首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type III sodium-dependent phosphate (NaP(i)) cotransporters, Pit1 and Pit2, have been assigned housekeeping P(i) transport functions and suggested involved in chondroblastic and osteoblastic mineralization and ectopic calcification. Both proteins exhibit dual function, thus, besides being transporters, they also serve as receptors for several gammaretroviruses. We here show that it is possible to uncouple transport and receptor functions of a type III NaP(i) cotransporter and thus exploit the retroviral receptor function as a control for proper processing and folding of mutant proteins. Thus exchanging two putative transmembranic glutamate residues in human Pit2, Glu(55) and Glu(575), with glutamine or with lysine severely impaired or knocked out, respectively, P(i) transport function, but left viral receptor function undisturbed. Both glutamates are conserved in type III NaP(i) cotransporters, in fungal NaP(i) cotransporters PHO-4 and Pho89, and in other known or putative phosphate permeases from a number of species and are the first residues shown to be critical for type III NaP(i) cotransport. Their putative transmembranic positions together with the presented data are consistent with Glu(55) and Glu(575) being parts of a cation liganding site or playing roles in conformational changes associated with substrate transport. Finally, the results also show that Pit2 retroviral receptor function per se is not dependent on Pit2 P(i) transport function.  相似文献   

2.
Glycerolipid synthesis in plants is coordinated between plastids and the endoplasmic reticulum (ER). A central step within the glycerolipid synthesis is the transport of phosphatidic acid from ER to chloroplasts. The chloroplast outer envelope protein TGD4 belongs to the LptD family conserved in bacteria and plants and selectively binds and may transport phosphatidic acid. We describe a second LptD‐family protein in A. thaliana (atLPTD1; At2g44640) characterized by a barrel domain with an amino‐acid signature typical for cyanobacterial LptDs. It forms a cation selective channel in vitro with a diameter of about 9 Å. atLPTD1 levels are induced under phosphate starvation. Plants expressing an RNAi construct against atLPTD1 show a growth phenotype under normal conditions. Expressing the RNAi against atLPTD1 in the tgd4–1 background renders the plants more sensitive to light stress or phosphate limitation than the individual mutants. Moreover, lipid analysis revealed that digalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol levels remain constant in the RNAi mutants under phosphate starvation, while these two lipids are enhanced in wild‐type. Based on our results, we propose a function of atLPTD1 in the transport of lipids from ER to chloroplast under phosphate starvation, which is combinatory with the function of TGD4.  相似文献   

3.
In Saccharomyces cerevisiae, the high-affinity phosphate transport system comprises the Pho84 and Pho89 permeases. The Pho89 permease catalyzes import of inorganic phosphate in a symport manner by utilizing Na+ ions as co-solute. We have addressed the functional importance of two glutamic acid residues at positions 55 and 491. Both residues are highly conserved amongst members of the inorganic phosphate transporter (PiT) family, which might be an indication of functional importance. Moreover, both residues have been shown to be of critical importance in the hPit2 transporter. We have created site-directed mutations of both E55 and E491 to lysine and glutamine. We observed that in all four cases there is a dramatic impact on the transport activity, and thus it seems that they indeed are of functional importance. Following these observations, we addressed the membrane topology of this protein by using several prediction programs. TOPCONS predicts a 7-5 transmembrane segment organization, which is the most concise topology as compared to the hPiT2 transporter. By understanding the functionality of these residues, we are able to correlate the Pho89 topology to that of the hPiT2, and can now further analyze residues which might play a role in the transport activity.  相似文献   

4.
5.
Pit2 is a type III sodium-dependent phosphate transporter and the cell surface receptor for amphotropic murine leukemia virus. Indirect arguments have previously suggested that retrovirus receptor assembly play a role in triggering membrane fusion. Using CHO cells expressing physiological amounts of functional versions of human Pit2 fused to various tagging epitopes, we provide evidence that Pit2 forms assemblies at the cell surface. Living cells were exposed to cross-linking reagents and protein extracts were treated with trifluoroacetic acid (TFA), a chemical that destroys all protein interactions but covalent links. Assemblies were also detected in the absence of cross-linking and TFA treatment, indicating that they are partially resistant to detergent denaturation. The formation of homo-oligomers was documented by the coimmunoprecipitation of differently tagged molecules. The amounts of Pit2 assemblies detected in the presence or in the absence of cross-linking reagents varied with extracellular inorganic phosphate concentration ([P(i)]). Variation of signal intensity was in the range of twofold, occurred in the absence of de novo protein synthesis and took place at the cell surface. These results indicate that Pit2 assemblies exhibit variable conformations at the surface of living cells. Susceptibility to virus infection and phosphate uptake also vary with extracellular [P(i)]. A model is proposed in which cell surface Pit2 assemblies switch from a compacted to an expanded configuration in response to changes of extracellular [P(i)], and possible relationships with the variation of biological activities are discussed.  相似文献   

6.
Bøttger P  Pedersen L 《The FEBS journal》2005,272(12):3060-3074
The mammalian members of the inorganic phosphate (P(i)) transporter (PiT) family, the type III sodium-dependent phosphate (NaP(i)) transporters PiT1 and PiT2, have been assigned housekeeping P(i) transport functions and are suggested to be involved in chondroblastic and osteoblastic mineralization and ectopic calcification. The PiT family members are conserved throughout all kingdoms and use either sodium (Na+) or proton (H+) gradients to transport P(i). Sequence logo analyses revealed that independent of their cation dependency these proteins harbor conserved signature sequences in their N- and C-terminal ends with the common core consensus sequence GANDVANA. With the exception of 10 proteins from extremophiles all 109 proteins analyzed carry an aspartic acid in one or both of the signature sequences. We changed either of the highly conserved aspartates, Asp28 and Asp506, in the N- and C-terminal signature sequences, respectively, of human PiT2 to asparagine and analyzed P(i) uptake function in Xenopus laevis oocytes. Both mutant proteins were expressed at the cell surface of the oocytes but exhibited knocked out NaP(i) transport function. Human PiT2 is also a retroviral receptor and we have previously shown that this function can be exploited as a control for proper processing and folding of mutant proteins. Both mutant transporters displayed wild-type receptor functions implying that their overall architecture is undisturbed. Thus the presence of an aspartic acid in either of the PiT family signature sequences is critical for the Na+-dependent P(i) transport function of human PiT2. The conservation of the aspartates among proteins using either Na+- or H+-gradients for P(i) transport suggests that they are involved in H+-dependent P(i) transport as well. Current results favor a membrane topology model in which the N- and C-terminal PiT family signature sequences are positioned in intra- and extracellular loops, respectively, suggesting that they are involved in related functions on either side of the membrane. The present data are in agreement with a possible role of the signature sequences in translocation of cations.  相似文献   

7.
PTB or not PTB -- that is the question   总被引:2,自引:0,他引:2  
Yan KS  Kuti M  Zhou MM 《FEBS letters》2002,513(1):67-70
Phosphotyrosine binding (PTB) domains are structurally conserved modules found in proteins involved in numerous biological processes including signaling through cell-surface receptors and protein trafficking. While their original discovery is attributed to the recognition of phosphotyrosine in the context of NPXpY sequences -- a function distinct from that of the classical src homology 2 (SH2) domain -- recent studies show that these protein modules have much broader ligand binding specificities. These studies highlight the functional diversity of the PTB domain family as generalized protein interaction domains, and reinforce the concept that evolutionary changes of structural elements around the ligand binding site on a conserved structural core may endow these protein modules with the structural plasticity necessary for functional versatility.  相似文献   

8.
The major facilitator superfamily (MFS) transporter Pho84 and the type III transporter Pho89 are responsible for metabolic effects of inorganic phosphate in yeast. While the Pho89 ortholog Pit1 was also shown to be involved in phosphate-activated MAPK in mammalian cells, it is currently unknown, whether orthologs of Pho84 have a role in phosphate-sensing in metazoan species. We show here that the activation of MAPK by phosphate observed in mammals is conserved in Drosophila cells, and used this assay to characterize the roles of putative phosphate transporters. Surprisingly, while we found that RNAi-mediated knockdown of the fly Pho89 ortholog dPit had little effect on the activation of MAPK in Drosophila S2R+ cells by phosphate, two Pho84/SLC17A1-9 MFS orthologs (MFS10 and MFS13) specifically inhibited this response. Further, using a Xenopus oocyte assay, we show that MSF13 mediates uptake of [(33)P]-orthophosphate in a sodium-dependent fashion. Consistent with a role in phosphate physiology, MSF13 is expressed highest in the Drosophila crop, midgut, Malpighian tubule, and hindgut. Altogether, our findings provide the first evidence that Pho84 orthologs mediate cellular effects of phosphate in metazoan cells. Finally, while phosphate is essential for Drosophila larval development, loss of MFS13 activity is compatible with viability indicating redundancy at the levels of the transporters.  相似文献   

9.
A protein from Arabidopsis thaliana (L.) Heynh. showing homology to animal proteins of the NaPi-1 family, involved in the transport of inorganic phosphate, chloride, glutamate and sialic acid, has been characterized. This protein, named ANTR2 (for anion transporters) was shown by chloroplast subfractionation to be localized to the plastid inner envelope in both A. thaliana and Spinacia oleracea (L.). Immunolocalization revealed that ANTR2 was expressed in the leaf mesophyll cells as well as in the developing embryo at the upturned-U stage. Five additional homologues of ANTR2 are found in the Arabidopsis genome, of which one was shown by green fluorescent protein (GFP) fusion to be also located in the chloroplast. All ANTR proteins share homology to the animal NaPi-1 family, as well as to other organic-anion transporters that are members of the Anion:Cation Symporter (ACS) family, and share the main features of transporters from this family, including the presence of 12 putative transmembrane domains and of a 7-amino acid motif in the fourth putative transmembrane domain. ANTR2 thus represent a novel protein of the plastid inner envelope that is likely to be involved in anion transport.Abbreviations ACS Anion:Cation Symporter - GFP green fluorescent protein - Pi inorganic phosphate  相似文献   

10.
In Drosophila, Dicer‐1 produces microRNAs (miRNAs) from pre‐miRNAs, whereas Dicer‐2 generates small interfering RNAs from long double‐stranded RNA (dsRNA), a process that requires ATP hydrolysis. We previously showed that inorganic phosphate inhibits Dicer‐2 cleavage of pre‐miRNAs, but not long dsRNAs. Here, we report that phosphate‐dependent substrate discrimination by Dicer‐2 reflects dsRNA substrate length. Efficient processing by Dicer‐2 of short dsRNA requires a 5′ terminal phosphate and a two‐nucleotide, 3′ overhang, but does not require ATP. Phosphate inhibits cleavage of such short substrates. In contrast, cleavage of longer dsRNA requires ATP but no specific end structure: phosphate does not inhibit cleavage of these substrates. Mutation of a pair of conserved arginine residues in the Dicer‐2 PAZ domain blocked cleavage of short, but not long, dsRNA. We propose that inorganic phosphate occupies a PAZ domain pocket required to bind the 5′ terminal phosphate of short substrates, blocking their use and restricting pre‐miRNA processing in flies to Dicer‐1. Our study helps explain how a small molecule can alter the substrate specificity of a nucleic acid processing enzyme.  相似文献   

11.
BACKGROUND: Maltose phosphorylase (MP) is a dimeric enzyme that catalyzes the conversion of maltose and inorganic phosphate into beta-D-glucose-1-phosphate and glucose without requiring any cofactors, such as pyridoxal phosphate. The enzyme is part of operons that are involved in maltose/malto-oligosaccharide metabolism. Maltose phosphorylases have been classified in family 65 of the glycoside hydrolases. No structure is available for any member of this family. RESULTS: We report here the 2.15 A resolution crystal structure of the MP from Lactobacillus brevis in complex with the cosubstrate phosphate. This represents the first structure of a disaccharide phosphorylase. The structure consists of an N-terminal complex beta sandwich domain, a helical linker, an (alpha/alpha)6 barrel catalytic domain, and a C-terminal beta sheet domain. The (alpha/alpha)6 barrel has an unexpected strong structural and functional analogy with the catalytic domain of glucoamylase from Aspergillus awamori. The only conserved glutamate of MP (Glu487) superposes onto the catalytic residue Glu179 of glucoamylase and likely represents the general acid catalyst. The phosphate ion is bound in a pocket facing the carboxylate of Glu487 and is ideally positioned for nucleophilic attack of the anomeric carbon atom. This site is occupied by the catalytic base carboxylate in glucoamylase. CONCLUSIONS: These observations strongly suggest that maltose phosphorylase has evolved from glucoamylase. MP has probably conserved one carboxylate group for acid catalysis and has exchanged the catalytic base for a phosphate binding pocket. The relative positions of the acid catalytic group and the bound phosphate are compatible with a direct-attack mechanism of a glycosidic bond by phosphate, in accordance with inversion of configuration at the anomeric carbon as observed for this enzyme.  相似文献   

12.
Pyridoxine (PN) is a metabolic precursor of pyridoxal phosphate that functions as a cofactor of many enzymes in amino acid metabolism. PN, pyridoxal, and pyridoxamine are collectively referred to as vitamin B6, and mammalian organisms depend on its uptake from the diet. In addition to the ability to use extracellular vitamin B6, most unicellular organisms are also capable of synthesizing PN to generate pyridoxal phosphate. Here, we report the isolation of Saccharomyces cerevisiae mutants that have lost the ability to transport PN across the plasma membrane. We used these mutants to isolate TPN1, the first known gene encoding a transport protein for vitamin B6. Tpn1p is a member of the purine-cytosine permease family within the major facilitator superfamily. The protein functions as a proton symporter, localizes to the plasma membrane, and has high affinity for PN. TPN1 mutants lost the ability to utilize extracellular PN, pyridoxal, and pyridoxamine, showing that there is no other transporter for vitamin B6 encoded in the genome. Amino acid substitutions that led to a loss of Tpn1p function localized to transmembrane domain 4 within the 12-transmembrane domain protein. Moreover, expression of TPN1 was regulated and increased with decreasing concentrations of vitamin B6 in the medium. We also provide evidence that of the highly conserved SNZ and SNO genes in S. cerevisiae, only the protein encoded by SNZ1 is required for vitamin B6 biosynthesis.  相似文献   

13.
Pit1, the receptor for gibbon ape leukemia virus (GALV), is proposed to be an integral membrane protein with five extracellular loops. Chimeras made between Pit1 homologs differing in permissivity for infection and between Pit1 and the related protein Pit2 have shown that the fourth extracellular loop plays a critical role in infection. However, further elucidation of the roles of the extracellular loops in infection is hampered by the high level of sequence similarity among these proteins. The sodium-dependent phosphate transporter, Pho-4, from the filamentous fungus Neurospora crassa is distantly related to Pit1 and -2, showing an amino acid identity of only 35% to Pit1 in the putative extracellular loops. We show here that Pho-4 itself does not function as a receptor for GALV. Introduction of 12 Pit1-specific amino acid residues in the putative fourth extracellular loop of Pho-4 resulted in a functional GALV receptor. Therefore, the presence of a Pit1 loop 4-specific sequence is sufficient to confer receptor function for the mammalian retrovirus GALV on the fungal phosphate transporter Pho-4.  相似文献   

14.
Inorganic phosphate (Pi) transport by wild-type cells of Escherichia coli grown in excess phosphate-containing media involves two genetically separable transport systems. Cells dependent upon the high affinity-low velocity Pst (phosphate specific transport) system have a Km of 0.43 +/- 0.2 microM Pi and a Vmax of 15.9 +/- 0.3 nmol of Pi (mg [dry weight]-1min-1) and will grow in the presence of arsenate in the medium. However, cells dependent upon the low affinity-high velocity Pit (Pi transport) system have a Km of 38.2 +/- 0.4 microM and a Vmax of 55 +/- 1.9 nmol of Pi (mg [dry weight]-1min-1), and these cells cannot grow in the presence of an arsenate-to-Pi ratio of 10 in the medium. Pi transport by both systems was sensitive to the energy uncoupler 2,4-dinitrophenol and the sulfhydryl reagent N-ethylmaleimide, whereas only the Pst system was very sensitive to sodium cyanide. Evidence is presented that Pi is transported as Pi or a very labile intermediate and that accumulated Pi does not exit through the Pst or Pit systems from glucose-grown cells. Kinetic analysis of Pi transport in the wild-type strain containing both the Pst and Pit transport systems revealed that each system was not operating at full capacity. In addition, Pi transport in the wild-type strain was completely sensitive to sodium cyanide (a characteristic of the Pst system).  相似文献   

15.
Mitochondrial transporters, in particular uncoupling proteins and the ADP/ATP carrier, are known to mediate uniport of anionic fatty acids (FAs), allowing FA cycling which is completed by the passive movement of FAs across the membrane in their protonated form. This study investigated the ability of the mitochondrial phosphate carrier to catalyze such a mechanism and, furthermore, how this putative activity is related to the previously observed HgCl(2)-induced uniport mode. The yeast mitochondrial phosphate carrier was expressed in Escherichia coli and then reconstituted into lipid vesicles. The FA-induced H(+) uniport or Cl(-) uniport were monitored fluorometrically after HgCl(2) addition. These transport activities were further characterized by testing various inhibitors of the two different transport modes. The phosphate carrier was found to mediate FA cycling, which led to H(+) efflux in proteoliposomes. This activity was insensitive to ATP, mersalyl or N-ethylmaleimide and was inhibited by methylenediphosphonate and iminodi(methylenephosphonate), which are new inhibitors of mitochondrial phosphate transport. Also, the HgCl(2) induced Cl(-) uniport mediated by the reconstituted yeast PIC, was found to be inhibited by these reagents. Both methylenediphosphonate and iminodi(methylenephosphonate) blocked unidirectional Cl(-) uptake, whereas Cl(-) efflux was inhibited by iminodi(methylenephosphonate) and phosphonoformic acid only. These results suggest that a hydrophobic domain, interacting with FAs, exists in the mitochondrial phosphate carrier, which is distinct from the phosphate transport pathway. This domain allows for FA anion uniport via the phosphate carrier and consequently, FA cycling that should lead to uncoupling in mitochondria. This might be considered as a side function of this carrier.  相似文献   

16.
The SLC26/SulP (solute carrier/sulfate transporter) proteins are a superfamily of anion transporters conserved from bacteria to man, of which four have been identified in human diseases. Proteins within the SLC26/SulP family exhibit a wide variety of functions, transporting anions from halides to carboxylic acids. The proteins comprise a transmembrane domain containing between 10-12 transmembrane helices followed a by C-terminal cytoplasmic sulfate transporter and anti-sigma factor antagonist (STAS) domain. These proteins are expected to undergo conformational changes during the transport cycle; however, structural information for this family remains sparse, particularly for the full-length proteins. To address this issue, we conducted an expression and detergent screen on bacterial Slc26 proteins. The screen identified a Yersinia enterocolitica Slc26A protein as the ideal candidate for further structural studies as it can be purified to homogeneity. Partial proteolysis, co-purification, and analytical size exclusion chromatography demonstrate that the protein purifies as stable oligomers. Using small angle neutron scattering combined with contrast variation, we have determined the first low resolution structure of a bacterial Slc26 protein without spectral contribution from the detergent. The structure confirms that the protein forms a dimer stabilized via its transmembrane core; the cytoplasmic STAS domain projects away from the transmembrane domain and is not involved in dimerization. Supported by additional biochemical data, the structure suggests that large movements of the STAS domain underlie the conformational changes that occur during transport.  相似文献   

17.
Maize mesophyll chloroplasts loaded with radioactively labeled 3-phosphoglycerate or phosphoenolpyruvate exchange these compounds for externally provided inorganic phosphate, 3-phosphoglycerate, phosphoenolpyruvate, and dihydroxyacetone phosphate. These exchanges are inhibited by pyridoxal phosphate. 3-Phosphoglycerate uptake, which leads to accumulation of this substance in the stroma, is competitively inhibited by inorganic phosphate and phosphoenolpyruvate. These results are consistent with the transport of 3-phosphoglycerate, phosphoenolpyruvate, inorganic phosphate, and dihydroxyacetone phosphate being mediated by a common carrier (the phosphate translocator). The activation energy of 3-phosphoglycerate uptake as determined from its temperature dependence is 19.5 kcal (4–15 °C). In isolated chloroplasts malate and phosphoenolpyruvate production from oxalacetate and pyruvate, respectively, is inhibited by 3-phosphoglycerate, the extent of inhibition being dependent on the relative concentrations of inorganic phosphate and 3-phosphoglycerate. We propose that 3-phosphoglycerate from bundle-sheath cells may serve as a feedback regulator of mesophyll cell photosynthesis.  相似文献   

18.
Functional genomics of phosphate antiport systems of plastids   总被引:4,自引:0,他引:4  
Plant cells require a co-ordination of metabolism between their major compartments, the plastids and the cytosol, in particular as certain metabolic pathways are confined to either compartments. The inner envelope membrane of the plastids forms the major barrier for metabolite exchange and is the site for numerous transport proteins, which selectively catalyse metabolite exchanges characteristic for green and/or non-green tissues. This report is focused on the molecular biology, evolution and physiological function of the family of phosphate translocators (PT) from plastids. Until now, four distinct subfamilies have been identified and characterized, which all share inorganic phosphate as common substrate, but have different spectra of counter exchange substrates to fulfil the metabolic needs of individual cells and tissues. The PTs are named after their main transported substrate, triose phosphate (TPT), phosphoenolpyruvate (PPT), glucose 6-phosphate (GPT) and xylulose 5-P (XPT). All PTs belong to the TPT/nucleotide sugar transporter (NST) superfamily, which includes yet uncharacterized PT homologues from plants and other eukaryotes. Transgenic plants or mutants with altered transport activity of some of the PTs have been generated or isolated. The analysis of these plant lines revealed new insights in the co-ordination and flexibility of plant metabolism.  相似文献   

19.
Phosphate mobilization into the plant is a complex process requiring numerous transporters for absorption and translocation of this major nutrient. In the genome of Arabidopsis thaliana, nine closely related high affinity phosphate transporters have been identified but their specific roles remain unclear. Here we report the molecular, histological and physiological characterization of Arabidopsis pht1;4 high affinity phosphate transporter mutants. Using GUS-gene trap and in situ hybridization, Pht1;4 was found mainly expressed in inorganic phosphate (Pi) limiting medium in roots, primarily in the epidermis, the cortex and the root cap. In addition to this, expression was also observed at the lateral root branch points on the primary root and in the stele of lateral roots, suggesting a role of Pht1;4 in phosphate absorption and translocation from the growth medium to the different parts of the plant. Pi-starved pht1;4 plantlets exhibited a strong reduction of phosphate uptake capacity (40). This phenotype appears only related to the pht1;4 mutation as there were no obvious changes in the expression of other Pht1 family members in the mutants background. However, after 10 days of growth on phosphate deficient or sufficient medium, the Pi content in the mutants was not significantly different from that of the corresponding wild type controls. Furthermore, the mutants did not display any obvious growth defects or visible phenotypes when grown on a low phosphate containing medium. The work described here offers a first step in the complex genetic dissection of the phosphate transport system in planta.  相似文献   

20.
Murine leukemia virus (MLV)-derived envelope proteins containing alterations in or adjacent to the highly conserved PHQ motif present at the N terminus of the envelope surface subunit (SU) are incorporated into vector particles but are not infectious due to a postbinding block to viral entry. These mutants can be rendered infectious by the addition of soluble receptor-binding domain (RBD) proteins in the culture medium. The RBD proteins that rescue the infectivity of these defective MLV vectors can be derived from the same MLV or from other MLVs that use distinct receptors to mediate entry. We have now constructed functional immunologically reactive gibbon ape leukemia virus (GALV) envelope proteins, tagged with a feline leukemia virus (FeLV)-derived epitope tag, which are efficiently incorporated into infectious particles. Tagged GALV envelope proteins bind specifically to cells expressing the phosphate transporter protein Pit1, demonstrating for the first time that Pit1 is the binding receptor for GALV and not a coreceptor or another type of GALV entry factor. We have also determined that GALV particles bearing SU proteins with an insertion C-terminal to the PHQ motif (GALV I(10)) bind Pit1 but fail to infect cells. Incubation with soluble GALV RBD renders GALV I(10) particles infectious, whereas incubation with soluble RBDs from MLV or FeLV-B does not. This finding is consistent with the results obtained by Lauring et al. using FeLV-T, a virus that employs Pit1 as a receptor but requires soluble FeLV RBD for entry. MLV and GALV RBDs are not able to render FeLV-T infectious (A. S. Lauring, M. M. Anderson, and J. Overbaugh, J. Virol. 75:8888-8898, 2001). Together, these results suggest that fusion-defective FeLV-T and GALV are restricted to homologous RBD rescue of infectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号