首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly-γ-glutamic acid (PGA) with high molecular weight is a most promising biomaterial in industrial uses; however, it generally diverse in molecular structure and co-produced with polysaccharides and various other biopolymers. In this study, it was ascertained that Bacillus subtilis subsp. chungkookjang cells are superior to B. subtilis (natto) cells as the biocatalyst for the synthesis of super-high-molecular-weight PGA (over 2000 k). We effectively purified PGA and fractionated according to its molecular weight by anion-exchange chromatography, and further developed a simple method for determination of the molecular weight of PGA on the basis of numbers of glutamate monomers generated by hydrolysis and a free amino group quantified with 1-fluoro-2,4-dinitrobenzene (FDNB). The molecular weight determination with FDNB was available even for a super-high-molecular-weight PGA, e.g. the 2000-k polymer. Super-high-molecular-weight PGAs (average 2000 k and 7000 k), which were synthesized by the use of B. subtilis subsp. chungkookjang cells in the presence of a high concentration of ammonium sulfate, were rich in l-glutamate rather than in the d-enantiomer.  相似文献   

2.
The Bacillus subtilis pgdS gene, which is located at the immediate downstream of the pgs operon for poly-γ-glutamate (PGA) biosynthesis, encodes a PGA depolymerase. The pgdS gene product shows the structural feature of a membrane-associated protein. The mature form of the gene product, identified as a B. subtilis extracellular protein, was produced in Escherichia coli clone cells. Since the mature PGA depolymerase has been modified with the histidine-tag at its C-terminus, it could be simply purified by metal-chelating affinity chromatography. This purified enzyme digested PGAs from B. subtilis ( -glutamate content, 70%) and from Bacillus megaterium (30%) in an endopeptidase-like fashion. In contrast, PGA from Natrialba aegyptiaca, which consists only of -glutamate, was resistant to the enzyme, suggesting that, unlike fungal PGA endo-depolymerases, the bacterial enzyme recognizes the -glutamate unit in PGA.  相似文献   

3.
Antifungal compounds in the culture filtrate from Bacillus subtilis NSRS 89-24 that inhibited the growth of Pyricularia grisea and Rhizoctonia solani were mainly heat stable as the filter sterilized culture filtrate showed higher activity than an autoclaved one. The heat stable and labile components were due to an antibiotic and a β-1,3-glucanase, respectively. This β-1,3-glucanase was purified and characterized. Glucanase activity in the culture medium of B. subtilis NSRS 89-24 was inducible in the presence of 0.3% chitin, reaching a maximum on day 5. After purification, activity was associated with a protein of molecular mass of approximately 95.5 kDa by both gel filtration and native PAGE. Two major bands of Mr 64.6 and 32.4 kDa were revealed by SDS–PAGE. The enzyme had a Km of 0.9 mg/ml, and Vmax of 0.11 U, the optimal pH was 6.5–9.5 and was stable up to 50 °C. Both the pure enzyme and the antibiotic extract from the culture filtrate of the B. subtilis separately inhibited R. solani and P. grisea with MIC values of 12.5 and 6.25 mU/ml and 3.13 and 1.56 μg/ml, respectively. The glucanase enzyme in combination with the antibiotic showed a strong synergistic inhibitory effect on the hyphal growth of both fungi.  相似文献   

4.
Poly(glutamic acid) (PGA) is a water soluble, biodegradable biopolymer that is produced by microbial fermentation. Recent research has shown that poly(glutamic acid) can be used in drug delivery applications for the controlled release of paclitaxel (Taxol) in cancer treatment. The molecular weight of microbial poly(glutamic acid) is generally larger than what is required for drug delivery. As such, molecular weight reduction is a necessary step in producing poly(glutamic acid) for this application. Poly(glutamic acid) produced by Bacillus subtilis IFO 3335 was subjected to in situ depolymerization in the cell-free fermentation broth. Molecular weight reduction was measured, and an empirical kinetic model was used to correlate the experimental data. The kinetic rate constant, k, was found to be 6.92 × 10−6 h−1 at pH 7.0 and 37 °C, which were the optimum depolymerization conditions.  相似文献   

5.
Production, purification and properties of γ-glutamyltranspeptidase from a newly isolated Bacillus subtilis NX-2 was investigated. At the optimum conditions for enzyme formation, a high level, 3.2 U/ml of γ-GTP was obtained. The extracellular γ-GTP from this strain was purified 111.15-fold to homogeneity from the culture supernatant by acetone precipitation, hydrophobic interaction chromatography and ion exchange chromatography. The purified enzyme was a heterodimer consisting of one large subunit (43 kDa) and one small subunit (32 kDa), and exhibited high activity at 40–60 °C, pH 8.0. It preferred basic amino acids as γ-glutamyl acceptor in transpeptidation, and the stereochemistry of the γ-glutamyl acceptor had no influence on the enzyme activity, which was different from other γ-GTPs reported. Furthermore, it was proved that γ-GTP of this strain could catalyze the transfer of l-glutamine to glycylglycine to synthesize Gln–Gly–Gly, which was promising for the synthesis of valuable γ-glutamyl peptides.  相似文献   

6.
The Schiff base formed by condensation of 2,6-diacetylpyridine with S-benzyldithiocarbazate (H2SNNNS) behaves as a pentadentate ligand, forming a nickel(II) complex of empirical formula Ni(SNNNS)·H2O that is high-spin with a room-temperature magnetic moment of 2.93 B.M. Spectroscopic data indicate that the ligand coordinates with the nickel(II) ion via the pyridine nitrogen atom, the azomethine nitrogen atom and the thiolate sulfur atom. The crystal and molecular structure of the nickel(II) complex was determined by X-ray crystallography. The complex crystallizes in the monoclinic system, space group C2/c, with a=15.849(2), b=18.830(2) and c=18.447(2) Å and =90°, β=102.179(6)°, γ=90° and Z=8. The crystal structure analysis shows that the complex is dinuclear, [Ni(SNNNS)]2·2H2O, in which the nickel(II) ions are bridged by the two pyridine nitrogen atoms of two fully deprotonated ligands. The NiN4S2 coordination geometry about each nickel(II) ion can be described as a distorted octahedron. The Schiff base and its nickel(II) complex were tested against four pathogenic bacteria (Bacillus subtilis, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus and B. subtilis (wild type B29) and pathogenic fungi (Saccharomyces ceciricae, Candida albicans, Candida lypolitica and Aspergillus ochraceous) to assess their antimicrobial properties. Both compounds exhibit mild antibacterial and antifungal activities against these organisms. The anticancer properties of these compounds were also evaluated against Human T-lymphoblastic leukaemia cell lines. The Schiff base exhibits marked cytotoxicity against these cells, but its nickel(II) complex is inactive.  相似文献   

7.
8.
The gatC, gatA and gatB genes encoding the three subunits of glutamyl-tRNAGln amidotransferase from Acidithiobacillus ferrooxidans, an acidophilic bacterium used in bioleaching of minerals, have been cloned and expressed in Escherichia coli. As in Bacillus subtilis the three gat genes are organized in an operon-like structure in A. ferrooxidans. The heterologously overexpressed enzyme converts Glu-tRNAGln to Gln-tRNAGln and Asp-tRNAAsn to Asn-tRNAAsn. Biochemical analysis revealed that neither glutaminyl-tRNA synthetase nor asparaginyl-tRNA synthetase is present in A. ferrooxidans, but that glutamyl-tRNA synthetase and aspartyl-tRNA synthetase enzymes are present in the organism. These data suggest that the transamidation pathway is responsible for the formation of Gln-tRNA and Asn-tRNA in A. ferrooxidans.  相似文献   

9.
Use of ionizing radiation is essential for the management of many human cancers, and therapeutic hyperthermia has been identified as a potent radiosensitizer. Radiation therapy combined with adjuvant hyperthermia represents a potential tool to provide outstanding local-regional control for refractory disease. (Z)-(±)-2-(N-Benzylindol-3-ylmethylene)quinuclidin-3-ol (2) and (Z)-(±)-2-(N-benzenesulfonylindol-3-ylmethylene)quinuclidin-3-ol (4) were initially identified as potent thermal sensitizers that could lower the threshold needed for thermal sensitivity to radiation treatment. To define the structural requirements of the molecule that are essential for thermal sensitization, we have synthesized and evaluated a series of (Z)-2-(N-benzylindol-3-ylmethylene)quinuclidin-3-one (9), and (Z)-(±)-2-(N-benzylindol-3-ylmethylene)quinuclidin-3-ol (10) analogs that incorporate a variety of substituents in both the indole and N-benzyl moieties. These systematic structure–activity relationship (SAR) studies were designed to further the development and optimization of potential clinically useful thermal sensitizing agents. The most potent analog was compound 10 (R1 = H, R2 = 4-Cl), which potently inhibited (93% inhibition at 50 μM) the growth of HT-29 cells after a 41 °C/2 h exposure.  相似文献   

10.
A new bacterial strain, identified as Bacillus subtilis US116, was isolated from Tunisian soil and selected for its potential production of an atypical amylase with an industrial interest. The identification was founded on physiological tests and molecular techniques related to the 16S rRNA, 23S rRNA genes and intergenic sequences showing the highest similarity of 98% with regions in the complete genome of Bacillus subtilis 168 (accession no. Z99104). This strain produces an atypical amylase that was purified to homogeneity by a combination of acetone precipitation, size exclusion and ion exchange chromatography. The molecular mass of the enzyme is about 60 kDa as determined by SDS–PAGE. Optimal conditions for the activity of the purified enzyme are pH 6 and 65 °C. The half-life duration is about 3 h at 70 °C and 5 h at 65 °C. This enzyme belongs to the endo-type amylases according to the hydrolytic mode study using Ceralpha and Betamyl methods. It is classified as a maltoheptaose- and maltohexaose-forming amylase since it generates about 30% maltohexaose (DP6) and 20% maltoheptaose (DP7) from starch. Moreover, the minimum length of maltosaccharide cleaved by this enzyme was maltoheptaose.  相似文献   

11.
The conformations of 3-methyluridine and 3-methylpseudouridine are determined using a combination of sugar proton coupling constants from 1D NMR spectra and 1D NOE difference spectroscopy. Both C2′-endo and C3′-endo conformations are observed for 3-methyluridine (59:41, 37 °C, D2O) and 3-methylpseudouridine (51:49, 37 °C, D2O). 3-Methyluridine preferentially adopts an anti conformation in solution, whereas 3-methylpseudouridine is primarily in a syn conformation. anti/syn-Relationships are deduced by 1D NOE difference spectroscopy.  相似文献   

12.
The methylotrophic yeast Pichia pastoris is an attractive heterologous protein expression host, mainly for genes from higher eukaryotes. However, no successful examples for the expression of bacterial gene encoding pectate lyase in P. pastoris have been reported. The present study reports for the first time the cloning and functional expression of the bacterial Bacillus subtilis gene encoding alkaline pectate lyase in P. pastoris. A molecular weight of 43,644 Da was calculated from the deduced amino acid sequence. A pectate lyase activity as high as 100 U/ml was attained in the fermentation broth of P. pastoris GS 115, which was about 10 times higher than when the gene is expressed in Escherichia coli. The recombinant pectate lyase was purified to homogeneity and maximal activity of the enzyme was observed at 65 °C, and pH 9.4. The recombinant enzyme showed a wider pH and thermal stability spectrum than the purified pectate lyase from B. subtilis WSHB04-02. Pectate lyase activity slightly increased in the presence of Mg2+ (ion) but decreased in the presence of other metal ions. Analysis of polygalacturonic acid degradation products by electrospray ionization-mass spectrometry revealed that the degradation products were unsaturated trigalacturonic acid and unsaturated bigalacturonic acid, which confirms that the enzyme catalyzes a trans-elimination reaction.  相似文献   

13.
Yang X  Li J  Li X  She R  Pei Y 《Peptides》2006,27(12):3122-3128
In screening for potent antimicrobial proteins from plant seeds, a novel heat-stable antimicrobial protein, designated LJAMP2, was purified from seeds of the motherwort (Leonurus japonicus Houtt), a medicine herb, with a procedure involving cation exchange chromatography on a CM FF column, and reverse phase HPLCs on C8 column and C18 column. LJAMP2 exhibited a molecular mass of 6.2 kDa determined. Automated Edman degradation determined the partial N-terminal sequence of LJAMP2 to be NH2-AIGCNTVASKMAPCLPYVTGKGPLGGCCGGVKGLIDAARTTPDRQAVCNCLKTLAKSYSG, which displays homology with plant non-specific lipid transfer proteins (nsLTPs). In vitro bioassays showed that LJAMP2 inhibits the growth of a variety of microbes, including filamentous fungi, bacteria and yeast. The growth of three phytopathogenic fungi, Alternaria brassicae, Botrytis maydis, and Rhizoctonia cerealis, are inhibited at 7.5 μM of LJAMP2, whereas Bacillus subtilis is about 15 μM. The IC50 of LJAMP2 for Aspergillus niger, B. maydis, Fusarium oxysporum, Penicillium digitatum and Saccharomyces cerevisiae are 5.5, 6.1, 9.3, 40.0, and 76.0 μM, respectively.  相似文献   

14.
Guo YX  Liu QH  Ng TB  Wang HX 《Peptides》2005,26(12):2384-2391
Isarfelin, a peptide with inhibitory activity on mycelial growth in Rhizoctonia solani and Sclerotinia sclerotiorum and insecticidal activity toward Leucania separata, was isolated from the mycelia of Isaria felina. The IC50 value of its antifungal activity against R. solani was 3.1 μg mL−1. However, it was devoid of activity toward several bacterial species including Bacillus subtilis, E. coli and Staphylococcus aureus. The isolation procedure involved ethanol extraction, adsorption on YPR II macropore adsorption resin, ethyl acetate extraction, petroleum ether precipitation and recrystallization from ethyl acetate.  相似文献   

15.
A Bacillus niacini strain (EM001) producing an ofloxacin ester-enantioselective esterase was isolated from the soil samples collected near Taejon, Korea. The cloned gene showed that the esterase EM001 composed of 495 amino acids corresponding to a relative molecular weight (Mr) of 54,098 kDa. Based on the Mr and the protein sequence, the esterase EM001 was similar to p-nitrobenzyl esterase from Bacillus subtilis with an identity of 41.8%. The optimum temperature and pH of the purified His-tagged enzyme were 45 °C and 9.0, respectively. The purified esterase EM001 hydrolyzed preferably (R)-ofloxacin propyl ester than (S)-form ester at the initial reaction phase with an eeP of 67% until the conversion rate become up to 35%.  相似文献   

16.
A novel antibacterial film was prepared by blending konjac glucomannan (KGM) and poly(diallydimethylammonium chloride) (PDADMAC) in an aqueous system. The antibacterial activity of the films against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Saccharomyces were measured by the halo zone test and the double plate method. The films exhibited an excellent antibacterial activity against B. subtilis and S. aureus but not against E. coli, P. aeruginosa or Saccharomyces. The miscibility, morphology, thermal stability, water vapour permeability and mechanical properties of the blend films were investigated by density determination, SEM, ATR-IR, XRD, DSC, TGA, WVA and tensile tests. The results of density determination predicted that the blends of KGM and PDADMAC were miscible when the PDADMAC content was less than 70 wt%. Moreover, SEM and XRD confirmed the result. ATR-IR showed that strong intermolecular hydrogen bonds and electrostatic interactions occurred between KGM and PDADMAC in the blends. The tensile strength and the break elongation of the blends were improved largely to 106.5 MPa and 32.04% and the water vapour permeability decreased when the PDADMAC content was 20 wt%. The thermal stability of the blends was higher than pure KGM. The blends should be good antibacterial materials.  相似文献   

17.
Bacillus subtilis cells were entrapped in polyvinyl alcohol (PVA)-cryogel beads without decay in their viability and capability of secretion of proteolytic enzymes (metalloproteinase and subtilisin). Conditions for preparation of the PVA-biocatalyst with suitable stability and viability of B. subtilis cells were optimized. Diffusion of various compounds into the cryogel (sliced beads) has been monitored on-line using image analysis system. Optimal working conditions and kinetic constants for hydrolysis of proteins catalyzed by the PVA-biocatalyst containing whole B. subtilis cells were estimated. The PVA-biocatalyst was applied in the hydrolysis of casein. The productivity of the biocatalyst (expressed as an amount of liberated aromatic amino acids) reached a maximal level of 12 mg g−1 h−1. Composition of mixture of peptides was dependent on pH, concentrations of Na+ and glucose, and in the reaction milieu. Protein hydrolysates of desired composition can be obtained using B. subtilis viable cells immobilized in PVA-gel. Incubation of the immobilized cells in a nutrient medium with casein successfully regenerated proteolytic activity of the biocatalyst.  相似文献   

18.
Bacillus species carrying subC gene encoding serine alkaline protease (SAP) enzyme were developed in order to increase the yield and selectivity in the bioprocess for SAP production. For this aim, subC gene was cloned into pHV1431 Escherichia coliBacillus shuttle vector, and transferred into nine host Bacillus species, i.e. B. alvei, B. amyloliquefaciens, B. badius, B. cereus, B. coagulans, B. firmus, B. licheniformis, B. sphaericus and B. subtilis. The influence of the host Bacillus species on SAP production on a defined medium with glucose was investigated in bioreactor systems. For each of the recombinant (r-) Bacillus species, effects of initial glucose concentration on cell growth and SAP production were investigated; and, physiological differences and similarities between the wild-type and r-Bacillus species are discussed. The highest biomass concentration was obtained with r-B. coagulans as 3.8 kg m−3 at the initial glucose concentration of CGo=20 kg m−3 and the highest volumetric SAP activity was obtained with r-B. amyloliquefaciens as 1650 U cm−3 at CGo=20 kg m−3. Overall SAP activity per amount of substrate consumed was the highest for r-B. sphaericus (137 U g−1 cm−3) and r-B. licheniformis (130 U g−1 cm−3). Among the r-Bacillus species the highest activity increase compared to the wild types was obtained with r-B. sphaericus while the lowest increase was obtained with r-B. amyloliquefaciens and r-B. licheniformis due to high SAP production potential of the wild-type strains. During storage of the host microorganisms, r-B. alvei and r-B. amyloliquefaciens were not able to bear the recombinant plasmid, probably, due to the restriction enzymes synthesized. Due to the highest stable volumetric activities r-B. licheniformis (950 U cm−3) and r-B. sphaericus (820 U cm−3) appear to be the favorable hosts for the production of SAP. All the r-Bacillus species excreted organic acids oxaloacetic and succinic acids, but, none excreted the amino acid valine. The variations in by-product distributions with each recombinant organism were also discussed.  相似文献   

19.
赵怡  凌辉生  李任强 《生态科学》2011,30(2):174-177
为了实现Mn-SOD基因在大肠杆菌(E.coli)中的可溶性表达,根据枯草芽孢杆菌(Bacillus subtilis)168sodA核酸序列设计引物,以枯草芽孢杆菌ATCC 9372基因组为模板,PCR扩增获得了Mn-SOD基因.将此基因重组至原核表达载体pET-28a,构建含Mn-SOD基因的重组表达质粒,并转化至大肠杆菌BL21(DE3).异丙基-β-D-硫代半乳糖苷(IPTG)诱导表达获得Mn-SOD,蛋白分子量约为26kD,占全菌蛋白的5.6%.改良的连苯三酚自氧化法测定SOD活力,菌体可溶性总蛋白SOD比活为51.09U·mg-1,是对照组的.8倍.枯草芽孢杆菌ATCC 9372 Mn-SOD基因在大肠杆菌BL21(DE3)中首次成功表达,产物具有较高的可溶性和活性,为大量制备Mn-SOD奠定了基础.  相似文献   

20.
The lipase-catalyzed production of optically active (S)-flurbiprofen was carried out in a dispersion reaction-system induced by chiral succinyl β-cyclodextrin (suβ-CD). The optimal reaction conditions were 500 mM (R,S)-flurbiprofen ethyl ester ((R,S)-FEE), 600 units of Candida rugosa lipase per 1 mmol of (R,S)-FEE, and 1000 mM suβ-CD at 37 °C for 72 h. An extremely high enantiomeric excess of 0.98 and conversion yield of 0.48 were achieved in the dispersed aqueous phase reaction system containing chiral suβ-CD added as a dispenser and chiral selector. The inclusion complex formability of the immiscible substrate (S)- and (R)-form of FEE with suβ-CD was compared using a phase-solubility diagram, DSC, and 1H NMR. (S)-Isomer formed a more stable and selective inclusion complex with chiral suβ-CD. It was hydrolyzed much more selectively by lipase from C. rugosa, due to the selective structural modification through inclusion complexation with chiral suβ-CD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号