首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-frequency plasmid transductions in Lactobacillus delbrueckii subsp. lactis and subsp. bulgaricus strains mediated by pac-type bacteriophages were observed and further investigated. The frequency of plasmid transduction by phages LL-H and LL-S attained levels of from 0.10 to about 1 with plasmid pX3, but only about 2 × 10−2 with plasmid pJK650. Infection of L. delbrueckii subsp. lactis strain LKT(pX3) or ATCC 15808(pX3) with phage LL-H resulted in intensive concatemerization of plasmid pX3, and most progeny phage particles contained concatemers of plasmid DNA instead of phage LL-H DNA. The synthesis of phage LL-H DNA was depressed. No evident homology or recombination was observed between phage LL-H DNA and plasmid pX3. The unusually high frequency of plasmid pX3 transduction by phage LL-H could be considered to result from specific interaction(s) between a particular phage and plasmid. These interactions may include pX3-mediated blockage of phage LL-H DNA replication and effective use of a particular pac-like site located about 1 kb from BglII in the smaller NdeI-BglII fragment of plasmid pX3. Phage LL-H together with plasmid vector pX3 could be used as effective plasmid transduction tools for genetic engineering of L. delbrueckii subsp. lactis and subsp. bulgaricus strains.  相似文献   

2.
Lactobacillus bulgaricus LT4(0448) is a lysogenic strain from which a temperate bacteriophage can be induced by mitomycin C or UV irradiation. Lactobacillus lactis CNRZ 326 is an indicator strain for the temperate phage 0448, but this strain lyses only in the presence of Ca2+ ions. A resistant culture developed secondarily after phage lysis and grew normally in MRS broth but again lysed abruptly if Ca2+ ions were added after two or three transfers. This behavior of the secondary culture and its subcultures is explained by a heterogeneous and fluctuating bacterial population, including clones identical to L. lactis 326, which were sensitive to 0448 and which formed rough colonies, as does the indicator. The proportion of these clones increased in the course of transfers in MRS, explaining lysis when Ca2+ was added. The population also included clones which formed smooth colonies (S clones). SI clones, which could not be induced by mitomycin C, were the major type in the initial culture, although they were sensitive to temperate phage 0448. The SI population then decreased and was gradually replaced by SII clones, inducible by mitomycin C and resistant to 0448. These SII clones were lysogenized clones, 326(0448), whose stability was confirmed by growth in the presence of an antiphage serum. When L. bulgaricus LT4(0448) was treated with mitomycin C, several cured LT4 clones were obtained that were related to the clones of the indicator L. lactis 326; they formed rough colonies. They also became sensitive to lytic phages or temperate phages active against L. lactis 326 and insensitive to lytic phages which lysed L. bulgaricus LT4(0448). This suggests that phage 0448 can lead to a lysogenic conversion of host strain LT4.  相似文献   

3.
A random mutation strategy using mutator strain, Epicurian coli XL1-Red, was applied to a plasmid, pND018, constructed by inserting a Lactococcus lacis bacteriophage resistance gene (abiI) into a L. lactis/E. coli shuttle vector (pDL278), to introduce random mutations throughout the plasmid. Following transformation of the mutated plasmid library to a plasmid free and phage sensitive strain of L. lactis (LM0230), mutated plasmids were screened by cross-streaking and efficiency of plaquing (EOP) assays. Two strains with enhanced resistance were obtained, as well as several phage sensitive strains. Repeated transformation of the mutated plasmids to LM0230 confirmed that the observed phenotypes were caused by mutations located on the plasmids. The EOP values and plaque morphology of two enhanced phage resistance mutants were characterized at 30°C and 37°C. These results indicate that this simple procedure can be applied to generate modified plasmids with improved phage resistance, which may be of commercial value.  相似文献   

4.
Several probiotic bacteria have been proposed for treatment or prevention of inflammatory bowel diseases (IBD), showing a protective effect in animal models of experimental colitis and for some of them also in human clinical trials. While most of these probiotic bacteria are isolated from the digestive tract, we recently reported that a Lactobacillus strain isolated from cheese, L. delbrueckii subsp. lactis CNRZ327 (Lb CNRZ327), also possesses anti-inflammatory effects in vitro and in vivo, demonstrating that common dairy bacteria may be useful in the treatment or prevention of IBD. Here, we studied the mechanisms underlying the protective effects of Lb CNRZ327 in vivo, in a mouse dextran sodium sulfate (DSS) colitis model. During colitis, Lb CNRZ327 modulated the production of TGF-β, IL-6, and IL-12 in colonic tissue and of TGF-β and IL-6 in the spleen, and caused an expansion of CD4+Foxp3+ regulatory T cells in the cecal lymph nodes. Moreover, a strong tendency to CD4+Foxp3+ expansion was also observed in the spleen. The results of this study for the first time show that orally administered dairy lactobacilli can not only modulate mucosal but also systemic immune responses and constitute an effective treatment of IBD.  相似文献   

5.
Summary Phage adsorption tests and transfection by electroporation were carried out to decide whether phage-resistance in Lactococcus lactis subsp. lactis strain 4513-5 is based on intracellular or extracellular mechanisms. Using high voltage (12.5 kV/cm) electroporation, untreated phage DNA was introduced into phage-sensitive and phage-resistant cells. Since phages showed low adsorption frequencies on resistant bacteria, resistance is localized in the cell wall preventing phage DNA from entering the cell. This is the only mechanism responsible for the resistance of L. lactis subsp. lactis 4513-5 against its homologous phage P4513-K12 and non-homologous phages P05M-13 and P05M-47, but not against phage P530-7 and phage P530-12. In the case of the latter two phage strains, intracellular resistance mechanisms are involved and discussed.  相似文献   

6.
Proteins of Lactococcus lactis ssp. lactis and L. lactis ssp. cremoris bacteriophages were studied using antibody inhibition assay and immunoblotting. Antisera were prepared against four representative L. lactis ssp. lactis and L. lactis ssp. cremoris phages (D59-1, F4-1, G72-1, and I37-1), which were selected from 17 isolates, derived from commercial cheese wheys. The reactivities of the four antisera with 13 other phage isolates were tested. Among these isolates, two phage groups having distinct serological properties were found. Group I reacted with the antisera against phages D59-1/F4-1 and Group II reacted with the antisera against phages G72-1/I37-1. Strongly lytic phages, capable of lysing phage-resistant host strains, were found to share protein similarities with the phage protein group I, and phages isolated from phage-sensitive host strains belonged to the phage protein group II. Furthermore, group I was composed of all prolate and some isometric phages, whereas group II was composed solely of the isometric phages. Thus, the two serologically distinct phage groups were not correlated with the two morphological groups, prolate and isometric. Proteins of the four phages were further characterized by immunoblotting and silver staining. A 22.5-kDa antigenic polypeptide of phage I37-1, and three polypeptides of 65, 37, 21 kDa in phage F4-1 were responsible for the cross-reactivities in group II and group I, respectively. Correspondence to: R. A. Ledford  相似文献   

7.
The effect of citrate on the growth of Lactococcus lactis subsp. lactis var. diacetylactis in milk has been investigated. Five strains of Lactococcus lactis subsp. lactis var. diacetylactis were compared to their citrate-negative variants, which lack the plasmid coding for citrate permease. In most cases, acidification kinetics and the final bacterial concentration of pure cultures of parental and variant strains did not differ significantly. Co-cultures of parental and variant strains, however, systematically tended towards the predominance of parental strains. Citrate metabolism is responsible for this change, since the predominance of citrate-positive strains was not observed in the absence of citrate. Continuous culture in milk enabled the difference in growth rates between the parental strain Lactococcus lactis subsp. lactis var. diacetylactis CDI1 and its citrate-negative variant to be quantified by following changes in the populations of the two co-cultured strains. At 26 °C, the growth rate of the parental strain was 7% higher than that of its citrate-negative variant. These results show that citrate metabolism slightly stimulates the growth of lactococci in milk. Received: 18 February 1997 / Received revision: 2 May 1997 / Accepted: 4 May 1997  相似文献   

8.
Ldl1 is a virulent phage infecting the dairy starter Lactobacillus delbrueckii subsp. lactis LdlS. Electron microscopy analysis revealed that this phage exhibits a large head and a long tail and bears little resemblance to other characterized phages infecting Lactobacillus delbrueckii. In vitro propagation of this phage revealed a latent period of 30 to 40 min and a burst size of 59.9 ± 1.9 phage particles. Comparative genomic and proteomic analyses showed remarkable similarity between the genome of Ldl1 and that of Lactobacillus plantarum phage ATCC 8014-B2. The genomic and proteomic characteristics of Ldl1 demonstrate that this phage does not belong to any of the four previously recognized L. delbrueckii phage groups, necessitating the creation of a new group, called group e, thus adding to the knowledge on the diversity of phages targeting strains of this industrially important lactic acid bacterial species.  相似文献   

9.
Ten previously reported lactose-positive (Lac+) transconjugants from Streptococcus lactis, S. cremoris, and S. lactis subsp. diacetylactis and one sucrose-positive (Suc+) transconjugant from S. lactis were examined for their sensitivity to prolate- and small isometric-headed bacteriophages. Four of the Lac+ transconjugants showed a 10- to 100-fold reduction in the efficiency of plating (EOP) as well as a reduced plaque size for the prolate phage c2 and were insensitive to the small isometric phage 712. A fifth Lac+ transconjugant demonstrated a similar reduced sensitivity to phage c2; however, this transconjugant was able to plaque phage 712, but with a reduced plaque size and EOP. The other five Lac+ transconjugants were sensitive to both c2 and 712 phages. The Suc+ transconjugant plaqued phage 712 with a reduced plaque size and EOP, but no reduction in plaque size or EOP was observed for phage c2. The Lac+ and reduced bacteriophage sensitivity (Rbs+) phenotypes were correlated with specific plasmids in the Lac+ transconjugants. As four of the Lac+ transconjugants exhibited a phenotypically indistinguishable Rbs+, one (AB001) was selected for further study. The Rbs+ in AB001 for both small isometric- and prolate-headed phages was not related to adsorption, and the reduced EOP for phage c2 was not related to the presence of a restriction and modification system. The latent period for phage c2 was unchanged, but the burst size was reduced 80%. The presence of the plasmid coding for Rbs+ retarded the lysis of a mitomycin C-induced prophage-containing strain. The Rbs+ mechanism appears to be abortive phage infection. This study supports previous observations that Rbs+ and conjugal transfer ability are physically linked among some group N streptococci. The results presented have implications in the identification of plasmids coding for Rbs+ and may also aid in explaining the dissemination of Rbs+ genes among lactic streptococci.  相似文献   

10.
An autoselection system for increasing plasmid stability in Kluyveromyces lactis, based on the blockage of the pyrimidine de novo and salvage pathways, was investigated. In a manner analogous to that used in Saccharomyces cerevisiae, a putative “fur1” mutation was selected in a uraA K. lactis strain using 5-fluorouracil and 5-fluorocytosine plates. Survival of the mutant required expression of a plasmid-borne URA3 gene regardless of the culture medium employed, verifying the efficacy of this autoselection system in K. lactis. The expression of heterologous invertase, encoded by the S. cerevisiae SUC2 gene, was studied during long-term sequential batch cultures (70 generations) in complex yeast/peptone/glucose medium. The fur1 mutant successfully retained the plasmid; invertase specific activity remained above 90% of the initial level. Furthermore, no mutation reversion was observed. In contrast, for the control non-fur1 strain, only 4% of the cells retained the plasmid after 70 generations, and invertase specific activity dropped to less than 10% of the initial level. Experiments comparing growth and activity in different media indicated the potential for improving productivity through medium enrichment using this autoselection system. Received: 1 April 1997 / Received revision: 16 August 1997 / Accepted: 11 September 1997  相似文献   

11.
The genomes of four Lactobacillus delbrueckii subsp. lactis bacteriophages were characterized by restriction endonuclease mapping, Southern hybridization, and heteroduplex analysis. The phages were isolated from different cheese processing plants in Finland between 1950 and 1972. All four phages had a small isometric head and a long noncontractile tail. Two different types of genome (double-stranded DNA) organization existed among the different phages, the pac type and the cos type, corresponding to alternative types of phage DNA packaging. Three phages belonged to the pac type, and a fourth was a cos-type phage. The pac-type phages were genetically closely related. In the genomes of the pac-type phages, three putative insertion/deletions (0.7 to 0.8 kb, 1.0 kb, and 1.5 kb) and one other region (0.9 kb) containing clustered base substitutions were discovered and localized. At the phenotype level, three main differences were observed among the pac-type phages. These concerned two minor structural proteins and the efficiency of phage DNA packaging. The genomes of the pac-type phages showed only weak homology with that of the cos-type phage. Phage-related DNA, probably a defective prophage, was located in the chromosome of the host strain sensitive to the cos-type phage. This DNA exhibited homology under stringent conditions to the pac-type phages.  相似文献   

12.
The presence of a restriction-modification (R/M) system against two bacteriophages, 328-B1 and hv, was demonstrated in three Lactobacillus helveticus strains, CNRZ 1094, CNRZ 1095, and CNRZ 1096. In addition, the burst size of phage 328-B1 in the three restrictive strains CNRZ 1094, CNRZ 1095, and CNRZ 1096 was reduced with respect to the values obtained in its propagating strain, CNRZ 328. Heating at 60°C did not inactivate the R/M system. Nonrestrictive variants from CNRZ 1094 were easily obtained under several culture conditions, but treatment with novobiocin at 42°C followed by storage at −20°C resulted in drastic elimination of the R+/M+ phenotype from all clones tested. Electrophoretic analysis of CNRZ 1094 nonrestrictive variants revealed the concomitant loss of a 34-kb plasmid. Four EcoRI fragments from the 34-kb plasmid were cloned in the Escherichia coli vector pACYC184. The use of one or several of these fragments as probes confirmed the plasmidic location of the genes responsible for the R/M system. These probes also showed the presence of R/M plasmids in the two other restrictive strains, CNRZ 1095 and CNRZ 1096. Lactose-fermenting ability and/or proteolytic capacity was not linked to the 34-kb plasmid.  相似文献   

13.
Streptococcus cremoris strain IL964 possessed a restriction and modification (R/M) activity which resulted in a bacteriophage efficiency of plating of 5 × 10−6. Phage sensitivity of protoplast-induced plasmid-cured derivatives indicated that two plasmids called pIL103 (5.7 kilobases) and pIL107 (15.2 kilobases) were each coding for one R/M system. Plasmid pIL103-encoded R/M was ascertained by transfer into the plasmid-free, R/M strain IL1403 of S. lactis, using protoplast cotransformation. This procedure failed for pIL107 because of some degree of incompatibility between pIL107 and the indicator plasmid pHV1301 used in cotransformation experiments. We also observed that plasmid pIL105 (8.7 kilobases) which showed no incidence on phage sensitivity in the parental strain IL964, mediated abortive infection in strain IL1403. In 97% of the infected cells, the phage infection was abortive, while in the remaining 3% phages were produced with a decreased burst size (50 instead of 180).  相似文献   

14.
A food-grade vector system was developed that allows stable integration of multiple plasmid copies in the chromosome of Lactococcus lactis. The vector consists of the plus origin of replication (Ori+) of the lactococcal plasmid pWV01, the sucrose genes of the lactic acid bacterium Pediococcus pentosaceus PPE1.0 as selectable marker, a multiple-cloning site, and a lactococcal DNA fragment of a well-characterized chromosomal region. The system includes two L. lactis strains, LL108 and LL302, which produce the pWV01 RepA protein essential for replication of the Ori+ vectors. These helper strains allow the construction and isolation of the replicating form of the integration plasmids from a homologous background. Single-cross-over integration of the plasmids in L. lactis MG1363 resulted in amplifications to a level of approximately 20 copies/chromosome after selection of the transformants on medium containing sucrose as the only fermentable sugar. The amplifications were stable under selective growth conditions. In glucose-containing medium a limited loss of integrated plasmid copies was detected at a rate of (7.5–15) × 10−2 copies per generation. One strain, MG124, was isolated that had retained 11 integrated copies after a period of 120 generations of non-selective growth. These results show that the single-cross-over integration system described here represents a simple procedure for the engineering of stable food-grade strains carrying multiple copies of a gene of interest. Received: 23 September 1997 / Received revision: 21 November 1997 / Accepted: 21 November 1997  相似文献   

15.
 β-Galactosidases from Lactobacillus delbruekii subsp. bulgaricus 20056, Lb. casei 20094, Lactococcus lactis subsp. lactis 7962, Streptococcus thermophilus TS2, Pediococcus pentosaceus PE39 and Bifidobacterium bifidum 1901 were partially purified. The rate of hydrolysis of lactose given by the predominant β-galactosidase activity from each of the bacteria studied was in all cases enhanced by Mg2+, while the effect of K+ and Na+ differed from strain to strain. The β-galactosidases from all strains also catalysed transgalactosylation reactions. The types of oligosaccharides produced appeared to be very similar in each case, but the rates of their production differed. All the β-galactosidases were also capable of hydrolysing galactosyl-lactose although, unlike the other bacteria studied, Lb. delbruekii subsp. bulgaricus 20056 and Lc. lactis subsp. lactis 7962 were unable to utilise galactosyl-lactose as a carbon source for growth. Received: 4 October 1995/Received revision: 5 March 1996/Accepted 11 March 1996  相似文献   

16.
 In order to enhance the productivity of lactic acid and reduce the end-product inhibition of fermentation, the partitioning and growth of four different strains of lactic acid bacteria in three different aqueous two-phase systems were studied. Polyethyleneglycol/ dextran, polyethyleneglycol/hydroxypropyl starch polymer (HPS), and a random copolymer of ethylene oxide and propylene oxide (EO-PO)/HPS were used as polymer systems. One strain each of Lactococcus lactis subsp. lactis and of Lactobacillus delbrueckii subsp. delbrueckii partitioned completely to the interface and bottom phase in two-phase systems with low polymer concentrations of EO-PO/HPS100 and EO-PO/ HPS200. The growth and production of lactic acid by two of three L. lactis strains in a two-phase system with 5.5% (w/w) EO-PO and 12.0% (w/w) HPS100 were reduced by less than 10% compared with a reference fermentation in a normal growth medium. The viability of L. lactis subsp. lactis ATCC 19435 was maintained for at least 50 h and with four top-phase replacements during extractive fermentation in the EO-PO/HPS100 system. Moreover, when cell density reached the stationary phase in the first extractive fermentation, the lactate production in this aqueous two-phase system was maintained. Received: 2 October 1995/Received revision: 16 January 1996/Accepted: 22 January 1996  相似文献   

17.
Plasmid pAJ1106 and its deletion derivative, plasmid pAJ2074, conferred lactose-fermenting ability (Lac) and bacteriophage resistance (Hsp) at 30°C to Lac proteinase (Prt)-negative Lactococcus lactis subsp. lactis and L. lactis subsp. lactis var. diacetylactis recipient strains. An additional plasmid, pAJ331, isolated from the original source strain of pAJ1106, retained Hsp and conjugative ability without Lac. pAJ331 was conjugally transferred to two L. lactis subsp. lactis and one L. lactis subsp. cremoris starter strains. The transconjugants from such crosses acquired resistance to the phages which propagated on the parent recipient strains. Of 10 transconjugant strains carrying pAJ1106 or one of the related plasmids, 8 remained insensitive to phages through five activity test cycles in which cultures were exposed to a large number of industrial phages at incubation temperatures used in lactic casein manufacture. Three of ten strains remained phage insensitive through five cycles of a cheesemaking activity test in which cultures were exposed to approximately 80 different phages through cheesemaking temperatures. Three phages which propagated on transconjugant strains during cheesemaking activity tests were studied in detail. Two were similar (prolate) in morphology and by DNA homology to phages which were shown to be sensitive to the plasmid-encoded phage resistance mechanism. The third phage was a long-tailed, small isometric phage of a type rarely found in New Zealand cheese wheys. The phage resistance mechanism was partially inactivated in most strains at 37°C.  相似文献   

18.
A cDNA encoding a novel inwardly rectifying potassium (K+ in) channel, LKT1, was cloned from a root-hair-specific cDNA library of tomato (Lycopersicon esculentum Mill.). The LKT1 mRNA was shown to be most strongly expressed in root hairs by Northern blot analysis. The LKT1 channel is a member of the AKT family of K+ in channels previously identified in Arabidopsis thaliana (L.) Heynh. and potato (Solanum tuberosum L.). Moreover, LKT1 is closely related (97% identical amino acids) to potato SKT1. An electrophysiological comparison of the two channels should therefore assist the identification of possible molecular bases for functional differences. For this comparison, both channels were functionally expressed and electrophysiologically characterised within the same expression system, i.e. Xenopus laevis oocytes. Voltage-clamp measurements identified LKT1 as a K+-selective inward rectifier which activates with slow kinetics upon hyperpolarising voltage pulses to potentials more negative than −50 mV. The activation potential of LKT1 is shifted towards positive potentials with respect to SKT1 which might be due to single amino acid exchanges in the rim of the channel's pore region or in the S4 domain. Like SKT1, LKT1 reversibly activated upon shifting the external pH from 6.6 to 5.5, which indicates a physiological role for pH-dependent regulation of AKT-type K+ in channels. The pharmacological inhibitor Cs+, applied externally, inhibited K+ in currents mediated by LKT1 and SKT1 half-maximally with a concentration (IC50) of 21 μM and 17 μM, respectively. In conclusion, LKT1 may serve as a low-affinity influx pathway for K+ into root hair cells. Comparison of homologous K+ in rectifiers from different plant species expressed in the same heterologous system allows conclusions to be drawn in respect to structure-function relationships. Received: 3 August 1999 / Accepted: 2 November 1999  相似文献   

19.
We isolated and characterized a d-lactic acid-producing lactic acid bacterium (d-LAB), identified as Lactobacillus delbrueckii subsp. lactis QU 41. When compared to Lactobacillus coryniformis subsp. torquens JCM 1166 T and L. delbrueckii subsp. lactis JCM 1248 T, which are also known as d-LAB, the QU 41 strain exhibited a high thermotolerance and produced d-lactic acid at temperatures of 50 °C and higher. In order to optimize the culture conditions of the QU 41 strain, we examined the effects of pH control, temperature, neutralizing reagent, and initial glucose concentration on d-lactic acid production in batch cultures. It was found that the optimal production of 20.1 g/l d-lactic acid was acquired with high optical purity (>99.9% of d-lactic acid) in a pH 6.0-controlled batch culture, by adding ammonium hydroxide as a neutralizing reagent, at 43 °C in MRS medium containing 20 g/l glucose. As a result of product inhibition and low cell density, continuous cultures were investigated using a microfiltration membrane module to recycle flow-through cells in order to improve d-lactic acid productivity. At a dilution rate of 0.87 h−1, the high cell density continuous culture exhibited the highest d-lactic acid productivity of 18.0 g/l/h with a high yield (ca. 1.0 g/g consumed glucose) and a low residual glucose (<0.1 g/l) in comparison with systems published to date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号