首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Many studies associated the main polyphenolic constituent of green tea, (-)-Epigallocatechin-3-gallate (EGCG), with inhibition of cancers, invasion and metastasis. To date, most of the studies have focused on the effect of EGCG on cell proliferation or death. Since cell migration is an important mechanism involved in tumor invasion, the aim of the present work was to target another approach of the therapeutic effect of EGCG, by investigating its effect on the cell migratory behavior.

Methods

The effect of EGCG (at concentrations lower than 10 μg/ml) on the migration speed of invasive cells was assessed by using 2D and 3D models of cell culture. We also studied the effects of EGCG on proteinases expression by RT-PCR analysis. By immunocytochemistry, we analyzed alterations of vimentin organization in presence of different concentrations of EGCG.

Results

We observed that EGCG had an inhibitory effect of cell migration in 2D and 3D cell culture models. EGCG also inhibited MMP-2 mRNA and protein expression and altered the intermediate filaments of vimentin.

Conclusion

Taken together, our results demonstrate that EGCG is able to inhibit the migration of bronchial tumor cells and could therefore be an attractive candidate to treat tumor invasion and cell migration.  相似文献   

2.
3.

Background

A major player in the process of metastasis is the actin cytoskeleton as it forms key structures in both invasion mechanisms, mesenchymal and amoeboid migration. We tested the actin binding compound Chondramide as potential anti-metastatic agent.

Methods

In vivo, the effect of Chondramide on metastasis was tested employing a 4T1-Luc BALB/c mouse model. In vitro, Chondramide was tested using the highly invasive cancer cell line MDA-MB-231 in Boyden-chamber assays, fluorescent stainings, Western blot and Pull down assays. Finally, the contractility of MDA-MB-231 cells was monitored in 3D environment and analyzed via PIV analysis.

Results

In vivo, Chondramide treatment inhibits metastasis to the lung and the migration and invasion of MDA-MB-231 cells is reduced by Chondramide in vitro. On the signaling level, RhoA activity is decreased by Chondramide accompanied by reduced MLC-2 and the stretch induced guanine nucleotide exchange factor Vav2 activation. At same conditions, EGF-receptor autophosphorylation, Akt and Erk as well as Rac1 are not affected. Finally, Chondramide treatment disrupted the actin cytoskeleton and decreased the ability of cells for contraction.

Conclusions

Chondramide inhibits cellular contractility and thus represents a potential inhibitor of tumor cell invasion.  相似文献   

4.

Background

Metastasis accounts for the most deaths in patients with hepatocellular carcinoma (HCC). Receptor activator of nuclear factor kappa B ligand (RANKL) is associated with cancer metastasis, while its role in HCC remains largely unknown.

Methods

Immunohistochemistry was performed to determine the expression of RANK in HCC tissue (n = 398). Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to examine the expression of RANK, E-cadherin, N-cadherin, vimentin, Snail, Slug, Twist and MMPs in HCC cells. Wound healing and Transwell assays were used to evaluate cell migration and invasion ability.

Results

We found that expression of RANK, the receptor of RANKL, was significantly higher in HCC tumor tissues than in peritumor liver tissues (p<0.001). Constitutive expression of RANK was detected in HCC cell lines, which can be up-regulated when HCC cells were stimulated with RANKL. Notably, in vitro experiments showed that activation of RANKL-RANK axis significantly promoted migration and invasion ability of HCC cells. In addition, RANKL stimulation increased the expression levels of N-cadherin, Snail, and Twist, while decreased the expression of E-cadherin, with concomitant activation of NF-κB signaling pathway. Moreover, administration of the NF-κB inhibitor attenuated RANKL-induced migration, invasion and epithelial-mesenchymal transition of HCC cells.

Conclusions

RANKL could potentiate migration and invasion ability of RANK-positive HCC cells through NF-κB pathway-mediated epithelial-mesenchymal transition, which means that RANKL-RANK axis could be a potential target for HCC therapy.  相似文献   

5.

Background

The role of CTGF varies in different types of cancer. The purpose of this study is to investigate the involvement of CTGF in tumor progression and prognosis of human nasopharyngeal carcinoma (NPC).

Experimental design

CTGF expression levels were examined in NPC tissues and cells, nasopharynx (NP) tissues, and NP69 cells. The effects and molecular mechanisms of CTGF expression on cell proliferation, migration, invasion, and cell cycle were also explored.

Results

NPC cells exhibited decreased mRNA expression of CTGF compared to immortalized human nasopharyngeal epithelial cell line NP69. Similarly, CTGF was observed to be downregulated in NPC compared to normal tissues at mRNA and protein levels. Furthermore, reduced CTGF was negatively associated with the progression of NPC. Knocking down CTGF expression enhanced the colony formation, cell migration, invasion, and G1/S cell cycle transition. Mechanistic analysis revealed that CTGF suppression activated FAK/PI3K/AKT and its downstream signals regulating the cell cycle, epithelial-mesenchymal transition (EMT) and MMPs. Finally, DNA methylation microarray revealed a lack of hypermethylation at the CTGF promoter, suggesting other mechanisms are associated with suppression of CTGF in NPC.

Conclusion

Our study demonstrates that reduced expression of CTGF promoted cell proliferation, migration, invasion and cell cycle progression through FAK/PI3K/AKT, EMT and MMP pathways in NPC.  相似文献   

6.
7.

Background

Forkhead box L1 (FOXL1), considered as a novel candidate tumor suppressor, suppresses proliferation and invasion in certain cancers. However, the regulation and function of FOXL1 in gallbladder cancer (GBC) remains unclear.

Methods

FOXL1 expression at mRNA and protein levels in GBC tissues and cell lines were examined by RT-PCR, immunohistochemistry and western blot assay. FOXL1 expression in GBC cell lines was up-regulated by transfection with pcDNA-FOXL1. The effects of FOXL1 overexpression on cell proliferation, apoptosis, migration and invasion were evaluated in vitro or in vivo. In addition, the status of mediators involved in migration, invasion and apoptosis was examined using western blot after transfection with pcDNA-FOXL1.

Results

FOXL1 was frequently downregulated in GBC tissues and cell lines. Its higher expression is associated with better prognosis, while its lower expression is correlated with advanced TNM stage and poor differentiation. FOXL1 overexpression in NOZ cells significantly suppresses cell proliferation, migration and invasion in vitro and tumorigenicity in nude mice. FOXL1 overexpression disrupted mitochondrial transmembrane potential and triggered mitochondria-mediated apoptosis in NOZ cells. In addition, FOXL1 overexpression suppressed ZEB1 expression and induced E-cadherin expression in NOZ cells.

Conclusion

Our findings suggested that dysregulated FOXL1 is involved in tumorigenesis and progression of GBC and may serve as a predictor of clinical outcome or even a therapeutic target for patients with GBC.  相似文献   

8.

Background

FRAT1 positively regulates the Wnt/β-catenin signaling pathway by inhibiting GSK-3-mediated phosphorylation of β-catenin. It was originally characterized as a protein frequently rearranged in advanced T cell lymphoma, but has recently also been identified as a proto-oncogene involved in tumorigenesis. Our previous studies showed that FRAT1 was dramatically overexpressed in gliomas and its expression level was significantly increased along with clinicopathological grades.

Methods

In the current study, we used RT-PCR and Western blotting to assess the mRNA and protein levels of FRAT1 in three glioma cell lines. In addition, to evaluate its functional role in gliomas, we examined the effects of FRAT1 knockdown on proliferation, migration and invasion in vitro and tumor growth in vivo using glioblastoma U251 cells and RNAi.

Results

FRAT1 was highly expressed in all three glioma cell lines. RNAi-mediated down-regulation of endogenous FRAT1 in human glioblastoma U251 cells resulted in suppression of cell proliferation, arrest of cell cycle, inhibition of cell migration and invasion in vitro. Moreover, FRAT1 depletion significantly impaired tumor xenograft growth in nude mice.

Conclusions

Our results highlight the potential role of FRAT1 in tumorigenesis and progression of glioblastoma. These findings provide a biological basis for FRAT1 as a potential molecular marker for improved pathological grading and as a novel candidate therapeutic target for glioblastoma management.  相似文献   

9.
Liu Z  Luo W  Zhou Y  Zhen Y  Yang H  Yu X  Ye Y  Li X  Wang H  Jiang Q  Zhang Y  Yao K  Fang W 《PloS one》2011,6(11):e27887

Background

Recently we identified nasopharyngeal epithelium specific protein 1 (NESG1) as a potential tumor suppressor in nasopharyngeal carcinoma (NPC). The purpose of this study is to investigate the involvement of NESG1 in tumor progression and prognosis of human NPC.

Methodology/Principal Findings

NESG1 protein expression in NPC was examined. Survival analysis was performed using Kaplan-Meier method. The effect of NESG1 on cell proliferation, migration, and invasion were also investigated.

Results

NESG1 expression was downregulated in atypical hyperplasia and NPC samples compared to normal and squamous nasopharynx tissues. Reduced protein expression was negatively associated with the status of NPC progression. Patients with lower NESG1 expression had a shorter overall survival and disease-free time than did patients with higher NESG1 expression. Multivariate analysis suggested NESG1 expression as an independent prognostic indicator for NPC patient survival. Proliferation, migration, and invasion ability were significantly increased in cell lines following lentiviral-mediated shRNA suppression of NESG1 expression. Microarray analysis indicated that NESG1 participated in multiple pathways, including MAPK signaling and cell cycle regulation. Finally, DNA methylation microarray examination revealed a lack of hypermethylation at the NESG1 promoter, suggesting other mechanisms are involved in suppressing NESG1 expression in NPC.

Conclusion

Our studies are the first to demonstrate that decreased NESG1 expression is an unfavorable prognostic factor for NPC.  相似文献   

10.

Background

The enhancement of cell motility is a critical event during tumor cell spreading. Since myosin light chain kinase (MLCK) regulates cell behavior, it is regarded as a promising target in terms of preventing tumor invasion and metastasis. Since MLCK was identified to be associated with human arrest defective-1 (hARD1) through yeast two-hybrid screening, we here tested the possibility that hARD1 acts as a regulator of MLCK and by so doing controls tumor cell motility.

Methodology/Principal Findings

The physical interaction between MLCK and hARD1 was confirmed both in vivo and in vitro by immunoprecipitation assay and affinity chromatography. hARD1, which is known to have the activity of protein lysine ε-acetylation, bound to and acetylated MLCK activated by Ca2+ signaling, and by so doing deactivated MLCK, which led to a reduction in the phosphorylation of MLC. Furthermore, hARD1 inhibited tumor cell migration and invasion MLCK-dependently. Our mutation study revealed that hARD1 associated with an IgG motif of MLCK and acetylated the Lys608 residue in this motif. The K608A-mutated MLCK was neither acetylated nor inactivated by hARD1, and its stimulatory effect on cell motility was not inhibited by hARD1.

Conclusion/Significance

These results indicate that hARD1 is a bona fide regulator of MLCK, and that hARD1 plays a crucial role in the balance between tumor cell migration and stasis. Thus, hARD1 could be a therapeutic target in the context of preventing tumor invasion and metastasis.  相似文献   

11.

Objective

IL-17A plays an important role in many inflammatory diseases and cancers. We aimed to examine the effect of IL-17A on the invasion of cervical cancer cells and study its related mechanisms.

Methods

Wound healing and matrigel transwell assays were used to examine the effect of IL-17A on cervical cancer cell migration and invasion by a panel of cervical cancer cell lines. The levels of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) were investigated using western blotting. The activity of p38 and nuclear factor-kappa B (NF-κB) signal pathway was detected too.

Results

Here, we showed that IL-17A could promote the migration and invasion of cervical cancer cells. Further molecular analysis showed that IL-17A could up-regulate the expressions and activities of MMP2 and MMP9, and down-regulate the expressions of TIMP-1 and TIMP-2. Furthermore, IL-17A also activates p38 signal pathway and increased p50 and p65 nuclear expression. In addition, treatment of cervical cancer cells with the pharmacological p38/NF-κB signal pathway inhibitors, SB203580 and PDTC, potently restored the roles of invasion and upregulation of MMPs induced by IL-17A.

Conclusion

IL-17A could promote the migration and invasion of cervical cancer cell via up-regulating MMP2 and MMP9 expression, and down-regulating TIMP-1 and TIMP-2 expression via p38/NF-κB signal pathway. IL-17A may be a potential target to improve the prognosis for patients with cervical cancer.  相似文献   

12.
Lv T  Yuan D  Miao X  Lv Y  Zhan P  Shen X  Song Y 《PloS one》2012,7(4):e35065

Background

Lysine specific demethylase 1 (LSD1) has been identified and biochemically characterized in epigenetics, but the pathological roles of its dysfunction in lung cancer remain to be elucidated. The aim of this study was to evaluate the prognostic significance of LSD1 expression in patients with non-small cell lung cancer (NSCLC) and to define its exact role in lung cancer proliferation, migration and invasion.

Methods

The protein levels of LSD1 in surgically resected samples from NSCLC patients were detected by immunohistochemistry or Western blotting. The mRNA levels of LSD1 were detected by qRT-PCR. The correlation of LSD1 expression with clinical characteristics and prognosis was determined by statistical analysis. Cell proliferation rate was assessed by MTS assay and immunofluorescence. Cell migration and invasion were detected by scratch test, matrigel assay and transwell invasion assay.

Results

LSD1 expression was higher in lung cancer tissue more than in normal lung tissue. Our results showed that over-expression of LSD1 protein were associated with shorter overall survival of NSCLC patients. LSD1 was localized mainly to the cancer cell nucleus. Interruption of LSD1 using siRNA or a chemical inhibitor, pargyline, suppressed proliferation, migration and invasion of A549, H460 and 293T cells. Meanwhile, over-expression of LSD1 enhanced cell growth. Finally, LSD1 was shown to regulate epithelial-to-mesenchymal transition in lung cancer cells.

Conclusions

Over-expression of LSD1 was associated with poor prognosis in NSCLC, and promoted tumor cell proliferation, migration and invasion. These results suggest that LSD1 is a tumor-promoting factor with promising therapeutic potential for NSCLC.  相似文献   

13.
Y Jiao  X Feng  Y Zhan  R Wang  S Zheng  W Liu  X Zeng 《PloS one》2012,7(7):e41591

Background

Matrix metalloproteinase-2 (MMP-2) is a key regulator in the migration of tumor cells. αvβ3 integrin has been reported to play a critical role in cell adhesion and regulate the migration of tumor cells by promoting MMP-2 activation. However, little is known about the effects of MMP-2 on αvβ3 integrin activity and αvβ3 integrin-mediated adhesion and migration of tumor cells.

Methodology/Principal Findings

Human melanoma cells were seeded using an agarose drop model and/or subjected to in vitro analysis using immunofluorescence, adhesion, migration and invasion assays to investigate the relationship between active MMP-2 and αvβ3 integrin during the adhesion and migration of the tumor cells. We found that MMP-2 was localized at the leading edge of spreading cells before αvβ3 integrin. αvβ3 integrin-mediated adhesion and migration of the tumor cells were inhibited by a MMP-2 inhibitor. MMP-2 cleaved fibronectin into small fragments, which promoted the adhesion and migration of the tumor cells.

Conclusion/Significance

MMP-2 cleaves fibronectin into small fragments to enhance the adhesion and migration of human melanoma cells mediated by αvβ3 integrin. These results indicate that MMP-2 may guide the direction of the tumor cell migration.  相似文献   

14.

Objective

Epithelial-mesenchymal transition (EMT) plays an important role in cancer tumorigenesis. However, the underlying mechanisms of EMT in lung adenocarcinoma, and how this process might be inhibited, remain to be explored. This study investigated the role of IL-6 in lung adenocarcinoma cell EMT and explored the potential effects of metformin on this process.

Methods

Invasion assay and MTT assay was performed to determine cell invasion and cell proliferation. Western blotting, immunofluorescence, real-time PCR, ELISA, and immunohistochemistry were performed to detect the expression of IL-6, E-cadherin, Vimentin, and p-STAT3.

Results

We discovered that IL-6, via STAT3 phosphorylation, could promote lung adenocarcinoma cell invasion via EMT in vitro. This was supported by the inverse correlation between E-cadherin and IL-6 expression, positive correlation between IL-6 and vimentin mRNA expression and between STAT3 phosphorylation and IL-6 expression in tumor tissues. Importantly, metformin inhibited tumor growth and distant metastases in tumor-bearing nude mice and reversed IL-6-induced EMT both in vitro and in vivo. Furthermore, we found that blockade of STAT3 phosphorylation might be the underlying mechanism of metformin inhibition of IL-6-induced EMT.

Conclusions

Collectively, our present results show that enhanced IL-6 expression, via STAT3 phosphorylation, is a mechanism of EMT in lung adenocarcinoma. We found that metformin could inhibit IL-6-induced EMT possibly by blocking STAT3 phosphorylation.  相似文献   

15.

Background

The prognosis for patients with hepatocellular carcinoma (HCC) is poor, and the mechanisms underlying the development of HCC remain unclear. Notch1 and Notch3 may be involved in malignant transformation, although their roles remain unknown.

Materials and Methods

HCC tissues were stained with anti-Notch1 or -Notch3 antibody. The migration and invasion capacities of the cells were measured with transwell cell culture chambers. RT-PCR was used to measure the expression of Notch1 and Notch3 mRNA. Additionally, western blot analysis was used to assess the protein expression of Notch1, Notch3, CD44v6, E-cadherin, matrix metalloproteinase-2 (MMP-2), MMP-9, and urokinase-type plasminogen activator (uPA). RNA interference was used to down-regulate the expression of Notch1 and Notch3. Cell viability was assessed using MTT.

Results

Based on immunohistochemistry, high Notch1 expression was correlated with tumor size, tumor grade, metastasis, venous invasion and AJCC TNM stage. High Notch3 expression was only strongly correlated with metastasis, venous invasion and satellite lesions. Kaplan-Meier curves demonstrated that patients with high Notch1 or Notch3 expression were at a significantly increased risk for shortened survival time. In vitro, the down-regulation of Notch1 decreased the migration and invasion capacities of HCC cells by regulating CD44v6, E-cadherin, MMP-2, MMP-9, and uPA via the COX-2 and ERK1/2 pathways. Down-regulation of Notch3 only decreased the invasion capacity of HCC cells by regulating MMP-2 and MMP-9 via the ERK1/2 pathway.

Conclusions

Based on the migration and invasion of HCC, we hypothesize that targeting Notch1 may be more useful than Notch3 for designing novel preventive and therapeutic strategies for HCC in the near future.  相似文献   

16.

Background

Green tea consumption has been shown to have cancer preventive qualities. Among the constituents of green tea, (-)-Epigallocatechin-3-O-gallate (EGCG) is the most effective at inhibiting carcinogenesis. However, the concentrations of EGCG that are required to elicit the anticancer effects in a variety of cancer cell types are much higher than the peak plasma concentration that occurs after drinking an equivalent of 2–3 cups of green tea. To obtain the anticancer effects of EGCG when consumed at a reasonable concentration in daily life, we investigated the combination effect of EGCG and food ingredient that may enhance the anticancer activity of EGCG on subcutaneous tumor growth in C57BL/6N mice challenged with B16 melanoma cells.

Methodology/Principal Findings

All-trans-retinoic acid (ATRA) enhanced the expression of the 67-kDa laminin receptor (67LR) and increased EGCG-induced cell growth inhibition in B16 melanoma cells. The cell growth inhibition seen with the combined EGCG and ATRA treatment was abolished by treatment with an anti-67LR antibody. In addition, the combined EGCG and ATRA treatment significantly suppressed the melanoma tumor growth in mice. Expression of 67LR in the tumor increased upon oral administration of ATRA or a combined treatment of EGCG and ATRA treatment. Furthermore, RNAi-mediated silencing of the retinoic acid receptor (RAR) α attenuated the ATRA-induced enhancement of 67LR expression in the melanoma cells. An RAR agonist enhanced the expression levels of 67LR and increased EGCG-induced cell growth inhibition.

Conclusions/Significance

Our findings provide a molecular basis for the combination effect seen with dietary components, and indicate that ATRA may be a beneficial food component for cancer prevention when combined with EGCG.  相似文献   

17.
Zhao JJ  Pan K  Li JJ  Chen YB  Chen JG  Lv L  Wang DD  Pan QZ  Chen MS  Xia JC 《PloS one》2011,6(10):e26608

Background

LZAP was isolated as a binding protein of the Cdk5 activator p35. LZAP has been highly conserved during evolution and has been shown to function as a tumor suppressor in various cancers. This study aimed to investigate LZAP expression and its prognostic value in hepatocellular carcinoma (HCC). Meanwhile, the function of LZAP in hepatocarcinogenesis was further investigated in cell culture models and mouse models.

Methods

Real-time quantitative PCR, western blot and immunohistochemistry were used to explore LZAP expression in HCC cell lines and primary HCC clinical specimens. The functions of LZAP in the proliferation, colony formation, cell cycle, migration, invasion and apoptosis of HCC cell lines were also analyzed by infecting cells with an adenovirus containing full-length LZAP. The effect of LZAP on tumorigenicity in nude mice was also investigated.

Results

LZAP expression was significantly decreased in the tumor tissues and HCC cell lines. Clinicopathological analysis showed that LZAP expression was significantly correlated with tumor size, histopathological classification and serum α-fetoprotein (AFP). The Kaplan–Meier survival curves revealed that decreasing LZAP expression was associated with poor prognosis in HCC patients. LZAP expression was an independent prognostic marker of overall HCC patient survival in a multivariate analysis. The re-introduction of LZAP expression in the HepG2 and sk-Hep1 HCC cell lines significantly inhibited proliferation and colony formation in the HCC cells and induced G1 phase arrest and apoptosis of the HCC cells in vitro. Restoring LZAP expression in the HCC cell lines also inhibited migration and invasion. In addition, experiments with a mouse model revealed that LZAP overexpression could suppress HCC tumorigenicity in vivo.

Conclusions

Our data suggest that LZAP may play an important role in HCC progression and could be a potential molecular therapy target for HCC.  相似文献   

18.

Background

Myeloid-derived suppressor cells (MDSCs) function in immunosuppression and tumor development by induction of angiogenesis in a STAT3-dependent manner. Knowledge of MDSC biology is mainly limited to mice studies, and more clinical investigations using spontaneous tumor models are required. Here we performed in vitro experiments and clinical data analysis obtained from canine patients.

Methods

Using microarrays we examined changes in gene expression in canine mammary cancer cells due to their co-culture with MDSCs. Further, using Real-time rt-PCR, Western blot, IHC, siRNA, angiogenesis assay and migration/invasion tests we examined a role of the most important signaling pathway.

Results

In dogs with mammary cancer, the number of circulating MDSCs increases with tumor clinical stage. Microarray analysis revealed that MDSCs had significantly altered molecular pathways in tumor cells in vitro. Particularly important was the detected increased activation of IL-28/IL-28RA (IFN-λ) signaling. The highest expression of IL-28 was observed in stage III/IV mammary tumor-bearing dogs. IL-28 secreted by MDSCs stimulates STAT3 in tumor cells, which results in increased expression of angiogenic factors and subsequent induction of angiogenesis by endothelial cells, epithelial-mesenchymal transition (EMT) and increased migration of tumor cells in vitro. Knockdown of IL-28RA decreased angiogenesis, tumor cell invasion and migration.

Conclusions

We showed for the first time that MDSCs secrete IL-28 (IFN-λ), which promotes angiogenesis, EMT, invasion and migration of tumor cells. Thus, IL-28 may constitute an interesting target for further therapies. Moreover, the similarity in circulating MDSC levels at various tumor clinical stages between canine and human patients indicates canines as a good model for clinical trials of drugs targeting MDSCs.  相似文献   

19.

Background

Angiogenesis, the formation of new blood vessels from existing vasculature, plays an essential role in tumor growth, invasion, and metastasis. 16K hPRL, the antiangiogenic 16-kDa N-terminal fragment of human prolactin was shown to prevent tumor growth and metastasis by modifying tumor vessel morphology.

Methodology/Principal Findings

Here we investigated the effect of 16K hPRL on tumor vessel maturation and on the related signaling pathways. We show that 16K hPRL treatment leads, in a murine B16-F10 tumor model, to a dysfunctional tumor vasculature with reduced pericyte coverage, and disruption of the PDGF-B/PDGFR-B, Ang/Tie2, and Delta/Notch pathways. In an aortic ring assay, 16K hPRL impairs endothelial cell and pericyte outgrowth from the vascular ring. In addition, 16K hPRL prevents pericyte migration to endothelial cells. This event was independent of a direct inhibitory effect of 16K hPRL on pericyte viability, proliferation, or migration. In endothelial cell-pericyte cocultures, we found 16K hPRL to disturb Notch signaling.

Conclusions/Significance

Taken together, our data show that 16K hPRL impairs functional tumor neovascularization by inhibiting vessel maturation and for the first time that an endogenous antiangiogenic agent disturbs Notch signaling. These findings provide new insights into the mechanisms of 16K hPRL action and highlight its potential for use in anticancer therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号