首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives   总被引:12,自引:0,他引:12  
Nagle DG  Ferreira D  Zhou YD 《Phytochemistry》2006,67(17):1849-1855
The compound (-)-epigallocatechin-3-gallate (EGCG) is the major catechin found in green tea [Camellia sinensis L. Ktze. (Theaceae)]. This polyphenolic compound and several related catechins are believed to be responsible for the health benefits associated with the consumption of green tea. The potential health benefits ascribed to green tea and EGCG include antioxidant effects, cancer chemoprevention, improving cardiovascular health, enhancing weight loss, protecting the skin from the damage caused by ionizing radiation, and others. The compound EGCG has been shown to regulate dozens of disease-specific molecular targets. Many of these molecular targets are only affected by concentrations of EGCG that are far above the levels achieved by either drinking green tea or consuming moderate doses of green tea extract-based dietary supplements. In spite of this, well-designed double-blinded controlled clinical studies have recently demonstrated the efficacy of green tea extracts and purified EGCG products in patients. Therefore, this review highlights results from what the authors believe to be some of the most clinically significant recent studies and describes current developments in the stereoselective total synthesis of EGCG.  相似文献   

2.
Epigallocatechin-3-gallate (EGCG), a tea polyphenol, inhibits the proliferation of many cancer cell lines; however, the antiproliferative mechanism(s) are not well-characterized. The objective of this study is to identify the cellular signaling mechanism(s) responsible for the antiproliferative effects of EGCG in the PC-3 prostate cancer cell line. EGCG inhibited PC-3 cell proliferation in a concentration-dependent manner with an IC(50) value of 39.0 microM, but had no effect on the proliferation of a nontumorigenic prostate epithelial cell line (RWPE-1). Treatment of PC-3 cells with EGCG (0-50 microM) resulted in time and concentration-dependent activation of the extracellular signal-regulated kinase (ERK1/2) pathway. EGCG treatment did not induce ERK1/2 activity in RWPE-1 cells. The activation of ERK1/2 by EGCG was not inhibited using PD98059, a potent inhibitor of mitogen-activated protein kinase kinase (MEK), the immediate upstream kinase responsible for ERK1/2 activation; suggesting a MEK-independent signaling mechanism. Pretreatment of PC-3 cells with a phosphoinositide-3 kinase (PI3K) inhibitor partially reduced both EGCG-induced ERK1/2 activation and the antiproliferative effects of this polyphenol. These results suggest that ERK1/2 activation via a MEK-independent, PI3-K-dependent signaling pathway is partially responsible for the antiproliferative effects of EGCG in PC-3 cells.  相似文献   

3.
Increasing antibiotic resistance and beneficial effects of host microbiota has motivated the search for anti-infective agents that attenuate bacterial virulence rather than growth. For example, we discovered that specific flavonoids such as baicalein and quercetin from traditional medicinal plant extracts could attenuate Salmonella enterica serovar Typhimurium type III protein secretion and invasion of host cells. Here, we show epigallocatechin-3-gallate from green tea extracts also inhibits the activity of S. Typhimurium type III protein effectors and significantly reduces bacterial invasion into host cells. These results reveal additional dietary plant metabolites that can attenuate bacterial virulence and infection of host cells.  相似文献   

4.
EGCG防治神经退行性疾病的作用机制   总被引:1,自引:0,他引:1  
何苗  魏敏杰 《生命的化学》2007,27(5):434-436
表没食子儿茶素没食子酸酯(epigallocatechin-3-gallate,EGCG)是绿茶多酚成分中的一种主要组分,参与了神经细胞生长与凋亡的调控,研究发现其机制可能与抗氧化损伤和影响MAPK.PKC和PI-3K/Akt等细胞内信号转导通路相关。因此,探讨EGCG的神经保护作用及其机制,将为应用EGCG防治帕金森氏症、阿尔茨海默病等中枢神经系统退行性疾病的基础与临床研究提供理论依据。  相似文献   

5.
The catechin EGCG is the main flavonoid compound of green tea and has received enormous pharmacological attention because of its putative beneficial health effects. This study investigated for the first time the effect of EGCG on hERG channels, the main pharmacological target of drugs that cause acquired long QT syndrome.Cloned hERG channels were expressed in Xenopus oocytes and in HEK293 cells. Heterologous hERG currents were inhibited by EGCG with an IC50 of 6.0 μmol/l in HEK293 cells and an IC50 of 20.5 μmol/l in Xenopus laevis oocytes. Onset of effect was slow and only little recovery from inhibition was observed upon washout. In X. laevis oocytes EGCG inhibited hERG channels in the open and inactivated states, but not in the closed states. The half-maximal activation voltage of hERG currents was shifted by EGCG towards more positive potentials.In conclusion, EGCG is a low-affinity inhibitor of hERG sharing major electrophysiological features with pharmaceutical hERG antagonists.  相似文献   

6.
表没食子儿茶素-3-O-(3-O-甲基)没食子酸酯(EGCG3"Me)是茶叶中最常检测到的甲基化表没食子儿茶素没食子酸酯(EGCG"Me),具有较表没食子儿茶素没食子酸酯(EGCG)更好的保健功效。本文对EGCG3"Me的理化性质、制备方法、保健功效、茶树EGCG3"Me含量影响因素、EGCG3"Me体内合成路径等国内外研究现状进行了综述,展望EGCG3"Me的体内代谢途径及其深加工产品研发将成为研究热点。  相似文献   

7.
Metastasis of the cancer cells to the regional lymph nodes parts of the body remains an important cause of treatment failure in nasopharyngeal carcinoma (NPC) patients. Epigallocatechin-3-gallate (EGCG), the most important ingredient in the green tea, has been reported to possess antioxidant and anticancer activities. However, the effects of EGCG on NPC cell metastasis are still unclear. In the present study, we examined the in vitro antimetastatic properties of EGCG on human NPC cells, NPC-39, HONE-1 and NPC-BM. The results revealed that EGCG considerably inhibited the migration abilities of three NPC cells. The matrix metalloproteinases-2 (MMP-2) activity and expression were also significantly inhibited by EGCG treatment. Furthermore, EGCG suppressed the phosphorylation of the Src signaling pathway. Moreover, blocking the Src pathway also inhibits MMP-2 expression and migration in the NPC cells. In conclusion, this study revealed that EGCG could inhibit the metastatic activity of human NPC cells by downregulating the protein expression of MMP-2 through modulation of the Src signaling pathway, suggesting that EGCG may be a potential candidate for chemoprevention of NPC.  相似文献   

8.
Hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) is the rate-controlling enzyme of cholesterol synthesis, and owing to its biological and pharmacological relevance, researchers have investigated several compounds capable of modulating its activity with the hope of developing new hypocholesterolemic drugs. In particular, polyphenol-rich extracts were extensively tested for their cholesterol-lowering effect as alternatives, or adjuvants, to the conventional statin therapies, but a full understanding of the mechanism of their action has yet to be reached. Our work reports on a detailed kinetic and equilibrium study on the modulation of HMGR by the most-abundant catechin in green tea, epigallocatechin-3-gallate (EGCG). Using a concerted approach involving spectrophotometric, optical biosensor, and chromatographic analyses, molecular docking, and site-directed mutagenesis on the cofactor site of HMGR, we have demonstrated that EGCG potently inhibits the in vitro activity of HMGR (K(i) in the nanomolar range) by competitively binding to the cofactor site of the reductase. Finally, we evaluated the effect of combined EGCG-statin administration.  相似文献   

9.
Previous studies have shown that epigallocatechin-3-gallate (EGCG) inhibits the proliferation of vascular smooth muscle cells (VSMCs) via the extracellular-signal-regulated kinase (ERK1/2) and mitogen activated protein kinases (MAPKs) pathway. Mitofusin 2 (Mfn-2) also suppresses VSMC proliferation through Ras-Raf-ERK/MAPK, suggesting a possible link between EGCG, Mfn-2 and ERK/MAPK. However, the effect of EGCG on Mfn-2 remains unknown. In this study, we investigated the role of Mfn-2 in the regulation of VSMC proliferation by EGCG, and assessed the underlying mechanisms. The effects of EGCG on the proliferation of cultured human aortic smooth muscle cells (HASMCs) were observed by 5-ethynl-2-deoxyuridine (EdU) incorporation assay. Mfn-2 gene and protein levels, and Ras, p-c-Raf and p-ERK1/2 protein levels were determined by quantitative real-time polymerase chain reaction and western blotting, respectively. Mfn-2 gene silencing was achieved by RNA interference. EGCG 50 μmol/L profoundly inhibited the proliferation of HASMCs in culture, up-regulated Mfn-2, and down-regulated the expression of p-c-Raf and p-ERK1/2. Furthermore, RNA interference-mediated gene knockdown of Mfn-2 antagonized EGCG-induced anti-proliferation and down-regulation of Ras, p-c-Raf and p-ERK1/2. These results suggest that EGCG inhibits the proliferation of HASMCs in vitro largely via Mfn-2-mediated suppression of the Ras-Raf-ERK/MAPK signaling pathway.  相似文献   

10.
11.
Epigallocatechin-3-gallate (EGCG), a main catechin of green tea, has been suggested to inhibit hepatic gluconeogenesis. However, the exact role and related mechanism have not been established. In this study, we examined the role of EGCG in hepatic gluconeogenesis at concentrations that are reachable by ingestion of pure EGCG or green tea, and are not toxic to hepatocytes. Our results show in isolated hepatocytes that EGCG at relatively low concentrations (相似文献   

12.
The proliferation and osteogenic capacity of mesenchymal stem cells (MSCs) needs to be improved for their use in cell-based therapy for osteoporosis. (?)-Epigallocatechin-3-gallate (EGCG), one of the green tea catechins, has been widely investigated in studies of osteoblasts and osteoclasts. However, no consensus on its role as an osteogenic inducer has been reached, possibly because of the various types of cell lines examined and the range of concentrations of EGCG used. In this study, the osteogenic effects of EGCG are studied in primary human bone-marrow-derived MSCs (hBMSCs) by detecting cell proliferation, alkaline phosphatase (ALP) activity and the expression of relevant osteogenic markers. Our results show that EGCG has a strong stimulatory effect on hBMSCs developing towards the osteogenic lineage, especially at a concentration of 5 μM, as evidenced by an increased ALP activity, the up-regulated expression of osteogenic genes and the formation of bone-like nodules. Further exploration has indicated that EGCG directes osteogenic differentiation via the continuous up-regulation of Runx2. The underlying mechanism might involve EGCG affects on osteogenic differentiation through the modulation of bone morphogenetic protein-2 expression. EGCG has also been found to promote the proliferation of hBMSCs in a dose-dependent manner. This might be associated with its antioxidative effect leading to favorable amounts of reactive oxygen species in the cellular environment. Our study thus indicates that EGCG can be used as a pro-osteogenic agent for the stem-cell-based therapy of osteoporosis.  相似文献   

13.
To date, most of the studies in the field of cell migration have been applied to two-dimensional (2D) models. To mimic the three-dimensional (3D) conditions similar to those observed in vivo during tumor invasion, we developed a 3D model of cell migration in which cells were embedded in a collagen I matrix placed in a double-compartment chamber. Using time-lapse videomicroscopy and interactive cell tracking in a four-dimensional data set, we determined the cell trajectories and their migration kinetics. We compared the 2D and 3D migratory behavior of a noninvasive cell line (16HBE) with the migratory behavior of an invasive cell line (BZR). Our results show that the 3D migration kinetics of the noninvasive cell line were lower than the migration kinetics of the invasive cell line. In contrast, in 2D models, no significant difference was observed between the two cell lines. To validate our 3D model, we further investigated the effect of epidermal growth factor (EGF), a promoter of tumor cell motility and invasion on the noninvasive cell line (16HBE). EGF increased significantly the migration kinetics of the noninvasive cell line. Our results show that the 3D model of cell migration allowed us to differentiate the migratory behavior of invasive and noninvasive cells and that such a model can help in the development of molecular targeted therapy as it approaches the in vivo conditions. tumor invasion; metastasis; image analysis; kinetic migration; epidermal growth factor  相似文献   

14.
Green tea, owing to its beneficial effect on health, is becoming more and more popular worldwide. (-)-Epigallocatechin-3-gallate (EGCG), the main ingredient of green tea polyphenols, is a known protective effect on injured neurons in neurodegenerative disease, such as Alzheimer's disease and Parkinson's disease. Paraquat (PQ) is a widely used herbicide that possesses a similar structure to MPP(+) and is toxic to mesencephalic dopaminergic neurons. In the present study, PQ-injured PC12 cells were chosen as an in vitro cell model of Parkinson's disease and the neuroprotective effects of EGCG were investigated. The results showed that EGCG attenuated apoptosis of PC12 cells induced by PQ. The possible mechanism may be associated with maintaining mitochondrial membrane potential, inhibiting caspase-3 activity and downregulating the expression of pro-apoptotic protein Smac in cytosol. The present study supports the notion that EGCG could be used as a neuroprotective agent for treatment of neurodegenerative diseases.  相似文献   

15.
Ning Peng  Jun-tian Liu  Fang Guo  Rui Li 《Life sciences》2010,86(11-12):410-415
AimsExtensive research suggests that atherosclerosis is an inflammatory disease and that epigallocatechin-3-gallate (EGCG) is able to inhibit the formation and development of atherosclerosis. However, the mechanisms of action of EGCG against atherosclerosis are still unclear. Therefore, the effect of EGCG on interleukin-6 (IL-6)- and angiotensin II (Ang II)-induced CRP production in vascular smooth muscle cells (VSMCs) was studied to provide experimental evidence for its anti-inflammatory and anti-atherosclerotic actions.Main methodsRat VSMCs were cultured, and IL-6 (10? 7 M) and Ang II (10? 7 M) were used as stimulants for CRP generation. The CRP concentration in the supernatant was measured with ELISA, and mRNA and protein expression of CRP was assayed with RT-qPCR and immunocytochemistry, respectively. The production of reactive oxygen species (ROS) and superoxide anion (O2?) was detected with ROS and O2? assay kits, respectively.Key findingsThe results showed that both IL-6 and Ang II increased CRP levels in the supernatant of VSMCs and induced mRNA and protein expression of CRP in VSMCs, whereas pretreatment of the cells with EGCG (1 × 10? 6 M, 3 × 10? 6 M, 10 × 10? 6 M) significantly inhibited IL-6- and Ang II-induced production and expression of CRP in VSMCs in a concentration-dependent manner. Additionally, Ang II stimulated O2? and ROS generations in VSMCs, and EGCG decreased the Ang II-induced increase of O2? and ROS in a concentration-dependent fashion.SignificanceThese results suggest that EGCG plays an anti-inflammatory role via inhibiting IL-6- and Ang II-induced CRP secretion, as well as the Ang II-induced generation of O2? and ROS in VSMCs, which contributes to its anti-atherosclerotic action.  相似文献   

16.
17.
Testicular torsion (TT) is a urologic emergency that may result in future infertility problems. The pathologic process of TT is similar to an ischemia reperfusion injury (IRI). The purpose of this study was to evaluate the effect of epigallocatechin-3-gallate (EGCG) on reversing the damaging consequences of TT-induced IRI by examining its inhibitory effects on the expression of inflammatory and apoptosis mediators in a unilateral TT rat model. Eighteen male Sprague-Dawley rats were divided into 3 groups. Group 1 underwent a sham operation of the left testis under general anesthesia. Group 2 underwent ischemia for 1h followed by 4h reperfusion in the presence of saline. The third group was similar to group 2, however, EGCG (50 mg/kg) was injected i.p. 30 min after ischemia induction. The in vivo protective effect of EGCG was tested by measuring testicular levels of TNF-α, IL-6 and IL-1β by ELISA and mRNA expression of iNOS, MCP-1, p53, Bax, Bcl-2 and survivin by real-time PCR. Also, testicular morphological changes and damage to spermatogenesis were evaluated using H&E staining and Johnsen's scoring system, respectively. EGCG treatment improved testicular structures in the ipsilateral testis, markedly inhibited germ cell apoptosis (GCA) and significantly decreased testicular cytokine levels. In addition, EGCG was able to down regulate the mRNA expression of iNOS, MCP-1 and pro-apoptosis genes in favor of cell survival. For the first time we show that in vivo EGCG treatment rescued the torsed testes from IRI-induced inflammation, GCA and damage to spermatogenesis thus suggesting a new preventive approach to inhibiting the inflammatory and apoptotic consequences of TT-induced IRI.  相似文献   

18.
The tea polyphenol epigallocatechin-3-O-gallate (EGCG) displays some antidiabetic effects; however the mechanisms are incompletely understood. In the present study, the investigation of the effects of EGCG on insulin resistance was performed in rat L6 cells treated with dexamethasone. We found that dexamethasone increased Ser307 phosphorylation of insulin receptor substrate-1 (IRS-1) and reduced phosphorylation of AMPK and Akt. Furthermore, glucose uptake and glucose transporter (GLUT4) translocation were inhibited by dexamethasone. However, the treatment of EGCG improved insulin-stimulated glucose uptake by increasing GLUT4 translocation to plasma membrane. Furthermore, we also demonstrated these EGCG effects essentially depended on the AMPK and Akt activation. Together, our data suggested that EGCG inhibited dexamethasone-induced insulin resistance through AMPK and PI3K/Akt pathway.  相似文献   

19.
The objective of this paper is to assess the gelatinase production by some ocular pathogenic bacterial strains, and evaluate the ability of (-)epigallocatechin-3-gallate (EGCg) to inhibit this gelatinase activity and thus limit bacterial invasion. The effect of EGCg on bacterial gelatinase activity was tested by classic zymography methods, while its effect on bacterial invasion was evaluated through the ability of growing bacteria to liquefy and thus penetrate a semisolid gelatine substrate. It was found that EGCg inhibits bacterial gelatinases with an IC(50) of about 0.2 mM, and limits invasion of gelatinase-positive bacteria at concentrations above 2 mM. These results show for the first time that EGCg, as well as having direct antibacterial activity, can also inhibit bacterial gelatinases, thus limiting their invasion on gelatine. Possible use of EGCg is thus suggested as an adjuvant in antibacterial chemotherapy.  相似文献   

20.
Increasing evidence has demonstrated that EGCG possesses prooxidant potential in biological systems, including modifying proteins, breaking DNA strands and inducing the generation of reactive oxygen species. In the present study, the prooxidant effect of EGCG on erythrocyte membranes was investigated. SDS–PAGE and NBT-staining assay were utilized to detect the catechol-protein adducts that generated upon treating the membranes with EGCG. The results indicated that EGCG was able to bind covalently to sulfhydryl groups of membrane proteins, leading to the formation of protein aggregates with intermolecular cross-linking. We suggested that the catechol-quinone originated from the oxidation of EGCG acted as a cross-linker on which peptide chains were combined through thiol-S-alkylation at the C2- and C6-sites of the gallyl ring. EGC showed similar effects as EGCG on the ghost membranes, whereas ECG and EC did not, suggesting that a structure with a gallyl moiety is a prerequisite for a catechin to induce the aggregation of membrane proteins and to deplete membrane sulfhydryls. EDTA and ascorbic acid inhibited the EGCG-induced aggregation of membrane proteins by blocking the formation of catechol-quinone. The information of the present study may provide a fresh insight into the prooxidant effect and cytotoxicity of tea catechins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号