首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Diphtheria toxin repressor (DtxR) regulates the expression of iron-sensitive genes in Corynebacterium diphtheriae, including the diphtheria toxin gene. DtxR contains an N-terminal metal- and DNA-binding domain that is connected by a proline-rich flexible peptide segment (Pr) to a C-terminal src homology 3 (SH3)-like domain. We determined the solution structure of the intramolecular complex formed between the proline-rich segment and the SH3-like domain by use of NMR spectroscopy. The structure of the intramolecularly bound Pr segment differs from that seen in eukaryotic prolylpeptide-SH3 domain complexes. The prolylpeptide ligand is bound by the SH3-like domain in a deep crevice lined by aliphatic amino acid residues and passes through the binding site twice but does not adopt a polyprolyl type-II helix. NMR studies indicate that this intramolecular complex is present in the apo-state of the repressor. Isothermal equilibrium denaturation studies show that intramolecular complex formation contributes to the stability of the apo-repressor. The binding affinity of synthetic peptides to the SH3-like domain was determined using isothermal titration calorimetry. From the structure and the binding energies, we calculated the enhancement in binding energy for the intramolecular reaction and compared it to the energetics of dimerization. Together, the structural and biophysical studies suggest that the proline-rich peptide segment of DtxR functions as a switch that modulates the activation of repressor activity.  相似文献   

2.
3.
The diphtheria toxin repressor contains an SH3-like domain that forms an intramolecular complex with a proline-rich (Pr) peptide segment and stabilizes the inactive state of the repressor. Upon activation of diphtheria toxin repressor (DtxR) by transition metals, this intramolecular complex must dissociate as the SH3 domain and Pr segment form different interactions in the active repressor. Here we investigate the dynamics of this intramolecular complex using backbone amide nuclear spin relaxation rates determined using NMR spectroscopy and molecular dynamics trajectories. The SH3 domain in the unbound and bound states showed typical dynamics in that the secondary structures were fairly ordered with high generalized order parameters and low effective correlation times, while residues in the loops connecting β-strands exhibited reduced generalized order parameters and required additional motional terms to adequately model the relaxation rates. Residues forming the Pr segment exhibited low-order parameters with internal rotational correlation times on the order of 0.6 ns-1 ns. Further analysis showed that the SH3 domain was rich in millisecond time scale motions while the Pr segment exhibited motions on the 100 μs time scale. Molecular dynamics simulations indicated structural rearrangements that may contribute to the observed relaxation rates and, together with the observed relaxation rate data, suggested that the Pr segment exhibits a binding ↔ unbinding equilibrium. The results here provide new insights into the nature of the intramolecular complex and provide a better understanding of the biological role of the SH3 domain in regulating DtxR activity.  相似文献   

4.
The Bacillus subtilis manganese transport regulator, MntR, binds Mn2+ as an effector and is a repressor of transporters that import manganese. A member of the diphtheria toxin repressor (DtxR) family of metalloregulatory proteins, MntR exhibits selectivity for Mn2+ over Fe2+. Replacement of a metal-binding residue, Asp8, with methionine (D8M) relaxes this specificity. We report here the X-ray crystal structures of wild-type MntR and the D8M mutant bound to manganese with 1.75 A and 1.61 A resolution, respectively. The 142-residue MntR homodimer has substantial structural similarity to the 226-residue DtxR but lacks the C-terminal SH3-like domain of DtxR. The metal-binding pockets of MntR and DtxR are substantially different. The cation-to-cation distance between the two manganese ions bound by MntR is 3.3 A, whereas that between the metal ions bound by DtxR is 9 A. D8M binds only a single Mn2+ per monomer, owing to alteration of the metal-binding site. The sole retained metal site adopts pseudo-hexacoordinate geometry rather than the pseudo-heptacoordinate geometry of the MntR metal sites.  相似文献   

5.
In eukaryotes, the Src homology domain 3 (SH3) is a very important motif in signal transduction. SH3 domains recognize poly-proline-rich peptides and are involved in protein-protein interactions. Until now, the existence of SH3 domains has not been demonstrated in prokaryotes. However, the structure of the C-terminal domain of DtxR clearly shows that the fold of this domain is very similar to that of the SH3 domain. In addition, there is evidence that the C-terminal domain of DtxR binds to poly-proline-rich regions. Other bacterial proteins have domains that are structurally similar to the SH3 domain but whose functions are unknown or differ from that of the SH3 domain. The observed similarities between the structures of the C-terminal domain of DtxR and the SH3 domain constitute a perfect system to gain insight into their function and information about their evolution. Our results show that the C-terminal domain of DtxR shares a number of conserved key hydrophobic positions not recognizable from sequence comparison that might be responsible for the integrity of the SH3-like fold. Structural alignment of an ensemble of such domains from unrelated proteins shows a common structural core that seems to be conserved despite the lack of sequence similarity. This core constitutes the minimal requirements of protein architecture for the SH3-like fold.  相似文献   

6.
7.
8.
The IncP (Incompatibility group P) plasmids are important carriers in the spread of antibiotic resistance across Gram-negative bacteria. Gene expression in the IncP-1 plasmids is stringently controlled by a network of four global repressors, KorA, KorB, TrbA and KorC interacting cooperatively. Intriguingly, KorA and KorB can act as co-repressors at varying distances between their operators, even when they are moved to be on opposite sides of the DNA. KorA is a homodimer with the 101-amino acid subunits, folding into an N-terminal DNA-binding domain and a C-terminal dimerization domain. In this study, we have determined the structures of the free KorA repressor and two complexes each bound to a 20-bp palindromic DNA duplex containing its consensus operator sequence. Using a combination of X-ray crystallography, nuclear magnetic resonance spectroscopy, SAXS and molecular dynamics calculations, we show that the linker between the two domains is very flexible and the protein remains highly mobile in the presence of DNA. This flexibility allows the DNA-binding domains of the dimer to straddle the operator DNA on binding and is likely to be important in cooperative binding to KorB. Unexpectedly, the C-terminal domain of KorA is structurally similar to the dimerization domain of the tumour suppressor p53.  相似文献   

9.
The diphtheria toxin repressor (DtxR) is an Fe2+-activated protein with sequence-specific DNA-binding activity for the diphtheria toxin (tox) operator. Under high-iron conditions in Corynebacterium diphtheriae, DtxR represses toxin and siderophore biosynthesis as well as iron uptake. DtxR and a mutant repressor with His–47 substituted for Arg–47, designated DtxR-R47H, were purified and compared. Six different divalent cations (Cd2+, Co2+, Fe2+, Mn2+, Ni2+, and Zn2+) activated the sequence-specific DNA-binding activity of DtxR and enabled it to protect the fox operator from DNase I digestion, but Cu2+ failed to activate DtxR. Hydroxyl radical footprinting experiments indicated that DtxR binds symmetrically about the dyad axis of the tox operator. Methylation protection experiments demonstrated that DtxR binding alters the susceptibility to methylation of three G residues within the AT-rich tox operator. These findings suggest that two or more monomers of DtxR are involved in binding to the tox operator, with symmetrical DNA-protein interactions occurring at each end of the palindromic operator. In this regard, DtxR resembles several other well-characterized prokaryotic repressor proteins but differs dramatically from the Fe2+-activated ferric uptake repressor protein (Fur) of Escherichia coli. The concentration of Co2+ required to activate DtxR-R47H was at least 10-foid greater than that needed to activate DtxR, but the sequence-specific DNA binding of activated DtxR-R47H was indistinguishable from that of wild-type DtxR. The markedly deficient repressor activity of DtxR-R47H is consistent with a significant decrease in its binding activity for divalent cations.  相似文献   

10.
11.
12.
Chromatin remodelers are ATP-dependent machines that dynamically alter the chromatin packaging of eukaryotic genomes by assembling, sliding, and displacing nucleosomes. The Chd1 chromatin remodeler possesses a C-terminal DNA-binding domain that is required for efficient nucleosome sliding and believed to be essential for sensing the length of DNA flanking the nucleosome core. The structure of the Chd1 DNA-binding domain was recently shown to consist of a SANT and SLIDE domain, analogous to the DNA-binding domain of the ISWI family, yet the details of how Chd1 recognized DNA were not known. Here we present the crystal structure of the Saccharomyces cerevisiae Chd1 DNA-binding domain in complex with a DNA duplex. The bound DNA duplex is straight, consistent with the preference exhibited by the Chd1 DNA-binding domain for extranucleosomal DNA. Comparison of this structure with the recently solved ISW1a DNA-binding domain bound to DNA reveals that DNA lays across each protein at a distinct angle, yet contacts similar surfaces on the SANT and SLIDE domains. In contrast to the minor groove binding seen for Isw1 and predicted for Chd1, the SLIDE domain of the Chd1 DNA-binding domain contacts the DNA major groove. The majority of direct contacts with the phosphate backbone occur only on one DNA strand, suggesting that Chd1 may not strongly discriminate between major and minor grooves.  相似文献   

13.
14.
The regulatory subunit of phosphatidylinositol 3-kinase, p85, contains a number of well defined domains involved in protein-protein interactions, including an SH3 domain and two SH2 domains. In order to investigate in detail the nature of the interactions of these domains with each other and with other binding partners, a series of deletion and point mutants was constructed, and their binding characteristics and apparent molecular masses under native conditions were analyzed. The SH3 domain and the first proline-rich motif bound each other, and variants of p85 containing the SH3 and BH domains and the first proline-rich motif were dimeric. Analysis of the apparent molecular mass of the deletion mutants indicated that each of these domains contributed residues to the dimerization interface, and competition experiments revealed that there were intermolecular SH3 domain-proline-rich motif interactions and BH-BH domain interactions mediating dimerization of p85alpha both in vitro and in vivo. Binding of SH2 domain ligands did not affect the dimeric state of p85alpha. Recently, roles for the p85 subunit have been postulated that do not involve the catalytic subunit, and if p85 exists on its own we propose that it would be dimeric.  相似文献   

15.
16.
Wolfe SA  Grant RA  Pabo CO 《Biochemistry》2003,42(46):13401-13409
Proteins that employ dimerization domains to bind cooperatively to DNA have a number of potential advantages over monomers with regards to gene regulation. Using a combination of structure-based design and phage display, a dimeric Cys(2)His(2) zinc finger protein has been created that binds cooperatively to DNA via an attached leucine zipper dimerization domain. This chimera, derived from components of Zif268 and GCN4, displayed excellent DNA-binding specificity, and we now report the 1.5 A resolution cocrystal structure of the Zif268-GCN4 homodimer bound to DNA. This structure shows how phage display has annealed the DNA binding and dimerization domains into a single functional unit. Moreover, this chimera provides a potential platform for the creation heterodimeric zinc finger proteins that can regulate a desired target gene through cooperative DNA recognition.  相似文献   

17.
18.
The diphtheria toxin repressor (DtxR) is a transition metal ion-activated repressor that acts as a global regulatory element in the control of iron-sensitive genes in Corynebacterium diphtheriae. We recently described (L. Sun, J. C. vanderSpek, and J. R. Murphy, Proc. Natl. Acad. Sci. USA 95:14985-14990, 1998) the isolation and in vivo characterization of a hyperactive mutant of DtxR, DtxR(E175K), that appeared to be constitutively active. We demonstrate here that while DtxR(E175K) remains active in vivo in the presence of 300 micro M 2,2'dipyridyl, the purified repressor is, in fact, dependent upon low levels of transition metal ion to transit from the inactive apo form to the active metal ion-bound form of the repressor. Binding studies using 8-anilino-1-naphthalenesulfonic acid suggest that the E175K mutation stabilizes an intermediate of the molten-globule form of the repressor, increasing exposure of hydrophobic residues to solvent. We demonstrate that the hyperactive DtxR(E175K) phenotype is dependent upon an intact ancillary metal ion-binding site (site 1) of the repressor. These observations support the hypothesis that metal ion binding in the ancillary site facilitates the conversion of the inactive apo-repressor to its active, operator-binding conformation. Furthermore, these results support the hypothesis that the C-terminal src homology 3-like domain of DtxR plays an active role in the modulation of repressor activity.  相似文献   

19.
20.
Fur (ferric uptake regulation protein) is a bacterial global regulator that uses iron as a cofactor to bind to specific DNA sequences. It has been suggested that metal binding induces a conformational change in the protein, which is subsequently able to recognize DNA. This mechanism of activation has been investigated here using selective chemical modification monitored by mass spectrometry. The reactivity of each lysine residue of the Fur protein was studied, first in the apo form of the protein, then after metal activation and finally after DNA binding. Of particular interest is Lys76, which was shown to be highly protected from modification in the presence of target DNA. Hydrogen-deuterium exchange experiments were performed to map with higher resolution the conformational changes induced by metal binding. On the basis of these results, together with a secondary structure prediction, the presence in Fur of a non-classical helix-turn-helix motif is proposed. Experimental results show that activation upon metal binding induces conformational modification of this specific motif. The recognition helix, interacting directly with the major groove of the DNA, would include the domain [Y55-F61]. This helix would be followed by a small "wing" formed between two beta strands, containing Lys76, which might interact directly with DNA. These results suggest that Fur and DtxR (diphtheria toxin repressor), another bacterial repressor, share not only the function of being iron concentration regulators, and the structure of their DNA-binding domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号