首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
1. The Km for ammonia of carbamyl phosphate synthetase was determined by preincubating isolated liver cells for 30 min in the absence of ammonia and bicarbonate and in the presence of ornithine, chloroquine, which blocks lysosomal proteolysis, and aminoxy acetic acid, which inhibits transaminases. 2. The reaction was started with the addition of varying concentrations of ammonia and 10 mM bicarbonate. 3. The rate of citrulline formation was measured as related to ammonia concentration. 4. The pre-incubation with ornithine permits an accumulation of intracellular and mitochondrial ornithine concentrations which in turn allow rapid citrulline formation in the carbamyl phosphate form. 5. This prevents any feedback inhibition on a carbamyl phosphate synthetase or decreases in activity due to accumulation of carbamyl phosphate and/or absence of ornithine. 6. Using these methods in combination with [14C]bicarbonate permitted an estimation of exogenous ammonia for carbamyl phosphate synthesis. 7. The Km for ammonia was 1.5 mM, using a pK of 8.88 the Km for free NH3 was 48 microM.  相似文献   

2.
Brzozowski, Thomas H. (Stanford University School of Medicine, Palo Alto, Calif.), and Sumner M. Kalman. Carbamyl phosphate and acetyl phosphate synthesis in Escherichia coli: analysis of associated enzyme activities by an antibody to acetokinase. J. Bacteriol. 91:2286-2290. 1966.-Earlier studies have shown that the carbamyl phosphate synthesis from ammonia in cell extracts of wild-type Escherichia coli is due to at least two enzymes, acetokinase and the glutamine-dependent carbamyl phosphate synthetase. Partial purification of the glutamine-dependent carbamyl phosphate synthetase and acetokinase fails to separate from these enzymes this ammonia-dependent activity. An antibody to the partially purified acetokinase was prepared and used to determine the distribution of the ammonia-dependent activity in wild-type organisms and single-step arginine-uracil-requiring mutants with respect to the two enzymes. Such a study was possible because the antibody inhibits acetokinase but not the glutamine-utilizing carbamyl phosphate synthetase. Enzyme inhibition obtained by the stepwise addition of the antibody to cell extracts indicates that all of the ammonia-dependent carbamyl phosphate synthesis observed in the arginine-uracil-requiring mutants is due to a protein in the acetokinase fraction, presumably acetokinase itself, since acetyl phosphate and carbamyl phosphate synthesis were inhibited in a parallel fashion. In wild-type organisms, there is only partial inhibition of the ammonia-dependent activity, even when enough antibody is added to produce maximal inhibition of acetokinase. It is suggested that this residue is due to the glutamine-dependent carbamyl phosphate synthetase, for the ratio of the antibody insensitive to antibody sensitive ammonia-dependent activity present in cell extracts of the two wild-type organisms reported is qualitatively proportional to the level of carbamyl phosphate synthetase present relative to acetokinase.  相似文献   

3.
When rats were placed on a low-protein (5%) diet for 24 h or less, liver mitochondrial acetylglutamate decreased rapidly, carbamyl phosphate synthetase (ammonia) and ornithine transcarbamylase decreased little, and carbamyl phosphate synthesis (measured as citrulline) by isolated mitochondria occurred at very low rates. The matrix acetylglutamate content of these mitochondria, whether coupled or uncoupled, was increased similarly by preincubating them with added acetylglutamate, but citrulline synthesis increased from less than 1 to 2.3 nmol min-1 mg-1 in the coupled state, and from less than 1 to 35 nmol min-1 mg-1 in the uncoupled state. However, when coupled mitochondria were incubated with the substrates required for the synthesis of acetylglutamate in the matrix, citrulline synthesis increased to 48 nmol min-1 mg-1; this rate was similar to that of mitochondria from control rats (fed a normal diet). When mitochondria from controls were incubated with up to 5mM acetylglutamate, citrulline synthesis by coupled mitochondria was increased by 10 to 40%, while synthesis by uncoupled mitochondria was 1.5 to 4 times higher than that observed with the coupled mitochondria; matrix acetylglutamate in both conditions rose to levels similar to those in the medium. The reason for the different behavior of carbamyl phosphate synthetase (ammonia) in coupled and uncoupled mitochondria was not apparent; neither oxidative phosphorylation nor ornithine transport were limiting in the coupled system. These observations are an example of the restrictions imposed upon enzymatic systems by the conditions existing in the mitochondrial matrix, and of the different behavior of carbamyl phosphate synthetase in situ and in solution. In addition, they show that conclusions about the characteristics of the enzyme in coupled mitochondria based on observations made in uncoupled mitochondria are not necessarily justified.  相似文献   

4.
A cDNA clone complementary to mRNA encoding the precursor (Mr = 165,000) to the rat liver mitochondrial matrix enzyme carbamyl phosphate synthetase I (Mr = 160,000) was employed to compare relative amounts of the messenger in adult and fetal liver and in Morris hepatoma 5123D and 3924A cells. Northern blot analysis gave a size estimate for the messenger of 6,500-6,700 nucleotides. Carbamyl phosphate synthetase mRNA levels in 15-day-old fetal liver were less than 10% of adult levels; 5123D cells expressed the messenger at levels about 2-fold higher than normal adult liver, but the messenger was undetectable in 3924A cells. Albumin mRNA was also expressed in the former but not in the latter. Maintaining rats for 5 days on a diet containing 60% casein augmented the relative amount of carbamyl phosphate synthetase mRNA by about 2-fold, while a protein-free diet resulted in reduced levels of the mRNA (about 50% compared to animals on a normal diet). Finally, the pattern of hybridization of carbamyl phosphate synthetase cDNA to HindIII-digested genomic DNA showed no differences between normal liver and its corresponding hepatoma; however, a HindIII site polymorphism was observed between Buffalo and ACI rats.  相似文献   

5.
Formyltetrahydrofolate synthetase (formate:tetrahydrofolate ligase (ADP-forming), EC 6.3.4.3) from Clostridium cylindrosporum catalyzes phosphate transfer from carbamyl phosphate to ADP. This activity is lost when monovalent cations are removed and is recovered when K+ is added back. Carbamyl phosphate is an inhibitor of the formyltetrahydrolfolate synthetase forward reaction, and formate as well as phosphate inhibit the ATP synthesis reaction. Acetyl phosphate and phosphonoacetate are inhibitors of both reactions. The results of kinetic studies support the concept that carbamyl phosphate is an analog of the putative intermediate of the formyltetrahydrofolate synthetase reaction, formyl phosphate.  相似文献   

6.
Effects of hypophysectomy and subsequent growth hormone administration on mitochondrial enzymes of the urea cycle were investigated in rat liver. Hypophysectomy increased the activities of the two mitochondrial enzymes, carbamyl phosphate synthetase and ornithine transcarbamylase but not of the cytosolic enzyme, argininosuccinate synthetase. The activity of mitochondrial phosphate dependent glutaminase was not affected. Administration of bovine growth hormone (100 μg/100 g body weight) for two weeks decreased the activities of carbamyl phosphate synthetase and ornithine transcarbamylase almost to the normal level. These results suggest a specific effect of growth hormone on mitochondrial enzymes of the urea cycle and serve to explain the increased urea formation in hypopituitarism.  相似文献   

7.
Detached roots and nodules of the N2-fixing species, Albus glutinosa (European black alder), actively assimilate CO2. The maximum rates of dark CO2 fixation observed for detached nodules and roots were 15 and 3 micromoles CO2 fixed per gram dry weight per hour, respectively. The net incorporation of CO2 in these tissues was catalyzed by phosphoenolpyruvate carboxylase which produces organic acids, some of which are used in the synthesis of the amino acids, aspartate, glutamate, and citrulline and by carbamyl phosphate synthetase. The latter accounts for approximately 30 to 40% of the CO2 fixed and provides carbamyl phosphate for the synthesis of citrulline. Results of labeling studies suggest that there are multiple pools of malate present in nodules. The major pool is apparently metabolically inactive and of unknown function while the smaller pool is rapidly utilized in the synthesis of amino acids. Dark CO2 fixation and N2 fixation in nodules decreased after treatment of nodulated plants with nitrate while the percentage of the total 14C incorporated into organic acids increased. Phosphoenolpyruvate carboxylase and carbamyl phosphate synthetase play key roles in the synthesis of amino acids including citrulline and in the metabolism of N2-fixing nodules and roots of alder.  相似文献   

8.
The nucleotide sequence of rat carbamyl phosphate synthetase I mRNA has been determined from the complementary DNA. The mRNA comprises minimally 5,645 nucleotides and codes for a polypeptide of 164,564 Da corresponding to the precursor form of the rat liver enzyme. The primary sequence of mature rat carbamyl phosphate synthetase I indicates that the precursor is cleaved at one of two leucines at residues 38 or 39. The derived amino acid sequence of carbamyl phosphate synthetase I is homologous to the sequences of carbamyl phosphate synthetase of Escherichia coli and yeast. The sequence homology extends along the entire length of the rat polypeptide and encompasses the entire sequences of both the small and large subunits of the E. coli and yeast enzymes. The protein sequence data provide strong evidence that the carbamyl phosphate synthetase I gene of rat, the carAB gene of E. coli, and the CPA1 and CPA2 genes of yeast were derived from common ancestral genes. Part of the rat carbamyl phosphate synthetase I gene has been characterized with two nonoverlapping phage clones spanning 28.7 kilobases of rat chromosomal DNA. This region contains 13 exons ranging in size from 68 to 195 base pairs and encodes the 453 carboxyl-terminal amino acids of the rat protein. Southern hybridization analysis of rat genomic DNA indicates the carbamyl phosphate synthetase I gene to be present in single copy.  相似文献   

9.
Studies on the effect of a series of alpha, omega-diadenosine 5'-polyphosphate (ApnA; n = 2 to 6) on carbamyl phosphate synthetase showed that only Ap5A is an effective inhibitor. Ap5A also inhibits two partial reactions catalyzed by the enzyme: bicarbonate-dependent ATPase and ATP synthesis from carbamyl phosphate and ADP. The data indicate that Ap5A binds to the enzyme sites that interact with ATP. Of a variety of ATP-utilizing enzymes (kinases, hydrolases, synthetases), only adenylate kinase (Leinhard, G. E., and Secemski, I. I. (1973) J. Biol. Chem. 248, 1121--1123) and carbamyl phosphate synthetase are inhibited by Ap5A. The present findings provide strong evidence that carbamyl phosphate synthetase has two separate binding sites for ATP in which the gamma-phosphate moeities of ATP are bound in close proximity to the bicarbonate binding site of the enzyme.  相似文献   

10.
The cloned carAB operon of Escherichia coli coding for the small and large subunits of carbamyl phosphate synthetase has been used to construct a recombinant plasmid with a 4.16 kilobase ClaI fragment of the car operon that lacks the major promoters, P1 and P2. The plasmid, pHN12, carries a functional carB gene. A mutant E. coli strain lacking both subunits of carbamyl phosphate synthetase when transformed with pHN12 overproduces the large subunit by 200-fold (8-10% of the cellular protein). The elevated levels of the large subunit enable the transformed cells to utilize NH3 but not glutamine as nitrogen donor for carbamyl phosphate synthesis. The large subunit has been purified from the overexpressing strain. The purified native large subunit is capable of synthesizing carbamyl phosphate from ammonia, HCO-3, and ATP. The kinetic properties of the large subunit compared with the holoenzyme indicate that the Michaelis constants of the large subunit for HCO-3 and ATP are modulated by its association with the small glutamine binding subunit.  相似文献   

11.
Molecular cloning of cDNA for rat and human carbamyl phosphate synthetase I   总被引:7,自引:0,他引:7  
Recombinant plasmids with inserts complementary to the mRNA for carbamyl phosphate synthetase I were identified from a rat liver cDNA library by hybrid-selected mRNA translation. Four clones, the largest being 3100 base pairs, were identified for the rat liver enzyme. Using the rat liver cDNA as a probe, two homologous recombinant plasmids of approximately 1200 base pairs in length were isolated from a human liver cDNA library. Northern blot analysis of rat liver mRNA and baboon liver mRNA revealed the presence of a 5000-base mRNA homologous to both rat and human cDNA probes. No homologous mRNA was observed in mRNA from rat heart or rat kidney as is consistent with the known tissue distribution of this enzyme. The induction of carbamyl phosphate synthetase and argininosuccinate synthetase mRNA during the fetal and postnatal development of the rat was studied by dot blot analysis of isolated mRNA. The mRNA for both enzymes appeared between 17 and 19 days of fetal life and reached approximately 40% of adult levels during this period. This initial increase was followed by a rapid decline just prior to birth. The mRNA levels slowly increased during postnatal life, not reaching adult levels until after the 20th day of neonatal life. Using the human cDNA clones, the human carbamyl phosphate synthetase gene was mapped to chromosome 2 utilizing a panel of Chinese hamster X human somatic cell hybrids. Analysis of one hybrid with a human-Chinese hamster translocation provided a provisional assignment to the short arm of chromosome 2.  相似文献   

12.
Carbamyl phosphate synthetase from Escherichia coli has been shown to use only the A isomer of adenosine-5'-[2-thiotriphosphate] in both the ATPase reaction (MgATP HCO3- leads to MgADP + Pi) and the carbamyl phosphate synthesis reaction (2MgATP + HCO3- + L-glutamine leads to 2MgADP + Pi + carbamyl-P + L-glutamate). The B isomer was less than 5% as reactive. In the reverse reaction, only the A isomer of adenosine-5'-[2-thiotriphosphate] is synthesized from adenosine-5'-[2-thiodiphosphate] and carbamyl-P as determined by 31P NMR and a coupled enzymatic assay with Cd2+- hexokinase. It is therefore proposed that carbamyl phosphate synthetase uses the same diastereomer of MgATP at both ATP sites.  相似文献   

13.
Some metabolic pathways are nearly ubiquitous among organisms: the genes encoding the enzymes for such pathways must therefore be ancient and essential. De novo pyrimidine biosynthesis is an example of one such metabolic pathway. In animals a single protein called CAD
  • 1 Abbreviations: CAD, trifunctional protein catalyzing the first three steps of de novo pyrimidine biosynthesis in higher eukaryotes; CPS, carbamyl phosphate synthetase domain; CPSase, carbamyl phosphate synthetase activity; ATC, aspartate transcarbamylase domain; ATCase, aspartate transcarbamylase activity; DHO, dihydroorotase domain; DHOase, dihydroorotase activity; GLN, glutaminase subdomain or subunit of carbamyl phosphate synthetase, GL Nase, glutaminase activity; SYN, synthetase subdomain or subunit of carbamyl phosphate synthetase; SYNase, synthetase activity.
  • carries the first three steps of this pathway. The same three enzymes in prokaryotes are associated with separate proteins. The CAD gene appears to have evolved through a process of gene duplication and DNA rearrangement, leading to an in-frame gene fusion encoding a chimeric protein. A driving force for the creation of eukaryotic genes encoding multienzymatic proteins such as CAD may be the advantage of coordinate expression of enzymes catalyzing steps in a biosynthetic pathway. The analogous structure in bacteria is the operon. Differences in the translational mechanisms of eukaryotes and prokaryotes may have dictated the different strategies used by organisms to evolve coordinately regulated genes.  相似文献   

    14.
    In mammals, a trifunctional protein (ME pyr1-32) synthesizes L-5,6-dihydroorotate in three sequential reactions catalyzed by carbamyl phosphate synthetase (EC 2.7.2.9), aspartate transcarbamylase (EC 2.1.3.2), and dihydroorotase (EC 3.5.2.3). 14C-labeled HCO3- has been used as a precursor for the synthesis of L-5,6-dihydroorotate by purified ME pyr1-3, and when this product is converted enzymatically to orotidine 5'-monophosphate, the concentrations of the two intermediates of ME pyr1-3, carbamyl phosphate, and N-carbamyl-L-aspartate, reach steady state concentrations of approximately 0.20 microM and 7.1 microM, respectively. At pH 7.4 in the presence of 0.1 mM 5-phosphoribosyl 1-pyrophosphate and 10% (v/v) glycerol, pure ME pyr1-3 has a Michaelis constant for HCO3- of 0.61 mM and a maximal specific activity of 329 pmol of L-5,6-dihydroorotate synthesized/min/microgram, equivalent to a turnover number of 65.8 mol min-1 (mol of subunit)-1. Consideration of the Km and Vmax values of aspartate transcarbamylase and dihydroorotase determined under the same conditions as the overall rate of synthesis of L-5,6-dihydroorotate by ME pyr1-3, indicates that the local concentrations of carbamyl phosphate at the active site of aspartate transcarbamylase and of N-carbamyl-L-aspartate at the dihydroorotase site must be 2.2-fold and 3.1-fold higher, respectively, than their average concentrations in the bulk solvent. Similar concentrations are predicted by calculation of steady state concentrations from ratios of the rate constants for the three activities. A high local concentration of N-carbamyl-L-aspartate at the third site is also indicated by a 3.6-fold reduction in the transient time for dihydroorotase activity from that predicted. Competition experiments performed with exogenous carbamyl phosphate and N-carbamyl-L-aspartate indicate only partial channeling of these intermediates. The inhibitory effect of N-phosphonacetyl-L-aspartate (PALA), at concentrations up to at least 2.4 microM, upon the aspartate transcarbamylase activity of ME pyr1-3 can be overcome by accumulated carbamyl phosphate. This mechanism for resistance to PALA could be manifest in cells which lack an effective phosphatase activity to hydrolyze carbamyl phosphate. L-Cysteine, a slow acting but potent inhibitor of dihydroorotase in the absence of substrates (Christopherson, R. I., and Jones, M. E. (1980) J. Biol. Chem. 255, 3358-3370), also inactivates dihydroorotate when ME pyr1-3 is synthesizing L-5,6-dihydroorotate.  相似文献   

    15.
    The specific activities of enzymes catalyzing the ammonium-dependent carbamyl phosphate synthesis (NH3-CPS) and the glutamine-dependent carbamyl phosphate synthesis (GLN-CPS) were increased during germination by approximately 5-and 1.7-fold respectively in the presence of 35 mm urea. The increase of NH3-CPS and GLN-CPS levels occurred immediately after the onset of germination and prior to the appearance of germ tube. Ammonium also stimulated the NH3-CPS activity, but the induction caused by urea was about three times higher than that by ammonium.  相似文献   

    16.
    H S Kim  L Lee  D R Evans 《Biochemistry》1991,30(42):10322-10329
    The ATP analogue 5'-[p-(fluorosulfonyl)benzoyl]adenosine (FSBA) was used to chemically modify the ATP binding sites of the carbamyl phosphate synthetase domain of CAD, the multifunctional protein that catalyzes the first steps in mammalian pyrimidine biosynthesis. Reaction of CAD with FSBA resulted in the inactivation of the ammonia- and glutamine-dependent CPSase activities but had no effect on its glutaminase, aspartate transcarbamylase, or dihydroorotase activities. ATP protected CAD against inactivation by FSBA whereas the presence of the allosteric effectors UTP and PRPP afforded little protection, which suggests that the ATP binding sites were specifically labeled. The inactivation exhibited saturation behavior with respect to FSBA with a K1 of 0.93 mM. Of the two ATP-dependent partial activities of carbamyl phosphate synthetase, bicarbonate-dependent ATPase was inactivated more rapidly than the carbamyl phosphate dependent ATP synthetase, which indicates that these partial reactions occur at distinct ATP binding sites. The stoichiometry of [14C]FSBA labeling showed that only 0.4-0.5 mol of FSBA/mol of protein was required for complete inactivation. Incorporation of radiolabeled FSBA into CAD and subsequent proteolysis, gel electrophoresis, and fluorography demonstrated that only the carbamyl phosphate synthetase domain of CAD is labeled. Amino acid sequencing of the principal peaks resulting from tryptic digests of FSBA-modified CAD located the sites of FSBA modification in regions that exhibit high homology to ATP binding sites of other known proteins. Thus CAD has two ATP binding sites, one in each of the two highly homologous halves of the carbamyl phosphate domain which catalyze distinct ATP-dependent partial reactions in carbamyl phosphate synthesis.  相似文献   

    17.
    The synthetase subunit of Escherichia coli carbamyl phosphate synthetase has two catalytic nucleotide-binding domains, one involved in the activation of HCO3- and the second in phosphorylation of carbamate. Here we show that a Glu841----Lys841 substitution in a putative ATP-binding domain located in the carboxyl half of the synthetase abolishes overall synthesis of carbamyl phosphate with either glutamine or NH3 as the nitrogen source. Measurements of partial activities indicate that while HCO3(-)-dependent ATP hydrolysis at saturating concentrations of substrate proceeds at higher than normal rates, ATP synthesis from ADP and carbamyl phosphate is nearly completely suppressed by the mutation. These results indicate Glu841 to be an essential residue for the phosphorylation of carbamate in the terminal step of the catalytic mechanism. The Lys841 substitution also affects the kinetic properties of the HCO3- activation site. Both kcat and Km for ATP increase 10-fold, while Km for HCO3- is increased 100-fold. Significantly, NH3 decreases rather than stimulates Pi release from ATP in the HCO3(-)-dependent ATPase reaction. The increase in kcat of the HCO3(-)-dependent ATPase reaction, and an impaired ability of the Lys841 enzyme to catalyze the reaction of NH3 with carboxy phosphate, strongly argues for interactions between the two catalytic ATP sites that couple the formation of enzyme-bound carbamate with its phosphorylation.  相似文献   

    18.
    Pyrimidine-repressible carbamyl phosphate synthetase P was synthesized in parallel with aspartate transcarbamylase during growth of Bacillus subtilis on glucose-nutrient broth. Both enzymes were inactivated at the end of exponential growth, but at different rates and by different mechanisms. Unlike the inactivation of aspartate transcarbamylase, the inactivation of carbamyl phosphate synthetase P was not interrupted by deprivation for oxygen or in a tricarboxylic acid cycle mutant. The arginine-repressible isozyme carbamyl phosphate synthetase A was synthesized in parallel with ornithine transcarbamylase during the stationary phase under these growth conditions. Again, both enzymes were subsequently inactivated, but at different rates and by apparently different mechanisms. The inactivation of carbamyl phosphate synthetase A was not affected in a protease-deficient mutatn the inactivation of ornithine transcarbamylase was greatly slowed.  相似文献   

    19.
    Patil SS  Tam LQ 《Plant physiology》1972,49(5):803-807
    The specificity of the Pseudomonas phaseolicola toxin for enzyme inhibition and its relationship to toxin-induced chlorosis in bean leaves (Phaseolus vulgaris L.) was examined. The toxin showed no significant inhibitory activity against glutamine synthetase, glutamine transferase, carbamyl phosphate synthetase, aspartate carbamoyltransferase, or arginase at concentrations 100-fold higher than that needed to inhibit ornithine carbamoyltransferase by 50%.  相似文献   

    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号