首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The visual cortex in primates is parcellated into cytoarchitectonically, physiologically, and connectionally distinct areas: the striate cortex (V1) and the extrastriate cortex, consisting of V2 and numerous higher association areas [1]. The innervation of distinct visual cortical areas by the thalamus is especially segregated in primates, such that the lateral geniculate (LG) nucleus specifically innervates striate cortex, whereas pulvinar projections are confined to extrastriate cortex [2--8]. The molecular bases for the parcellation of the visual cortex and thalamus, as well as the establishment of reciprocal connections between distinct compartments within these two structures, are largely unknown. Here, we show that prospective visual cortical areas and corresponding thalamic nuclei in the embryonic rhesus monkey (Macaca mulatta) can be defined by combinatorial expression of genes encoding Eph receptor tyrosine kinases and their ligands, the ephrins, prior to obvious cytoarchitectonic differentiation within the cortical plate and before the establishment of reciprocal connections between the cortical plate and thalamus. These results indicate that molecular patterns of presumptive visual compartments in both the cortex and thalamus can form independently of one another and suggest a role for EphA family members in both compartment formation and axon guidance within the visual thalamocortical system.  相似文献   

2.
The distribution of the evoked cortical potentials recorded during stereotactic pulvinectomy is analyzed. The evoked cortical potential shows maximal amplitude in the precentral area, with decreasing amplitude in the parietal and anterior temporal area, and minimal amplitude in the occipital area. The pulvinar has been histologically considered to have dense connections with the parietal lobe and no connection with the frontal lobe. However, our results suggest that the pulvinar has a dense functional connection with the frontal cortex, through which the pulvinar plays a role in motor function.  相似文献   

3.
Visual field maps in human cortex   总被引:7,自引:0,他引:7  
Wandell BA  Dumoulin SO  Brewer AA 《Neuron》2007,56(2):366-383
Much of the visual cortex is organized into visual field maps: nearby neurons have receptive fields at nearby locations in the image. Mammalian species generally have multiple visual field maps with each species having similar, but not identical, maps. The introduction of functional magnetic resonance imaging made it possible to identify visual field maps in human cortex, including several near (1) medial occipital (V1,V2,V3), (2) lateral occipital (LO-1,LO-2, hMT+), (3) ventral occipital (hV4, VO-1, VO-2), (4) dorsal occipital (V3A, V3B), and (5) posterior parietal cortex (IPS-0 to IPS-4). Evidence is accumulating for additional maps, including some in the frontal lobe. Cortical maps are arranged into clusters in which several maps have parallel eccentricity representations, while the angular representations within a cluster alternate in visual field sign. Visual field maps have been linked to functional and perceptual properties of the visual system at various spatial scales, ranging from the level of individual maps to map clusters to dorsal-ventral streams. We survey recent measurements of human visual field maps, describe hypotheses about the function and relationships between maps, and consider methods to improve map measurements and characterize the response properties of neurons comprising these maps.  相似文献   

4.
The visual topography within striate and lateral extrastriate visual cortices was studied in adult hamsters. The cortical areas 17 and 18a in the left hemisphere were electrophysiologically mapped upon stimulation of the right eye, correlating receptive field positions in the visual field with cortical recording sites. Reference lesions were placed at selected cortical sites. Like in rats and other mammals, the lateral extrastriate cortex contained multiple representations of the visual field. Rostral area 18a contained the rostrolateral maps, with medial and lateral divisions. More caudally and sharing a common border with V1, maps in lateromedial, posterolateral and posterior areas were found. More laterally and forming a "third tier" of visual maps, anterolateral, laterolateral-anterior, laterolateral and laterolateral-posterior areas were found. There was also an indication of a possible pararhinal map. The plan so defined is virtually identical to that of rats. The results may be useful to understand a basic mammalian plan in the organization of the visual cortex.  相似文献   

5.
Looking at ambiguous figures results in rivalry with spontaneous alternation between two percepts. Using event-related functional magnetic resonance imaging, we localized transient human brain activity changes during perceptual reversals. Activation occurred in ventral occipital and intraparietal higher-order visual areas, deactivation in primary visual cortex and the pulvinar. Thus, without any physical stimulus changes, salient perceptual flips briefly engage widely separated specialized cortical areas, but are also associated with intermittent activity breakdown in structures putatively maintaining perceptual stability. Together, the dynamics of integrative perceptual experience are reflected in rapid spatially differentiated activity modulation within a cooperative set of neural structures.  相似文献   

6.
Cross-correlation analysis of the EEG between the lateral pulvinar and various cortical regions was made after EEG was recorded during stereotactic pulvinectomy. Cross-correlation analysis of the alpha-waves between the lateral pulvinar and the scalp EEG showed that the lateral pulvinar has the highest degree of functional connection with the pre-central area, diminishing in degree with the parietal and frontal areas, and has poor functional connections with the occipital area. From these results, it might be concluded that the lateral pulvinar may be related to motor function by functional connections with the pre-central area rather than the parietal area.  相似文献   

7.
A hypothetical mechanism of the basal ganglia involvement in visual hallucinations is proposed. According to this mechanism, hallucination is the result of modulation of the efficacy of corticostriatal synaptic inputs and changes in spiny cell activity due to the rise of striatal dopamine concentration (or due to other reasons). These changes cause an inhibition of neurons in the substantia nigra pars reticulata and subsequent disinhibition of neurons in the superior colliculus and pedunculopontine nucleus (including its cholinergic cells). In the absence of afferentation from the retina this disinhibition leads to activation of neurons in the lateral geniculate nucleus, pulvinar and other thalamic nuclei projecting to the primary and highest visual cortical areas, prefrontal cortex, and also back to the striatum. Hallucinations as conscious visual patterns are the result of selection of signals circulating in several interconnected loops each of which includes one of above mentioned neocortical areas, one of thalamic nuclei, limbic and one of visual areas of the basal ganglia, superior colliculus and/or pedunculopontine nucleus. According to our model, cannabinoids, opioids and ketamine may lead to hallucinations due to their promotional role in the LTD of cortical inputs to GABAergic spiny cells of striatal striosomes projecting to dopaminergic neurons, disinhibition of the lasts, and increase in striatal dopamine concentration.  相似文献   

8.
MC Schmid  W Singer  P Fries 《Neuron》2012,75(4):551-552
Higher-order thalamic nuclei, like the pulvinar, have extensive connections with cortex, suggesting a role in?the coordination of cortical communication. A recent study in Science by Saalmann et?al. (2012) implicates the pulvinar in promoting cortical alpha-band synchronization that subserves communication of attended information.  相似文献   

9.
Many of the ascending pathways to the thalamus have branches involved in movement control. In addition, the recently defined, rich innervation of 'higher' thalamic nuclei (such as the pulvinar) from pyramidal cells in layer five of the neocortex also comes from branches of long descending axons that supply motor structures. For many higher thalamic nuclei the clue to understanding the messages that are relayed to the cortex will depend on knowing the nature of these layer five motor outputs and on defining how messages from groups of functionally distinct output types are combined as inputs to higher cortical areas. Current evidence indicates that many and possibly all thalamic relays to the neocortex are about instructions that cortical and subcortical neurons are contributing to movement control. The perceptual functions of the cortex can thus be seen to represent abstractions from ongoing motor instructions.  相似文献   

10.
Projections from thalamic neurons to the visual (area 17) and parietal association cortex (area 7) were investigated in cats by means of retrograde axonal transport of fluorescent dyes. Pulvinar neurons may be divided into three groups on the basis of their connections with these areas: those projecting to area 7 (the largest (the largest group of cells), those projecting to area 17 (the smaller group), and others sending out axons to two cortical areas at the same time (a few isolated units). The two first groups only were found in the posterolateral thalamus. Divergence between axonal collaterals of pulvinar neurons may be responsible for parallel routes of information transmission to the visual and association cortex.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 4, pp. 513–520, July–August, 1990.  相似文献   

11.
The establishment of connectivity between specific thalamic nuclei and cortical areas involves a dynamic interplay between the guidance of thalamocortical axons and the elaboration of cortical areas in response to appropriate innervation. We show here that Sema6A mutants provide a unique model to test current ideas on the interactions between subcortical and cortical guidance mechanisms and cortical regionalization. In these mutants, axons from the dorsal lateral geniculate nucleus (dLGN) are misrouted in the ventral telencephalon. This leads to invasion of presumptive visual cortex by somatosensory thalamic axons at embryonic stages. Remarkably, the misrouted dLGN axons are able to find their way to the visual cortex via alternate routes at postnatal stages and reestablish a normal pattern of thalamocortical connectivity. These findings emphasize the importance and specificity of cortical cues in establishing thalamocortical connectivity and the spectacular capacity of the early postnatal cortex for remapping initial sensory representations.  相似文献   

12.
Functional magnetic resonance imaging (fMRI) can provide maps of brain activation with millimeter spatial resolution but is limited in its temporal resolution to the order of seconds. Here, we describe a technique that combines structural and functional MRI with magnetoencephalography (MEG) to obtain spatiotemporal maps of human brain activity with millisecond temporal resolution. This new technique was used to obtain dynamic statistical parametric maps of cortical activity during semantic processing of visually presented words. An initial wave of activity was found to spread rapidly from occipital visual cortex to temporal, parietal, and frontal areas within 185 ms, with a high degree of temporal overlap between different areas. Repetition effects were observed in many of the same areas following this initial wave of activation, providing evidence for the involvement of feedback mechanisms in repetition priming.  相似文献   

13.
A study was carried out on 8 adult cats of functional role of the frontal, parietal and occipital parts of the neocortex, and also of the dorsal hippocampus, mediodorsal thalamic nucleus and caudate nucleus head, in realization of a delayed spatial choice (DSCh) before and after compensatory reorganizations of the brain activity caused by multiple electrical stimulation of the frontal part of the cerebral cortex. Compensatory reorganization led to a change of functional significance of these structures. While before this change the frontal cortex, hippocampus and mediodorsal thalamic nucleus were critically necessary brain areas for the realization of the DSCh, after it parietal and occipital cortical areas acquired such significance. The obtained data are discussed proceeding from the principle of the integrity in the brain activity.  相似文献   

14.
The retinotopic mapping of the visual field to the surface of the striate cortex is characterized as a longarithmic conformal mapping. This summarizes in a concise way the observed curve of cortical magnification, the linear scaling of receptive field size with eccentricity, and the mapping of global visual field landmarks. It is shown that if this global structure is reiterated at the local level, then the sequence regularity of the simple cells of area 17 may be accounted for as well. Recently published data on the secondary visual area, the medial visual area, and the inferior pulvinar of the owl monkey suggests that same global logarithmic structure holds for these areas as well. The available data on the structure of the somatotopic mapping (areaS-1) supports a similar analysis. The possible relevance of the analytical form of the cortical receptotopic maps to perception is examined and a brief discussion of the developmental implications of these findings is presented.This work was supported by Grant No. 1 F32MH05367-01 from the USPHS, ADAMHA  相似文献   

15.
Astrocytes are a multifunctional cell type in the nervous system that can influence neurons and synapses in numerous ways. Astrocytes have been suggested to play important roles in synapse formation during development, as well as in multiple forms of synaptic plasticity in the developing and adult brain. Astrocytes respond to nearby neural activity with elevations in cytosolic calcium concentration, and in sensory cortex these calcium responses have been shown to be topographically aligned to neuronal sensory maps. Here, we review recent evidence for astrocyte interactions with neural circuits, with particular emphasis on how these interactions may shape the development, arrangement and plasticity of cortical sensory maps.  相似文献   

16.
The visual cortex is organized into retinotopic maps that preserve an orderly representation of the visual world, achieved by topographically precise inputs from the lateral geniculate nucleus. We show here that geniculocortical mapping is imprecise when the waves of spontaneous activity in the retina during the first postnatal week are disrupted genetically. This anatomical mapping defect is present by postnatal day 8 and has functional consequences, as revealed by optical imaging and microelectrode recording in adults. Pharmacological disruption of these retinal waves during the first week phenocopies the mapping defect, confirming both the site and the timing of the disruption in neural activity responsible for the defect. Analysis shows that the geniculocortical miswiring is not a trivial or necessary consequence of the retinogeniculate defect. Our findings demonstrate that disrupting early spontaneous activity in the eye alters thalamic connections to the cortex.  相似文献   

17.
The role of the thalamus in the flow of information to the cortex   总被引:22,自引:0,他引:22  
The lateral geniculate nucleus is the best understood thalamic relay and serves as a model for all thalamic relays. Only 5-10% of the input to geniculate relay cells derives from the retina, which is the driving input. The rest is modulatory and derives from local inhibitory inputs, descending inputs from layer 6 of the visual cortex, and ascending inputs from the brainstem. These modulatory inputs control many features of retinogeniculate transmission. One such feature is the response mode, burst or tonic, of relay cells, which relates to the attentional demands at the moment. This response mode depends on membrane potential, which is controlled effectively by the modulator inputs. The lateral geniculate nucleus is a first-order relay, because it relays subcortical (i.e. retinal) information to the cortex for the first time. By contrast, the other main thalamic relay of visual information, the pulvinar region, is largely a higher-order relay, since much of it relays information from layer 5 of one cortical area to another. All thalamic relays receive a layer-6 modulatory input from cortex, but higher-order relays in addition receive a layer-5 driver input. Corticocortical processing may involve these corticothalamocortical 're-entry' routes to a far greater extent than previously appreciated. If so, the thalamus sits at an indispensable position for the modulation of messages involved in corticocortical processing.  相似文献   

18.
In a wide range of studies, the emergence of orientation selectivity in primary visual cortex has been attributed to a complex interaction between feed-forward thalamic input and inhibitory mechanisms at the level of cortex. Although it is well known that layer 4 cortical neurons are highly sensitive to the timing of thalamic inputs, the role of the stimulus-driven timing of thalamic inputs in cortical orientation selectivity is not well understood. Here we show that the synchronization of thalamic firing contributes directly to the orientation tuned responses of primary visual cortex in a way that optimizes the stimulus information per cortical spike. From the recorded responses of geniculate X-cells in the anesthetized cat, we synthesized thalamic sub-populations that would likely serve as the synaptic input to a common layer 4 cortical neuron based on anatomical constraints. We used this synchronized input as the driving input to an integrate-and-fire model of cortical responses and demonstrated that the tuning properties match closely to those measured in primary visual cortex. By modulating the overall level of synchronization at the preferred orientation, we show that efficiency of information transmission in the cortex is maximized for levels of synchronization which match those reported in thalamic recordings in response to naturalistic stimuli, a property which is relatively invariant to the orientation tuning width. These findings indicate evidence for a more prominent role of the feed-forward thalamic input in cortical feature selectivity based on thalamic synchronization.  相似文献   

19.
The study of blind individuals provides insight into the brain re-organization and behavioral compensations that occur following sensory deprivation. While behavioral studies have yielded conflicting results in terms of performance levels within the remaining senses, deafferentation of visual cortical areas through peripheral blindness results in clear neuroplastic changes. Most striking is the activation of occipital cortex in response to auditory and tactile stimulation. Indeed, parts of the "unimodal" visual cortex are recruited by other sensory modalities to process sensory information in a functionally relevant manner. In addition, a larger area of the sensorimotor cortex is devoted to the representation of the reading finger in blind Braille readers. The "visual" function of the deafferented occipital cortex is also altered, where transcranial magnetic stimulation-induced phosphenes can be elicited in only 20% of blind subjects. The neural mechanisms underlying these changes remain elusive but recent data showing rapid cross-modal plasticity in blindfolded, sighted subjects argue against the establishment of new connections to explain cross-modal interactions in the blind. Rather, latent pathways that participate in multisensory percepts in sighted subjects might be unmasked and may be potentiated in the event of complete loss of visual input. These issues have important implications for the development of visual prosthesis aimed at restoring some degree of vision in the blind.  相似文献   

20.
Grove EA 《Neuron》2005,48(4):522-524
Normal brain function requires the development of precise connections between thalamus and cerebral cortex. In this issue of Neuron, Cang et al. and Tori and Levitt argue that EphA/ephrin-A signaling in the target tissue guides sensory thalamic axons to the correct cortical area, and sensory cortical axons to precise thalamic targets. Although EphA/ephrin-A signaling organizes sensory maps within areas, and thalamocortical axons in the internal capsule, both papers argue that each developmental event is dissociable from the others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号