首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The manner of release of growth hormone-releasing factor (GRF) from the rat hypothalamus was studied in a perifusion system using a highly sensitive radioimmunoassay for rat GRF. The recovery of GRF in this system was 50-60%. The release of GRF from the rat hypothalamic blocks was almost stable for 20-240 min after the start of the perifusion and was stimulated by depolarization induced by high K+ concentration. The release of GRF was inhibited by somatostatin at concentrations of 10(-11) to 10(-8) M with maximum inhibition to 52.5% of the basal release at a concentration of 10(-9) M. These results suggest that this system is useful in studying the regulatory mechanism of GRF release and that, in addition to its action on the pituitary, somatostatin appears to act at the level of the hypothalamus in inhibiting GRF release in the regulation of GH secretion.  相似文献   

2.
GH3 cells were used to study the effect of rat growth hormone-releasing factor on adenylate cyclase activity and its interaction with somatostatin. Rat GRF stimulates adenylate cyclase activity (ED5 0 = 6 X 10(-8) M) and somatostatin-14 inhibits this GRF-stimulated activity in a non-competitive manner without affecting the basal enzyme levels. Inhibition by somatostatin-14 is observed at concentrations as low as 10(-11) M and the half-maximal effect is obtained with 10(-8) M. Somatostatin-28 is more potent than SS-14 and has an ED5 0 of 3 X 10(-11) M. VIP is more active than rat GRF in stimulating adenylate cyclase activation. We conclude that in GH3 cells rat GRF behaves as a partial VIP agonist by interacting with VIP-preferring receptors and its effects are inhibited by somatostatin.  相似文献   

3.
GRF (10(-8) - 10(-5) M) is shown to inhibit competitively the binding of [125I]VIP to human and rat intestinal epithelial membranes. The affinity of GRF for VIP receptor is 700-800-times lower than that of VIP in both species. The order of affinity of different peptides is VIP greater than PHI greater than secretin greater than GRF in rat, and VIP greater than GRF greater than PHI greater than secretin in man. The important species specificity of VIP receptors in recognizing PHI and secretin does not occur in the case of GRF. GRF stimulates adenylate cyclase through its interaction with VIP receptors in rat and human membranes. However, while GRF behaves as a VIP agonist in human tissue, it is a partial agonist/antagonist of VIP in the rat.  相似文献   

4.
Corticotropin-releasing factor (CRF) and both human pancreatic growth hormone-releasing factor (hp-GRF) and rat hypothalamic GRF (rh-GRF) stimulated ACTH release from neoplastic AtT-20 mouse pituitary tumor cells in a dose-dependent fashion, with CRF inducing a 10-fold increase and GRF a maximal increment of approximately one-half that of CRF. Neither rh-GRF nor hp-GRF induced ACTH release in normal anterior pituitary cells. Pretreatment with either dexamethasone or somatostatin prior to the addition of rh-GRF inhibited the increase in ACTH release. Both ovine CRF and rh-GRF stimulated adenosine 3,5-monophosphate production in AtT-20 cells. The weak but clearly discernible effect of GRF on ACTH release from AtT-20 cells may be due to an abnormality in the AtT-20 cell receptor.  相似文献   

5.
Human pancreatic growth hormone releasing factor (GRF (1-44)) is the parent molecule of several peptides recently extracted from pancreatic tumours associated with acromegaly. A study was conducted to examine its effects on the release of growth hormone in normal volunteers and in patients with hypopituitarism and acromegaly. GRF (1-44) dose dependently stimulated the release of growth hormone in normal people and produced no appreciable side effect. This response was grossly impaired in patients with hypopituitarism and, although similar to the growth hormone response to hypoglycaemia, was of quicker onset and a more sensitive test of residual growth hormone function. Patients with acromegaly appeared to fall into (a) those with a normal response to GRF, whose growth hormone suppressed significantly with oral glucose, and (b) those who had an exaggerated response to GRF (1-44), whose growth hormone had not suppressed previously after oral glucose. Present methods for testing growth hormone deficiency entail using the insulin stress test, which is time consuming, unpleasant, and sometimes dangerous. A single intravenous injection of GRF now offers the possibility of an easier, safer, and more reliable routine test for growth hormone deficiency. It has the further advantage of being free of side effects and readily performed in outpatients. Hence it seems likely to become the standard test and take the place of the insulin stress test.  相似文献   

6.
Growth hormone releasing factor (GRF), a 44-residue peptide originally isolated from human pancreatic tumors, shows structural similarities to the members of the secretin-vasoactive intestinal peptide (VIP) peptides. This study was designed to determine the effects of human GRF (hGRF-(1-44] on pancreatic secretion in vivo in conscious dogs and in vitro in dispersed rat pancreatic acini. GRF given i.v. in graded doses in dogs caused a small but significant stimulation of pancreatic HCO3- and protein outputs and potentiated secretin- and cholecystokinin (CCK)-induced pancreatic HCO3- but not protein secretion. When given together with somatostatin, GRF failed to reverse the inhibitory action of this peptide on HCO3- and protein responses to secretin plus CCK in dogs. Studies in vitro dispersed rat pancreatic acini showed that GRF added to the incubation medium of these acini caused an increase in basal amylase release and shifted to the left the amylase dose-response curve to caerulein and urecholine but failed to affect the amylase response to VIP. This study indicates that GRF in vivo stimulates basal and augments secretin- or CCK-induced pancreatic HCO3- secretion and that this is probably due to direct stimulatory action of the peptide on pancreatic secretory cells.  相似文献   

7.
Effects of growth hormone (GH) excess on immunoreactive hypothalamic GH-releasing factor (GRF) and somatostatin (SRIF) were studied in rats. Hypothalamic GRF content significantly reduced after 7-day daily treatment with 160 micrograms of rat GH or after inoculation of GH-secreting rat pituitary tumors, MtT-F4 for 9 or 13 days and GH3 for 3 months. Basal and 59 mM K+-evoked release of GRF from incubated hypothalami diminished, more than the content, by 43-51% in MtT-F4 tumor- or by 67-83% in GH3 tumor-bearing rats. In contrast, there was a small but significant increase in content or release of SRIF in rats harboring the GH3 or MtT-F4 tumor, respectively. These results indicate the existence of a negative feedback loop via hypothalamic GRF as well as SRIF in control of GH secretion.  相似文献   

8.
M Sato  J Takahara  M Niimi  R Tagawa  S Irino 《Life sciences》1991,48(17):1639-1644
The present study was undertaken to investigate the direct actions of rat galanin (R-GAL) on growth hormone (GH) release from the rat anterior pituitary in vitro. R-GAL modestly but significantly stimulated GH release without an increase in intra- and extracellular cyclic AMP levels in monolayer cultures of rat anterior pituitary cells. This stimulatory effect of R-GAL was dose-dependent but not additive with that of GH-releasing factor (GRF). R-GAL-stimulated GH release was less sensitive to the inhibitory effect of somatostatin than was GRF-stimulated GH release. In perfusions of rat anterior pituitary fragments, R-GAL induced a gradual and sustained increase of GH release. Incremental GH release derived in part from preformed stored GH. These data confirm that R-GAL acts at the pituitary level to stimulate GH release by a mechanism distinct from that of GRF.  相似文献   

9.
The presence of immunoreactive growth hormone-releasing factor (GRF) in human milk has been demonstrated. By using sequential high performance liquid chromatography, it has been shown that most of the immunoreactivity co-elutes with the synthetic, hypothalamic-like, GRF (1-40). The concentrations of GRF detected (between 152 and 432 pg GRF/ml milk) exceed several fold its values in plasma.  相似文献   

10.
The effects of rat growth hormone releasing factor (rGRF) on somatostatin (SRIF) secretion, cyclic nucleotide production and phosphatidylinositol metabolism were investigated in the median eminence (ME), using an in vitro system. Medium was discarded and replaced by medium containing various concentrations of rGRF or rGRF plus epinephrine (E, 6 x 10(-7) M). rGRF had no effect on basal or E-stimulated release of cAMP. In the same experiments rGRF markedly stimulated SRIF release. These results suggested that cAMP is not involved in the stimulatory effect of GRF on SRIF release. However, GRF significantly stimulated release of both SRIF and cGMP in a dose-related manner. Maximal stimulation was observed at 10(-10) M GRF (p less than 0.005) which also produces maximal SRIF release. 2'0-monobutyrylguanosine 3'5' cyclic phosphate (mbcGMP, 10(-11) to 10(-10) M) stimulated SRIF release from ME fragments (p less than 0.001 at 10(-10) M) whereas the control, sodium butyrate (10(-6) M), had no effect. GRF caused significant elevation of 30.6% in the concentration of labelled inositol phosphates [( 3H]-IPs) in the ME. These data indicate that GRF stimulation of SRIF release is accompanied by increased cGMP production and phosphatidyl-inositol (PI) metabolism but does not alter cAMP production. Because mbcGMP can directly stimulate SRIF release, we suggest that GRF causes a receptor-mediated increase in the metabolism of phosphatidylinositol and cGMP formation. These actions therefore may be among the early metabolic events in the mechanism of GRF-stimulated SRIF release from the ME.  相似文献   

11.
We have produced two antisera (R-1 & R-2) to human growth hormone-releasing factor (GRF) [1-44] NH2. Both antisera can be used for human GRF radioimmunoassay (RIA) at a final dilution of 1:50000. The antiserum R-2 was specific for the C-terminal amidated sequence of human GRF-44 and selectively recognized GRF [1-44] NH2 but not GRF [1-44] OH or GRF [1-40] OH. The antiserum R-1 also significantly bound 125I-rat GRF [1-43] OH at a final dilution of 1:5000 and enabled us to establish RIA for rat GRF. In both RIA systems, intra- and inter-assay coefficients of variation at 50% inhibition were 8 and 12%, respectively. A median effective dose was 90-120 pg in human GRF RIA and 250-300 pg in rat GRF RIA. Utilizing the RIA, we demonstrated that the hypothalamic GRF content in rats which received monosodium glutamate during the neonatal period was less than 20% of that of controls. However, the hypothalamic GRF content was not altered in rats made hypothyroid by methimazole administration, another condition known to greatly impair GH secretion. An iv administration of the antiserum R-1 significantly suppressed GH release following the injection of antisomatostatin serum. Thus, these antisera can be a useful tool in examining the physiological and/or pathophysiological roles of GRF in human and rat.  相似文献   

12.
The stimulatory effect of maximal concentrations of synthetic human pancreatic growth hormone (GH)-releasing factor (GRF)(1-40)NH on cyclic AMP accumulation in rat anterior pituitary cells in culture is 4.5-fold increased following a 48-h preincubation with the potent glucocorticoid dexamethasone while the sensitivity of GRF action is increased by approximately 4-fold. Dexamethasone pretreatment, on the other hand, has no effect on basal cyclic AMP levels but approximately doubles both basal and GRF-induced GH release. The present data suggest that the potent stimulatory effect of glucocorticoids on GH secretion is exerted on the adenylate cyclase system at a step preceding cyclic AMP formation.  相似文献   

13.
A highly specific and sensitive radioimmunoassay was developed for measuring circulating growth hormone releasing factor (GRF) in human plasma. Before measuring immunoreactive GRF plasma samples were extracted on to Vycor glass. Immunoreactive GRF concentrations in plasma samples from 37 fasting normal subjects ranged from less than 10 to 60 ng/l (mean 21 ng/l). Fasting concentrations in 76 out of 80 acromegalic subjects were within the normal range, but the remaining four patients had values of 92 to 25 000 ng/l. Of these, only the patient with the highest concentration had evidence of ectopic GRF secretion from a disseminated carcinoid tumour. Two of the others had longstanding pituitary tumours, and the fourth patient had a pituitary growth hormone (GH) secreting tumour proved by its removal and subsequent remission of acromegaly. There was no correlation between serum GH and plasma immunoreactive GRF concentrations, irrespective of whether the patients were untreated or had been given radiotherapy or dopamine agonists. The assay should help elucidate the physiological role(s) of GRF and may also prove useful in differentiating between pituitary and hypothalamic defects in patients with acromegaly.  相似文献   

14.
Vasoactive intestinal peptide (VIP) receptors have been identified in CNS by their chemical specificity and molecular size. Using synaptosomes isolated from rat cerebral cortex, it was shown that central VIP receptors discriminated among natural and synthetic VIP-related peptides, because half-maximal inhibition of [125I]VIP binding to synaptosomes was obtained for 0.6 nM VIP, 9 nM peptide histidine isoleucineamide (PHI), 50 nM VIP 2-28, 70 nM secretin, 100 nM rat growth hormone-releasing factor (GRF), and 350 nM human GRF. Other peptides of the VIP family, such as glucagon and gastric inhibitory polypeptide, did not interact with cortical VIP receptors. The molecular components of VIP receptors in rat cerebral cortex were identified after [125I]VIP cross-linking to synaptosomes using the cross-linker dithiobis(succinimidyl propionate). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of synaptosomal proteins revealed two major [125I]VIP-protein complexes of Mr 49,000 and 18,000. The labeling of the Mr 49,000 component was specific, because it was abolished by native VIP, whereas the labeling of the Mr 18,000 component was not. Natural VIP agonists reduced the labeling of the Mr 49,000 component with the following order of potency: VIP greater than PHI greater than secretin approximately equal to rat GRF. In contrast, glucagon and octapeptide of cholecystokinin were without effect, a result indicating its peptide specificity. Densitometric scanning of autoradiographs showed that the labeling of the Mr 49,000 component was inhibited by low VIP concentrations between 10(-10) and 10(-6) M (IC50 = 0.8 nM), a result indicating the component's high affinity for VIP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effect of galanin (GAL) on the release of GH-releasing factor (GRF) and somatostatin (SRIF) was examined in an in vitro perifusion system of rat hypothalamic slices. GAL at doses of 10(-7) and 10(-6)M stimulated the release of immunoreactive GRF while it failed to affect SRIF release. Therefore, in vivo stimulation of GH release by GAL may be explained in part by the GRF-releasing effect of this peptide.  相似文献   

16.
Partial purification of growth hormone (GH)-releasing factor (GRF) by acid extraction followed by gel filtration on Sephadex G-25 has been attained from bovine hypothalami. When rat pituitaries were incubated in 2 ml Krebs Ringer-bicarbonate-glucose (KRBG) medium, a stimulatory effect of the GRF fraction on immunoreactive GH (IR-GH) release was observed, while that of the factor neither on GH synthesis nor release of the synthesized GH was demonstrated. Stimulation of the GH release was exerted maximally within 30 min of incubation. Cycloheximide and actinomycin D, at a concentration which inhibited protein and RNA synthesis to less than 5 and 20% of the control, respectively, were without effect on the stimulatory action of the factor on GH release. On the other hand, stimulation of GH synthesis was observed under incubation in 0.3 ml medium with the factor and enhancing effect of the factor on the IR-GH release was undetectable. These results suggest that stimulation of the release and synthesis of GH mediated by the hypothalamic GRF fraction is under influence of the pool size of incubation media.  相似文献   

17.
Primary cell cultures were prepared from fetal, neonatal and adult rat pituitaries and evaluated for their ability to secrete growth hormone (GH) in response to growth hormone-releasing factor (GRF). Pituitary cells prepared from fetuses at days 19 and 21 of gestation, neonatal animals at the day of birth (day 0) or the following day (day 1) and peripubertal male rats showed full dose response curves to GRF with maximal GH release when stimulated with 1 X 10(-10) M rat GRF. At this concentration of GRF, the amount of GH released was not different from that elicited by activation of adenylate cyclase with 1 X 10(-5) M forskolin. In contradistinction, a preparation of cells from fetuses at day 18 of gestation did not show the same release of GH when challenged with 1 X 10(-10) M GRF and forskolin (0.057 +/- 0.001, compared to 0.076 +/- 0.003 micrograms/10(5) cells per 4.5 h), although the cells clearly responded to both secretagogues (basal levels of GH, 0.029 +/- 0.002 micrograms/10(5) cells per 4.5 h). While cells prepared from fetuses at day 21 of gestation or from animals after birth released 5-10% of their total cellular GH content, those prepared from 18- and 19-day fetuses released as much as 40% of their total GH suggesting there is a maturation of intracellular GH processing that occurs late in gestation. The results show that, in late pregnancy, the rat fetal pituitary is highly responsive to growth hormone-releasing factor and suggest that this peptide participates in regulating GH levels during the perinatal period.  相似文献   

18.
Growth hormone (GH) is used or is being evaluated for efficacy in treatment of short stature, aspects of aging, cardiac disorders, Crohn's disease, and short bowel syndrome. Therefore, we synthesized several stable growth hormone-releasing factor (GRF) analogues that could be therapeutically useful. One potent analog, [D-Ala(2),Aib(8, 18,)Ala(9, 15, 16, 22, 24-26,)Gab(27)]hGRF(1-27)NH(2) (GRF-6), with prolonged infusion caused severe diarrhea in monkeys; however, it had no side-effects in rats. Because GRF has similarity to VIP/PACAP and VIPomas cause diarrhea, this study investigated the ability of this and other GRF analogues to interact with the VIP/PACAP receptors. Rat VPAC(1)-R (rVPAC(1)-R), human VPAC(1)-R (hVPAC(1)-R), rVPAC(2)-R and hVPAC(2)-R stably transfected CHO and PANC 1 cells were made and T47D breast cancer cells containing native human VPAC(1)-R and AR4-2J cells containing PAC(1)-R were used. hGRF(1-29)NH(2) had low affinity for both rVPAC(1)-R and rVPAC(2)-R while VIP had a high affinity for both receptors. GRF-6 had a low affinity for both rVPAC(1)-R and rVPAC(2)-R and very low affinity for the rPAC(1)-R. VIP had a high affinity, whereas hGRF(1-29)NH(2) had a low affinity for both hVPAC(1)-R and hVPAC(2)-R. In contrast GRF-6, while having a low affinity for hVPAC(2)-R, had relatively higher affinity for the hVPAC(1)-R. In guinea pig pancreatic acini, all GRF analogues were full agonists at the VPAC(1)-R causing enzyme secretion. These results demonstrate that in contrast to native hGRF(1-29)NH(2,) GRF-6 has a relatively high affinity for the human VPAC(1)-R but not for the human VPAC(2)-R, rat VPAC(1)-R, rat VPAC(2)-R or rat PAC(1)-R. These results suggest that the substituted GRF analog, GRF-6, likely causes the diarrheal side-effects in monkeys by interacting with the VPAC(1)-R. Furthermore, they demonstrate significant species differences can exist for possible therapeutic peptide agonists of the VIP/PACAP/GRF receptor family and that it is essential that receptor affinity assessments be performed in human cells or from a closely related species.  相似文献   

19.
We studied the effect of a single intravenous bolus of 0.5 microgram/kg of growth hormone-releasing factor (GRF) on plasma GH, prolactin (PRL) and somatomedin C (SMC) in 12 short normal children and 24 patients with severe GH deficiency (GHD), i.e. GH less than 5 ng/ml after insulin and glucagon tolerance tests. GRF elicited an increase in plasma GH in both short normal and GHD children. The mean GH peak was lower in the GHD than in the short normal children (8.2 +/- 2.5 vs. 39.2 +/- 5.1 ng/ml, p less than 0.001). In the GHD patients (but not in the short normals) there was a negative correlation between bone age and peak GH after GRF (r = -0.58, p less than 0.005); GH peaks within the normal range were seen in 5 out of 8 GHD children with a bone age less than 5 years. In the short normal children, GRF had no effect on plasma PRL, which decreased continuously between 8.30 and 11 a.m. (from 206 +/- 22 to 86 +/- 10 microU/ml, p less than 0.005), a reflection of its circadian rhythm. In the majority of the GHD patients, PRL levels were higher than in the short normal children but had the same circadian rhythm, except that a slight increase in PRL was observed 15 min after GRF; this increase in PRL was seen both in children with isolated GHD and in those with multiple hormone deficiencies; it did occur in some GHD patients who had no GH response to GRF. Serum SMC did not change 24 h after GRF in the short normal children. We conclude that: (1) in short normal children: (a) the mean GH response to a single intravenous bolus of 0.5 microgram/kg of GRF is similar to that reported in young adults and (b) GRF has no effect on PRL secretion; (2) in GHD patients: (a) normal GH responses to GRF are seen in patients with a bone age less than 5 years and establish the integrity of the somatotrophs in those cases; (b) the GH responsiveness to GRF decreases with age, which probably reflects the duration of endogenous GRF deficiency, and (c) although the PRL response to GRF is heterogeneous, it does in some patients provide additional evidence of responsive pituitary tissue.  相似文献   

20.
The brain peptide human growth hormone releasing factor (1-40) (GRF), which stimulates adenylate cyclase activity in the anterior pituitary, is the predominant hormone signal for pituitary growth hormone (GH) release. Activators of protein kinase C such as teleocidin and 4 beta-phorbol 12-myristate 13-acetate (PMA) double the cyclic AMP accumulation induced by GRF, with no apparent effect on GRF potency; an inactive 4-alpha-PMA has no such action in cultured anterior pituitary cells. This PMA potentiation can be measured as early as 60 s, is maximal by 15 min, and wanes such that by 3-4 h there is no such amplifying effect of PMA. PMA, phorbol 12,13-dibutyrate, and teleocidin ED50 values for potentiating GRF activity are similar to those obtained for direct protein kinase C activation. The major inhibitory peptide somatostatin reduced both GRF- and GRF + PMA-stimulated cyclic AMP accumulation. Pertussis toxin totally blocked this somatostatin action without affecting the degree of maximal GRF potentiation achieved with PMA. Thus, the pertussis toxin target(s) are required for somatostatin inhibition of the cyclic AMP generating system, but may not be involved in the PMA potentiation of GRF-stimulated cyclic AMP accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号