首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in host diversity and community structure have been linked to disease, but the mechanisms underlying such relationships and their applicability to non-vector-borne disease systems remain conjectural. Here we experimentally investigated how changes in host community structure affected the transmission and pathology of the multi-host parasite Ribeiroia ondatrae, which is a widespread cause of amphibian limb deformities. We exposed larval amphibians to parasites in monospecific or heterospecific communities, and varied host number to differentiate between density- and diversity-mediated effects on transmission. In monospecific communities, exposure to Ribeiroia significantly increased mortality (15%), malformations (40%) and time-to-metamorphosis in toads. However, the presence of tree frogs significantly reduced infection in toads, leading to fewer malformations and higher survival than observed in monospecific communities, providing evidence of parasite-mediated facilitation. Our results suggest that interspecific variation in parasite resistance can inhibit parasite transmission in multi-species communities, reducing infection and pathology in sensitive hosts.  相似文献   

2.
Antimicrobial peptides (AMPs) contribute to the immune defenses of many vertebrates, including amphibians. As larvae, amphibians are often exposed to the infectious stages of trematode parasites, many of which must penetrate the host’s skin, potentially interacting with host AMPs. We tested the effects of the natural AMPs repertoires on both the survival of trematode infectious stages as well as their ability to infect larval amphibians. All five trematode species exhibited decreased survival of cercariae in response to higher concentrations of adult bullfrog AMPs, but no effect when exposed to AMPs from larval bullfrogs. Similarly, the use of norepinephrine to remove AMPs from larval bullfrogs, Pacific chorus frogs, and gray treefrogs had only weak (gray treefrogs) or non-significant (other tested species) effects on infection success by Ribeiroia ondatrae. We nonetheless observed strong differences in parasite infection as a function of both host stage (first- versus second-year bullfrogs) and host species (Pacific chorus frogs versus gray treefrogs) that were apparently unrelated to AMPs. Taken together, our results suggest that AMPs do not play a significant role in defending larval amphibians against trematode cercariae, but that they could be one mechanism helping to prevent infection of post-metamorphic amphibians, particularly for highly aquatic species.  相似文献   

3.
Increased reporting of amphibian malformations in North America has been noted with concern in light of reports that amphibian numbers and species are declining worldwide. Ribeiroia ondatrae has been shown to cause a variety of types of malformations in amphibians. However, little is known about the prevalence of R. ondatrae in North America. To aid in conducting field studies of Ribeiroia spp., we have developed a polymerase chain reaction (PCR)-based diagnostic. Herein, we describe the development of an accurate, rapid, simple, and cost-effective diagnostic for detection of Ribeiroia spp. infection in snails (Planorbella trivolvis). Candidate oligonucleotide primers for PCR were designed via DNA sequence analyses of multiple ribosomal internal transcribed spacer-2 regions from Ribeiroia spp. and Echinostoma spp. Comparison of consensus sequences determined from both genera identified areas of sequence potentially unique to Ribeiroia spp. The PCR reliably produced a diagnostic 290-base pair (bp) product in the presence of a wide concentration range of snail or frog DNA. Sensitivity was examined with DNA extracted from single R. ondatrae cercaria. The single-tube PCR could routinely detect less than 1 cercariae equivalent, because DNA isolated from a single cercaria could be diluted at least 1:50 and still yield a positive result via gel electrophoresis. An even more sensitive nested PCR also was developed that routinely detected 100 fg of the 290-bp fragment. The assay did not detect furcocercous cercariae of certain Schistosomatidae, Echinostoma sp., or Sphaeridiotrema globulus nor adults of Clinostomum sp. or Cyathocotyle bushiensis. Field testing of 137 P. trivolvis identified 3 positives with no overt environmental cross-reactivity, and results concurred with microscopic examinations in all cases.  相似文献   

4.
Widespread observations of malformed amphibians across North America have generated both concern and controversy. Debates over the causes of such malformations—which can affect >50% of animals in a population—have continued, likely due to involvement of multiple causal factors. Here, we used a 13‐year dataset encompassing 53,880 frogs and toads from 422 wetlands and 42 states in the conterminous USA to test hypotheses relating abnormalities and four categories of potential drivers: (i) chemical contaminants, (ii) land use practices, (iii) parasite infection, and (iv) targeted interactions between parasites and pesticides. Using a hierarchically nested, competing‐model approach, we further examined how these associations varied spatially among geographic regions. Although malformations were rare overall (average = 1.6%), we identified 96 hotspot sites with 5%–25% abnormal individuals. Using the full dataset of 934 collections (without data on parasite infection), malformation frequency was best predicted by the presence of oil and gas wells within the watershed. Among collections also examined for parasite infection (n = 154), average parasite load and its interaction with pesticide application positively predicted malformations: wetlands with a greater abundance of the trematode Ribeiroia ondatrae were more likely to have malformed amphibians, but these effects were strongest when pesticide application was also high, consistent with prior experimental research. Importantly, however, the influence of these factors also varied regionally, helping explain divergent results from previous studies at local scales; parasite infection was more influential in the West and Northeast, whereas pesticide application and oil/gas wells correlated with abnormalities in the Northeast, Southeast, and western regions of the USA. These results, based on the largest systematic sampling of amphibian malformations, suggest that increased observations of abnormal amphibians are associated with both parasite infection and chemical contaminants, but that their relative importance and interaction strength varied with the spatial extent of the analysis.  相似文献   

5.
Ongoing debate over the relationship between biodiversity and disease risk underscores the need to develop a more mechanistic understanding of how changes in host community composition influence parasite transmission, particularly in complex communities with multiple hosts. A key challenge involves determining how motile parasites select among potential hosts and the degree to which this process shifts with community composition. Focusing on interactions between larval amphibians and the pathogenic trematode Ribeiroia ondatrae, we designed a novel, large-volume set of choice chambers to assess how the selectivity of free-swimming infectious parasites varied among five host species and in response to changes in assemblage composition (four different permutations). In a second set of trials, cercariae were allowed to contact and infect hosts, allowing comparison of host-parasite encounter rates (parasite choice) with infection outcomes (successful infections). Cercariae exhibited consistent preferences for specific host species that were independent of the community context; large-bodied amphibians, such as larval bullfrogs (Rana catesbeiana), exhibited the highest level of parasite attraction. However, because host attractiveness was decoupled from susceptibility to infection, assemblage composition sharply affected both per-host infection as well as total infection (summed among co-occurring hosts). Species such as the non-native R. catesbeiana functioned as epidemiological ‘sinks’ or dilution hosts, attracting a disproportionate fraction of parasites relative to the number that established successfully, whereas Taricha granulosa and especially Pseudacris regilla supported comparatively more metacercariae relative to cercariae selection. These findings provide a framework for integrating information on parasite preference in combination with more traditional factors such as host competence and density to forecast how changes within complex communities will affect parasite transmission.  相似文献   

6.
Emerging diseases are an ever‐growing affliction of both humans and wildlife. By exploring recent increases in amphibian malformations (e.g. extra or missing limbs), we illustrate the importance of food web theory and community ecology for understanding and controlling emerging infections. Evidence points to a native parasite, Ribeiroia ondatrae, as the primary culprit of these malformations, but reasons for the increase have remained conjectural. We suggest that the increase is a consequence of complex changes to aquatic food webs resulting from anthropogenic disturbance. Our results implicate cultural eutrophication as a driver of elevated parasitic infection: (1) eutrophication causes a predator‐mediated shift in snail species composition toward Planorbella spp., (2) Planorbella are the exclusive first intermediate hosts of R. ondatrae and (3) Ribeiroia infection is a strong predictor of amphibian malformation levels. Our study illustrates how the effects of anthropogenic disturbance on epidemic disease can be mediated through direct and indirect changes in food web structure.  相似文献   

7.
Experimental infections provide an important foundation for understanding host responses to parasites. While infections with Ribeiroia ondatrae cause mortality and malformations in a wide range of amphibian second intermediate host species, little is known about how the parasite affects its snail first intermediate hosts or even what species can support infection. In this study, we experimentally exposed Helisoma trivolvis, a commonly reported host of R. ondatrae, and Biomphalaria glabrata, a confamilial snail known to host Ribeiroia marini, to increasing concentrations of embryonated eggs of R. ondatrae obtained from surrogate definitive hosts. Over the course of 8 wk, we examined the effect of parasite exposure on infection status, time-to-cercariae release, host size, and mortality of both snail species. Helisoma trivolvis was a highly competent host for R. ondatrae infection, with over 93% infection in all exposed snails, regardless of egg exposure level. However, no infections were detected among exposed B. glabrata, despite previous accounts of this snail hosting a congener parasite. Among exposed H. trivolvis, high parasite exposure reduced growth, decreased time-to-cercariae release, and caused marginally significant increases in mortality. Interestingly, while B. glabrata snails did not become infected with R. ondatrae, individuals exposed to 650 R. ondatrae eggs grew less rapidly than unexposed snails, suggesting a sub-lethal energetic cost associated with parasite exposure. Our results highlight the importance of using experimental infections to understand the effects of parasite exposure on host- and non-host species, each of which can be affected by exposure.  相似文献   

8.
Environmental change and habitat fragmentation will affect population densities for many species. For those species that have locally adapted to persist in changed or stressful habitats, it is uncertain how density dependence will affect adaptive responses. Anurans (frogs and toads) are typically freshwater organisms, but some coastal populations of green treefrogs (Hyla cinerea) have adapted to brackish, coastal wetlands. Tadpoles from coastal populations metamorphose sooner and demonstrate faster growth rates than inland populations when reared solitarily. Although saltwater exposure has adaptively reduced the duration of the larval period for coastal populations, increases in densities during larval development typically increase time to metamorphosis and reduce rates of growth and survival. We test how combined stressors of density and salinity affect larval development between salt‐adapted (“coastal”) and nonsalt‐adapted (“inland”) populations by measuring various developmental and metamorphic phenotypes. We found that increased tadpole density strongly affected coastal and inland tadpole populations similarly. In high‐density treatments, both coastal and inland populations had reduced growth rates, greater exponential decay of growth, a smaller size at metamorphosis, took longer to reach metamorphosis, and had lower survivorship at metamorphosis. Salinity only exaggerated the effects of density on the time to reach metamorphosis and exponential decay of growth. Location of origin affected length at metamorphosis, with coastal tadpoles metamorphosing slightly longer than inland tadpoles across densities and salinities. These findings confirm that density has a strong and central influence on larval development even across divergent populations and habitat types and may mitigate the expression (and therefore detection) of locally adapted phenotypes.  相似文献   

9.
One-hundred twelve amphibians, including 51 blue-spotted salamanders, Ambystoma laterale, 30 eastern American toads, Bufo americanus americanus, and 31 northern leopard frogs, Rana pipiens, were collected during April-October 1996 from Waukesha County, Wisconsin and examined for helminth parasites. The helminth compound community of this amphibian assemblage consisted of at least 10 species: 9 in American toads, 8 in leopard frogs, and 3 in blue-spotted salamanders. American toads shared 7 species with leopard frogs, and 2 species occurred in all 3 host species. Although there was a high degree of helminth species overlap among these sympatric amphibians, statistically significant differences were found among host species and percent of indirect or direct-life cycle parasites of amphibian species individual component communities (chi2 = 1,015, P < 0.001). American toads had a higher relative abundance of nematodes, 59%, than larval cestodes, 31%, and larval and adult trematodes, 10%, whereas leopard frogs had a higher relative abundance of larval cestodes, 71.3%, and larval and adult trematodes, 25.3%, than nematodes 3.4%. This is related to ecological differences in habitat and dietary preferences between these 2 anuran species. Helminth communities of blue-spotted salamanders were depauperate and were dominated by larval trematodes, 94%, and few nematodes, 6%. Low helminth species richness in this host species is related to this salamander's relatively small host body size, smaller gape size, lower vagility, and more fossorial habitat preference than the other 2 anuran species. Adult leopard frogs and toads had significantly higher mean helminth species richness than metamorphs, but there was no significant difference in mean helminth species richness among adult and metamorph blue-spotted salamanders. Considering adult helminths, the low species richness and low vagility of caudatans as compared with anurans suggest that local factors may be more important in structuring caudatan helminth communities of salamanders than of anuran hosts. Helminth species infecting salamanders may be more clumped in their geographic distribution as compared with anurans, and the role of other hosts and their parasites at the compound community level may be important in structuring helminth communities of salamanders.  相似文献   

10.
Climate change may shift the timing and consequences of interspecific interactions, including those important to disease spread. Because hosts and pathogens may respond differentially to climate shifts, however, predicting the net effects on disease patterns remains challenging. Here, we used field data to guide a series of laboratory experiments that systematically evaluated the effects of temperature on the full infection process, including survival, penetration, establishment, persistence, and virulence of a highly pathogenic trematode (Ribeiroia ondatrae), and the development and survival of its amphibian host. Our results revealed nonlinearities in pathology as a function of temperature, which likely resulted from changes in both host and parasite processes. Both hosts and parasites responded strongly to temperature; hosts accelerated development while parasites showed enhanced host penetration but reduced establishment (encystment) and survival outside the host. While there were no differences in host survival among treatments, we observed a mid‐temperature peak in parasite‐induced deformities (63% at 20 °C), with the lowest frequency of deformities (12%) occurring at the highest temperature (26 °C). This nonlinear effect could result from temperature‐driven changes in parasite burden owing to shifts in host penetration and/or clearance, reductions in host vulnerability owing to faster development, or both. Furthermore, despite strong temperature‐driven changes in parasite penetration, survival, and establishment, the opposing nature of these effects lead to no difference in tadpole parasite burdens shortly after infection. These findings suggest that temperature‐driven changes to the disease process may not be easily observable from comparison of parasite burdens alone, but multi‐tiered experiments quantifying the responses of hosts, parasites and their interactions can enhance our ability to predict temperature‐driven changes to disease risk. Climate‐driven changes to disease patterns will therefore depend on underlying shifts in host and parasite development rates and the timing of their interactions.  相似文献   

11.
Malformations and increased mortality due to infection by the digenetic trematode, Riberioa ondatrae have been reported for many species of amphibians. Severe malformations have also been reported in the Common Hourglass Tree Frog, Polypedates cruciger induced by pleurolophocercous cercariae in Sri Lanka in addition to the changes in the behaviour, development and survival of the host. We exposed pre-limb bud stage tadpoles (Gosner stages 25–26) of the Asian Common Toad, Duttaphrynus melanostictus to the same pleurolophocercous type cercariae under laboratory conditions. Molecular and morphological identification showed that these cercariae belonged Acanthostomum burminis infecting freshwater snakes as definitive hosts. These cercariae induced malformations (27.8%) and reduced survival to metamorphosis (53.8%). The magnitude of the effects increased with the dose of cercariae. Types of malformations were mainly axial, such as scoliosis and kyphosis. Severe limb malformations such as extra or missing limbs as reported for amphibians exposed to R. ondatrae were not observed in the D. melanostictus. Same authors reported a higher percentage of malformations previously when P. cruciger was exposed to the cercariae A. burminis compared to D. melanostictus. However, tadpoles of D. melanostictus, which are smaller compared to those of P. cruciger, experienced higher mortality than P. cruciger tadpoles. Trematode induced malformations and mortality in amphibians are highly variable and depend on multiple factors such as host species differences such as resistance to infection and tolerance, life-history characteristics such as size at metamorphosis and length of the metamorphosis period, and other factors such as size of the amphibian at the time of trematode exposure.  相似文献   

12.
Despite the ubiquity of bilateral symmetry among animals, a long‐standing mystery centers on why parasites that infect paired organs often do so non‐randomly. Examples from diverse host and parasite taxa continue to accumulate, yet little is known about their causes or implications for host–parasite fitness. We combined field surveys, experimental infections, and parasite choice assays to evaluate both competing explanations for – and consequences of – asymmetric infections of amphibian kidneys by echinostome trematodes, which are widespread and potentially pathogenic infections of larval amphibians. Samples from 6001 hosts representing 26 species indicated that echinostome infections exhibit a consistent, right‐kidney bias, with ? 62% of parasites in the right kidney. This pattern could not be explained by variation in kidney size or total infection. Experimental infections of three anuran species reproduced this pattern, with 64% of infections in the right kidney, and indicated it was not the result of differential host or parasite mortality. Based on sequential infection experiments and parasite choice assays, we further showed that earlier infections did not affect the distribution of subsequently colonizing parasites and that echinostome cercariae followed host‐derived cues rather than exhibiting congenital ‘sidedness’. We advance the hypothesis that variation in the position of the right kidney along the anterior–posterior axis controls cue strength in the right nephric duct and thus determines parasite encystment. Correspondingly, anatomical measurements from a subset of larval amphibian hosts revealed that the relative position of the right kidney explained 83% of the variation in infection bias, with no additional contributions associated with kidney volume or host size. We also show that the degree of right‐kidney bias associated positively with host growth in experiments. Morphological asymmetries could therefore function as a unique form of tolerance to mitigate the consequences of infection, despite the oft‐cited costs of asymmetry for mate selection and enemy vulnerability.  相似文献   

13.
1. Anthropogenic effects have propelled us into what many have described as the sixth mass extinction, and amphibians are among the most affected groups. The causes of global amphibian population declines and extinctions are varied, complex and context‐dependent and may involve multiple stressors. However, experimental studies examining multiple factors contributing to amphibian population declines are rare. 2. Using outdoor mesocosms containing zooplankton, phytoplankton, periphyton and tadpoles, we conducted a 2 × 2 × 3 factorial experiment that examined the separate and combined effects of an insecticide and the fungal pathogen Batrachochytrium dendrobatidis (Bd) on three different assemblages of larval pacific treefrogs (Pseudacris regilla) and Cascades frogs (Rana cascadae). 3. Larval amphibian growth and development were affected by carbaryl and the amphibian assemblage treatment, but only minimally by Bd. Carbaryl delayed metamorphosis in both amphibian species and increased the growth rate of P. regilla. Carbaryl also reduced cladoceran abundance, which, in turn, had positive effects on phytoplankton abundance but no effect on periphyton biomass. Substituting 20 intraspecific competitors with 20 interspecific competitors decreased the larval period but not the growth rate of P. regilla. In contrast, substituting 20 intraspecific competitors with 20 interspecific competitors had no effect on R. cascadae. Results of real‐time quantitative polymerase chain reaction (qPCR) analysis confirmed infection of Bd‐exposed animals, but exposure to Bd had no effects on either species in univariate analyses, although it had significant or nearly significant effects in several multivariate analyses. In short, we found no interactive effects among the treatments on amphibian growth and development. 4. We encourage future research on the interactive effects of pesticides and pathogens on amphibian communities.  相似文献   

14.
Species of Ribeiroia (Trematoda: Psilostomidae) are known to cause severe limb malformations and elevated mortality in amphibians. However, little is known regarding the number of species in this genus or its relation to other taxa. Species of Ribeiroia have historically been differentiated by slight differences among their larval stages. To better understand the systematics and biogeography of this genus and their potential relevance to the distribution of malformed amphibians, specimens identified as Ribeiroia were collected across much of the known range, including samples from 5 states in the United States (8 sites) and 2 islands in the Caribbean (Puerto Rico and Guadeloupe). A cercaria from East Africa identified as Cercaria lileta (Fain, 1953), with attributes suggestive of Ribeiroia (possibly R. congolensis), was also examined. The intertranscribed spacer region 2 (ITS-2) of the ribosomal gene complex was sequenced and found to consist of 429 nucleotides (nt) for R. ondatrae (United States) and 427 nt for R. marini (Caribbean), with only 6 base differences noted between the 2 species. The ITS-2 region of C. lileta (429 nt) aligned closely with those of the 2 other Ribeiroia species in a phylogenetic analysis that included related trematode genera. This evidence suggests that a third Ribeiroia species exists in tropical Africa. Variation in ITS-2 within R. ondatrae was nonexistent among the 8 populations from North America. Our study further suggests that Ribeiroia spp. originally parasitized Biomphalaria sp., and that a host switch to a closely related snail, Helisoma sp., may have occurred in the lineage represented by R. ondatrae. However, relationships within the Echinostomatidae are not understood well enough to make any robust conclusions at this time.  相似文献   

15.
Hormonal control of post-embryonic morphogenesis is well established, but it is not clear how differences in developmental endocrinology between species may underlie animal diversity. We studied this issue by comparing metamorphic thyroid hormone (TH) physiology and gonad development across spadefoot toad species divergent in metamorphic rate. Tissue TH content, in vitro tail tip sensitivity to TH, and rates of TH-induced tail tip shrinkage correlated with species differences in larval period duration. Gonad differentiation occurred before metamorphosis in species with long larval periods and after metamorphosis in the species with short larval periods. These differences in TH physiology and gonad development, informed by phylogeny and ecology of spadefoot metamorphosis, provide evidence that selection for the short larval periods in spadefoot toads acted via TH physiology and led to dramatic heterochronic shifts in metamorphic climax relative to gonad development.  相似文献   

16.
Ribeiroia ondatrae cercariae are consumed by aquatic invertebrate predators   总被引:1,自引:0,他引:1  
Trematodes amplify asexually in their snail intermediate hosts, resulting in the potential release of hundreds to thousands of free-living cercariae per day for the life of the snail. The high number of cercariae released into the environment undoubtedly increases the probability of transmission. Although many individual cercariae successfully infect another host in their life cycle, most fail. Factors that prevent successful transmission of cercariae are poorly understood. Microcrustaceans and fish have been observed to eat cercariae of some species, although the possibility that predation represents a significant source of mortality for cercariae has been largely unexplored. We tested the cercariophagic activity of several freshwater invertebrates on Ribeiroia ondatrae, a trematode that causes limb deformities in amphibians. Individuals of potential predators were placed into wells of multiwell plates with 10-15 cercariae, and numbers of cercariae remaining over time were recorded and compared with numbers in control wells that contained no predators. Of the species tested, Hydra sp., damselfly (Odonata, Coenagrionidae) larvae, dragonfly (Odonata, Libellulidae), larvae, and copepods (Cyclopoida) consumed cercariae. In some cases, 80-90% of the cercariae offered to damselfly and dragonfly larvae were consumed within 10 min. In most cases, predators continued to consume cercariae at the same average rates when offered cercariae together with individuals of an alternate prey item. Hydra sp. ate fewer cercariae in these trials. Our findings suggest the need for field and laboratory studies to further explore the effects of predators on transmission of R. ondatrae to amphibian larvae. In addition, the results suggest that conservation of the biodiversity and numbers of aquatic predators may limit adverse impacts of trematode infections in vertebrate hosts.  相似文献   

17.
Parasites that are carried by invasive species can infect native taxa, with devastating consequences. In Australia, invading cane toads (Rhinella marina) carry lungworm parasites (Rhabdias pseudosphaerocephala) that (based on previous laboratory studies) can infect native treefrogs (Litoria caerulea and L. splendida). To assess the potential of parasite transmission from the invader to the native species (and from one infected native frog to another), we used surveys and radiotelemetry to quantify anuran microhabitat use, and proximity to other anurans, in two sites in tropical Australia. Unsurprisingly, treefrogs spent much of their time off the ground (especially by day, and in undisturbed forests) but terrestrial activity was common at night (especially in anthropogenically modified habitats). Microhabitat overlap between cane toads and frogs was generally low, except at night in disturbed areas, whereas overlap between the two frog species was high. The situations of highest overlap, and hence with the greatest danger of parasite transmission, involve aggregations of frogs within crevices by day, and use of open ground by all three anuran species at night. Overall, microhabitat divergence between toads and frogs should reduce, but not eliminate, the transmission of lungworms from invasive toads to vulnerable native frogs.  相似文献   

18.
Predators have documented post-encounter (density-mediated) effects on prey but their pre-encounter impacts, including behavioural alterations, can be substantial as well. While it is increasingly evident that this “ecology of fear” is important to understand for natural enemy-victim relationships, fear responses of hosts to the threat of infection by a parasite are relatively unknown. We examined larval amphibian (Lithobates pipiens) foraging choices by experimentally manipulating the presence of cues relating to predator (larval odonate) or parasite (the trematode Ribeiroia ondatrae) threats. Tadpoles avoided foraging where predator or parasite cues were present; however, they did not treat these as equal hazards. When both threats were simultaneously present, tadpoles strongly preferred to forage under the threat of parasitism compared to predation, likely driven by their relative lethality in our study. Our results indicate that altered spatial use is an important anti-parasite behaviour, and demonstrate that parasite avoidance can affect foraging in a manner similar to predators, warranting greater study of the pre-encounter effects of this enemy type.  相似文献   

19.
The rapid pace of environmental change is driving multi-faceted shifts in abiotic factors that influence parasite transmission. However, cumulative effects of these factors on wildlife diseases remain poorly understood. Here we used an information-theoretic approach to compare the relative influence of abiotic factors (temperature, diurnal temperature range, nutrients and pond-drying), on infection of snail and amphibian hosts by two trematode parasites (Ribeiroia ondatrae and Echinostoma spp.). A temperature shift from 20 to 25 °C was associated with an increase in infected snail prevalence of 10–20%, while overall snail densities declined by a factor of 6. Trematode infection abundance in frogs was best predicted by infected snail density, while Ribeiroia infection specifically also declined by half for each 10% reduction in pond perimeter, despite no effect of perimeter on the per snail release rate of cercariae. Both nutrient concentrations and Ribeiroia infection positively predicted amphibian deformities, potentially owing to reduced host tolerance or increased parasite virulence in more productive environments. For both parasites, temperature, pond-drying, and nutrients were influential at different points in the transmission cycle, highlighting the importance of detailed seasonal field studies that capture the importance of multiple drivers of infection dynamics and the mechanisms through which they operate.  相似文献   

20.
Almost all macroparasites show over‐dispersed infections within natural host populations such that most parasites are distributed among a few heavily‐infected individuals. Despite the importance of parasite aggregation for understanding system stability, the potential for population regulation, and super‐spreading events, many questions persist about its underlying drivers. Theoretically, aggregation results from heterogeneity in host exposure, resistance, and tolerance. However, few studies have examined how host spatial arrangement – which likely affects both parasite encounter and density‐dependent interactions – influences infection and dispersion, representing a critical gap in our current knowledge regarding the possible drivers of parasite aggregation. Using field data from over 165 ponds and 8000 hosts, we evaluated how the spatial clustering of amphibian larvae within ponds 1) varied among different amphibian species, and 2), affected the distribution of parasites within the host population using Taylor's power law. A complementary mesocosm experiment used field‐guided manipulations of the spatial arrangement of larval amphibians to create a gradient in host clustering while controlling host density, thereby testing for spatial effects on both infection success and aggregation by three different trematode species. Our field data indicated that larval amphibians exhibited significant spatial clustering that was well captured by Taylor's power law (R2 0.92 to 0.97 for different host species), but the residual variation only weakly correlated with observed patterns of trematode parasite over‐dispersion. Correspondingly, experimental manipulation of host clustering had no effects on parasite infection success or the degree of parasite aggregation among cages or mesocosms. Given the importance of parasite over‐dispersion for host populations and disease dynamics, we advocate for further investigations of host and parasite spatial aggregation, particularly studies that incorporate and/or control for heterogeneity in exposure and susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号