha-helical structures, whereas the other peptides formed beta-like structures. Fourier transform infrared spectroscopy in 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (4:1) multilayers showed that M2-10, M2-14, M2-18, and M2-30 assumed beta-structures in this environment. Another homologous 30-residue peptide (M2-30B), missing residues SNYSS from the N terminus and extending to RSRKT on the C terminus, was helical in lipid bilayers, suggesting that residues at the termini of transmembrane domains influence their biophysical properties. Attenuated total reflection Fourier transform infrared spectroscopy revealed that M2-22, M2-26, M2-30B, and M2-35 were alpha-helical and oriented at angles of 12 degrees, 13 degrees, 36 degrees, and 34 degrees, respectively, with respect to the multilayer normal. This study showed that chain length must be taken into consideration when using peptides representing single transmembrane domains as surrogates for regions of an intact receptor. Furthermore, this work indicates that the tilt angle and conformation of transmembrane portions of G protein-coupled receptors may be estimated by detailed spectroscopic measurements of single transmembrane peptides.  相似文献   

10.
The design and synthesis of a water-soluble 14-residue peptide, in which a quinoline intercalator is attached to the peptide backbone via alkylation of a central cysteine residue, is reported. 600 MHz 1H NMR spectroscopy and circular dichroism indicate that the peptide forms a nascent helix in aqueous solution, ie. an ensemble of turn-like structures over several adjacent residues in the peptide. A large number of sequential dNN(i, i+1) connectivities were observed in NOESY spectra, and titration of trifluoroethanol into a solution of the peptide resulted in the characteristic CD spectrum expected for an α-helix. At low DNA concentrations, CD spectroscopy indicates that this helical conformation is stabilized, presumably due to folding of the peptide in the major groove of DNA.  相似文献   

11.
To examine the relationship between peptide sequence and the interaction of amphipathic alpha-helical peptides with phosphatidylcholines, various methods of mixing the peptide and lipid were explored. A series of amphipathic alpha-helical peptides containing from 10 to 18 residues were synthesized by solid-phase techniques. An 18-residue peptide and two relatively hydrophobic 10-residue peptides did not disrupt dimyristoylphosphatidylcholine liposomes when added to the lipid in buffer. However, when the peptides were premixed with lipid in a suitable organic solvent and then reconstituted with aqueous buffer, clear micelles were formed, indicating association of the amphipathic alpha-helical peptide with lipid. In general, the best solvent for this purpose was trifluoroethanol. The circular dichroic and fluorescence spectra of peptides which readily formed clear mixtures when mixed in buffer with dimyristoylphosphatidylcholine liposomes were similar when prepared either by the alternative pathway technique using trifluoroethanol or by a cholate removal technique. For the peptides which did not clear liposomes in buffer, first mixing with dimyristoylphosphatidylcholine in trifluoroethanol resulted in an increase in the alpha-helicity of the peptides as judged by circular dichroic spectra and a blue-shift in the fluorescence emission maxima of the single tryptophan residue in each peptide. These data are consistent with formation of an amphipathic alpha-helix in lipid by peptides which based on mixing experiments with dimyristoylphosphatidylcholine liposomes in buffer at the phase transition temperature of the lipid would be considered ineffective in lipid binding. Thus, simple mixing of peptides with liposomes may give misleading results concerning the intrinsic affinity of a particular peptide sequence for lipid. In addition, the data demonstrate that relatively hydrophobic amphipathic alpha-helical peptides which do not form small micelles with dimyristoylphosphatidylcholine spontaneously in aqueous solution may interact with lipid as typical amphipathic alpha-helices when mixed by an alternative pathway.  相似文献   

12.
Helix formation and stability in a signal sequence   总被引:4,自引:0,他引:4  
  相似文献   

13.
The 81-residue multifunctional prodomain of human furin adopts only a partially-folded conformational state under near physiological conditions. By use of NMR spectroscopy, we demonstrate that the N-terminal residues 1-46 of the prodomain in 50% trifluoroethanol (TFE) populates backbone conformations containing a short helix, a beta-strand and a helix-loop-helix super-secondary structure with elements of tertiary interactions. (15)N NMR relaxation measurements indicate that the helix-loop-helix region has similar motional characteristics in the fast picosecond to nanosecond timescales. On the other hand, the intervening segment (residues 47-65) is predominantly unstructured with a long and highly flexible region surrounding the protease 'activation loop' followed by a partially helical segment in the C-terminal end. Interestingly, the helix-loop-helix "fold" was found to be populated even when excised out of the full-length prodomain, since a peptide fragment derived from residues Pro16-Arg49 can also form the helix-loop-helix structure in aqueous solution in the absence of TFE. Structure analyses reveal that two helices orient in an antiparallel fashion directed by the sharing of hydrophobic residues involved in helix-capping interactions. Very importantly, a positively-charged Lys residue replacing His43 in the 16-49 fragment imparts stability to the super-secondary structure at both acidic and neutral pH, while a hydrophobic residue Leu at position 43 appears to destabilize the helical conformation in the 31-44 region. As such, this study provides valuable insights into the structural properties of the furin prodomain in relation to its role in the folding of the furin zymogen and its inhibitory action toward furin.  相似文献   

14.
The solution conformation of three peptides corresponding to the two beta-hairpins and the alpha-helix of the protein L B1 domain have been analyzed by circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMR). In aqueous solution, the three peptides show low populations of native and non-native locally folded structures, but no well-defined hairpin or helix structures are formed. In 30% aqueous trifluoroethanol (TFE), the peptide corresponding to the alpha-helix adopts a high populated helical conformation three residues longer than in the protein. The hairpin peptides aggregate in TFE, and no significant conformational change occurs in the NMR observable fraction of molecules. These results indicate that the helical peptide has a significant intrinsic tendency to adopt its native structure and that the hairpin sequences seem to be selected as non-helical. This suggests that these sequences favor the structure finally attained in the protein, but the contribution of the local interactions alone is not enough to drive the formation of a detectable population of native secondary structures. This pattern of secondary structure tendencies is different to those observed in two structurally related proteins: ubiquitin and the protein G B1 domain. The only common feature is a certain propensity of the helical segments to form the native structure. These results indicate that for a protein to fold, there is no need for large native-like secondary structure propensities, although a minimum tendency to avoid non-native structures and to favor native ones could be required.  相似文献   

15.
The effects of stabilising mutations on the folding process of common-type acylphosphatase have been investigated. The mutations were designed to increase the helical propensity of the regions of the polypeptide chain corresponding to the two alpha-helices of the native protein. Various synthetic peptides incorporating the designed mutations were produced and their helical content estimated by circular dichroism. The most substantial increase in helical content is found for the peptide carrying five mutations in the second alpha-helix. Acylphosphatase variants containing the corresponding mutations display, to different extents, enhanced conformational stabilities as indicated by equilibrium urea denaturation experiments monitored by changes of intrinsic fluorescence. All the protein variants studied here refold with apparent two-state kinetics. Mutations in the first alpha-helix are responsible for a small increase in the refolding rate, accompanied by a marked decrease in the unfolding rate. On the other hand, multiple mutations in the second helix result in a considerable increase in the refolding rate without any significant effect on the unfolding rate. Addition of trifluoroethanol was found to accelerate the folding of the acylphosphatase variants, the extent of the acceleration being inversely proportional to the intrinsic rate of folding of the corresponding mutant. The trifluoroethanol-induced acceleration is far less marked for those variants whose alpha-helical structure is efficiently stabilised by amino acid replacements. This observation suggests that trifluoroethanol acts in a similar manner to the stabilising mutations in promoting native-like secondary structure. Analysis of the kinetic data indicates that the second helix is fully consolidated in the transition state for folding of acylphosphatase, whereas the first helix is only partially formed. These data suggest that the second helix is an important element in the folding process of the protein.  相似文献   

16.
COSMIC analysis of the major alpha-helix of barnase during folding   总被引:2,自引:0,他引:2  
The structures of transition states and intermediates in protein folding may be analysed by protein engineering methods that remove simple interactions that stabilize the folded state. We have now extended the range and reliability of the procedure by using the COSMIC (Combination of Sequential Mutant Interaction Cycles) technique, in which a series of double-mutant cycles is constructed. In each cycle, the side-chains of two amino acid residues that interact in the folded state are mutated separately and together. Kinetic and equilibrium measurements on folding for each cycle show unambiguously whether or not two residues interact during protein folding. A series of such cycles has been constructed to leapfrog along the major alpha-helix of barnase, comprising residues 6 to 18. The helix is found to be intact from its C terminus to residue 12 but begins to unwind towards the N terminus in both the transition state for unfolding and in a folding intermediate.  相似文献   

17.
Synthetic peptides based on the N-terminal domain of human surfactant protein B (SP-B1-25; 25 amino acid residues; NH2-FPIPLPYCWLCRALIKRIQAMIPKG) retain important lung activities of the full-length, 79-residue protein. Here, we used physical techniques to examine the secondary conformation of SP-B1-25 in aqueous, lipid and structure-promoting environments. Circular dichroism and conventional, 12C-Fourier transform infrared (FTIR) spectroscopy each indicated a predominate alpha-helical conformation for SP-B1-25 in phosphate-buffered saline, liposomes of 1-palmitoyl-2-oleoyl phosphatidylglycerol and the structure-promoting solvent hexafluoroisopropanol; FTIR spectra also showed significant beta- and random conformations for peptide in these three environments. In further experiments designed to map secondary structure to specific residues, isotope-enhanced FTIR spectroscopy was performed with 1-palmitoyl-2-oleoyl phosphatidylglycerol liposomes and a suite of SP-B1-25 peptides labeled with 13C-carbonyl groups at either single or multiple sites. Combining these 13C-enhanced FTIR results with energy minimizations and molecular simulations indicated the following model for SP-B1-25 in 1-palmitoyl-2-oleoyl phosphatidylglycerol: beta-sheet (residues 1-6), alpha-helix (residues 8-22) and random (residues 23-25) conformations. Analogous structural motifs are observed in the corresponding homologous N-terminal regions of several proteins that also share the 'saposin-like' (i.e. 5-helix bundle) folding pattern of full-length, human SP-B. In future studies, 13C-enhanced FTIR spectroscopy and energy minimizations may be of general use in defining backbone conformations at amino acid resolution, particularly for peptides or proteins in membrane environments.  相似文献   

18.
Ion channel-forming peptides enable us to study the conformational dynamics of a transmembrane helix as a function of sequence and environment. Molecular dynamics simulations are used to study the conformation and dynamics of three 22-residue peptides derived from the second transmembrane domain of the glycine receptor (NK4-M2GlyR-p22). Simulations are performed on the peptide in four different environments: trifluoroethanol/water; SDS micelles; DPC micelles; and a DMPC bilayer. A hierarchy of alpha-helix stabilization between the different environments is observed such that TFE/water < micelles < bilayers. Local clustering of trifluoroethanol molecules around the peptide appears to help stabilize an alpha-helical conformation. Single (S22W) and double (S22W,T19R) substitutions at the C-terminus of NK4-M2GlyR-p22 help to stabilize a helical conformation in the micelle and bilayer environments. This correlates with the ability of the W22 and R19 side chains to form H-bonds with the headgroups of lipid or detergent molecules. This study provides a first atomic resolution comparison of the structure and dynamics of NK4-M2GlyR-p22 peptides in membrane and membrane-mimetic environments, paralleling NMR and functional studies of these peptides.  相似文献   

19.
Conformational free energy calculations have been carried out for proline-containing alanine-based pentadecapeptides with the sequence Ac-(Ala)n-Pro-(Ala)m-NHMe, where n + m = 14, to figure out the positional preference of proline in alpha-helices. The relative free energy of each peptide was calculated by subtracting the free energy of the extended conformation from that of the alpha-helical one, which is used here as a measure of preference. The highest propensity is found for the peptide with proline at the N-terminus (i.e., Ncap + 1 position), and the next propensities are found at Ncap, N' (Ncap - 1), and C' (Ccap + 1) positions. These computed results are reasonably consistent with the positional propensities estimated from X-ray structures of proteins. The breaking in hydrogen bonds around proline is found to play a role in destabilizing alpha-helical conformations, which, however, provides the favored hydration of the corresponding N-H and C=O groups. The highest preference of proline at the beginning of alpha-helix appears to be due to the favored electrostatic and nonbonded energies between two residues preceding proline and the intrinsic stability of alpha-helical conformation of the proline residue itself as well as no disturbance in hydrogen bonds of alpha-helix by proline. The average free energy change for the substitution of Ala by Pro in a alpha-helix is computed to be 4.6 kcal/mol, which is in good agreement with the experimental value of approximately 4 kcal/mol estimated for an oligopeptide dimer and proteins of barnase and T4 lysozyme.  相似文献   

20.
Circular dichroism was used to study the folding of alpha alpha-tropomyosin and AcTM43, a 43-residue peptide designed to serve as a model for the N-terminal domain of tropomyosin. The sequence of the peptide is AcMDAIKKKMQMLKLDVENLLDRLEQLEADLKALEDRYKQLEGGC. The peptide appeared to form a coiled coil at low temperatures (< 25 degrees C) in buffers with physiological ionic strength and pH. The folding and unfolding of the peptide, however, were noncooperative. When CD spectra were examined as a function of temperature, the apparent degree of folding differed when the ellipticity was followed at 222, 208, and 280 nm. Deconvolution of the spectra suggested that at least three component curves contributed to the CD in the far UV. One component curve was similar to the CD spectrum of the coiled-coil alpha-helix of native alpha alpha-tropomyosin. The second curve resembled the spectrum of single-stranded short alpha-helical segments found in globular proteins. The third was similar to that of polypeptides in the random coil conformation. These results suggested that as the peptide folded, the alpha-helical content increased before most of the coiled coil was formed. When the CD spectrum of striated muscle alpha alpha-tropomyosin was examined as a function of temperature, the unfolding was also not totally cooperative. As the temperature was raised from 0 to 25 degrees C, there was a decrease in the coiled coil and an increase in the conventional alpha-helix type spectrum without formation of random coil. The major transition, occurring at 40 degrees C, was a cooperative transition characterized by the loss of all of the remaining coiled coil and a concomitant increase in random coil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号