首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subgroup ‘Driving Forces for Data Exchange’ as part of the SETAC LCA Workgroup on Data Availability and Quality is finishing its final report with recommendations and guidelines to stimulate availability and exchange of LCI data. Activities in the past three years involved a literature review, interviews with LCI data publishers and stakeholder discussions. The final report will be part of a SETAC ‘Code of Life Cycle Inventory Practice’, dealing with LCI data availability and quality aspects in a broader sense.  相似文献   

2.
Life cycle inventory of medium density fibreboard   总被引:1,自引:0,他引:1  
Goal, Scope and Background Wood is the most important renewable material. The management of wood appears to be a key action to optimise the use of resources and to reduce the environmental impact associated with mankind’s activities. Wood-based products must be analysed considering the two-fold nature of wood, commonly used as a renewable material or regenerative fuel. Relevant, up-to-date environmental data are needed to allow the analysis of wood-based products. The main focus of this study is to provide comprehensive data of one key wood board industry such as the Medium Density Fibreboard (MDF). Moreover, the influence of factors with strong geographical dependence, such as the electricity profile and final transport of the product, is analysed. In this work, International Organization for Standardization standards (ISO 14040-43) and Ecoindicator 99 methodology have been considered to quantify the potential environmental impact associated to the system under study. Three factories, considered representative of the ‘state of art’, were selected to study the process in detail: two Spanish factories and a Chilean one, with a process production of around 150,000 m3 per year. The system boundaries included all the activities taking place into the factory as well as the activities linked to the production of the main chemicals used in the process, energy inputs and transport. All the data related to the inputs and outputs of the process were obtained by on-site measurements during a one-year period. A sensitive analysis was carried out taking into account the influence of the final transport of the product and the dependence on the electricity generation profile. Life Cycle Inventory Analysis LCI methodology has been used for the quantification of the impacts of the MDF manufacture. The process chain can be subdivided in three main subsystems: wood preparation, board shaping and board finishing. The final transport of the product was studied as a different subsystem, considering scenarios from local to transoceanic distribution and three scenarios of electricity generation profile were assessed. The system was characterised with Ecoindicator 99 methodology (hierarchic version) in order to identify the ‘hot spots’. Damage to Human Health, Ecosystem Quality and Resources are mainly produced by the subsystem of Wood Preparation (91.1%, 94.8% and 94.1%, respectively). The contribution of the subsystem of Board Finishing is considerably lower, but also significant, standing for the 5.8% of the damage to HH and 5.5% of the damage to Resources. Condusions With the final aim of creating a database of wood board manufacture, this work was focused in the identification and characterisation of one of the most important wood-based products: Medium Density Fibreboard. Special attention has been paid in the inventory analysis stage of the MDF industry. The results of the sensitive analysis showed a significant influence of both the final transport of the product and the electricity generation profile. Thus, the location of MDF process is of paramount importance, as both aspects have considerable site-dependence. Recommendations and Perspectives Research continues to be conducted to identify the environmental burdens associated to the materials of extended use. In this sense, future work can be focused on the comparison of different materials for specific applications.  相似文献   

3.
In 1998, the Japan’s Ministry of Economy, Trade, and Industry (METI) launched a five-year national project entitled ‘Development of Life Cycle Impact Assessment for Products’ (commonly known as ‘the LCA Project’). The purpose of the project is to develop common LCA methodology as well as a highly reliable database that can be shared in Japan. Activities over these five years have resulted in the supply of LCI data on some 250 products. Industrial associations voluntarily provided data. The results of these activities are currently being made available on the Internet on a trial basis in the form of an LCA database. In addition, a method entitled ‘Life-cycle Impact assessment Method based on Endpoint modeling (LIME)’ was developed. It is expected that these results will be widely used in Japan in the future. This paper presents an outline of the results of the research and development that has been conducted in the LCA Project in Japan.  相似文献   

4.
If the complexity of real, socio-economic systems is acknowledged, life cycle inventory analysis (LCI) in life cycle assessment (LCA) cannot be considered as unambiguous, objective, and as an exclusively data and science based attribution of material and energy flows to a product. The paper thus suggests a set of criteria for LCI derived from different scientific disciplines, practice of product design and modelling characteristics of LCI and LCA. A product system with its respective LCI supporting the process of effective and efficient decision-making should ideally be: a) complete, operational, decomposable, non-redundant, minimal, and comparable; b) efficient, i.e., as simple, manageable, transparent, cheap, quick, but still as ‘adequate’ as possible under a functionalistic perspective which takes given economic constraints, material and market characteristics, and the goal and scope of the study into account; c) actor-based when reflecting the decision-makers’ action space, risk-level, values, and knowledge (i.e. mental model) in view of the management rules of sustainable development; d) as site- and case-specific as possible, i.e. uses as much site-specific information as possible. This rationale stresses the significance of considering both (i) material and energy flows within the technosphere with regard to the sustainable management rules; (ii) environmental consequences of the environmental interventions on ecosphere. Further, the marginal cost of collecting and computing more and better information about environmental impacts must not exceed the marginal benefits of information for the natural environment. The ratio of environmental benefits to the economic cost of the tool must be efficient compared to other investment options. As a conclusion, in comparative LCAs, the application of equal allocation procedures does not lead to LCA-results on which products made from different materials can be compared in an adequate way. Each product and material must be modelled according to its specific material and market characteristics as well as to its particular management rules for their sustainable use. A generic LCA-methodology including preferences on methodological options is not definable.  相似文献   

5.
Goal and Background  Geographical and technological differences in Life Cycle Inventory data are an important source for uncertainty in the result of Life Cycle Assessments. Knowledge on their impact on the result of an LCA is scarce, and also knowledge on how to manage them in an LCA case study. Objective  Goal of this paper is to explore these differences for municipal solid waste incinerator plants, and to develop recommendations for managing technological and geographical differences. Methodology  The paper provides a definition of technological and geographical differences, and analyses their possible impacts. In a case study, the differences are caused intentionally in ‘games’, by virtually transplanting incineration plants to a different location and by changing parameters such as the composition of the waste input incinerated. The games are performed by using a modular model for municipal solid waste incinerator plants. In each case, an LCA including an Impact Assessment is calculated to trace the impact of these changes, and the results are compared. Conclusions  The conclusions of the paper are two-fold: (1) reduce the differences in inventory data where their impact on the result is high; where it is possible reducing them to a great extent, and the effort for performing the change acceptable; in the case of incineration plants: Adapt the flue gas treatment, especially a possible DeNOx step, to the real conditions; (2) make use of modular process models that allow adapting plant parameters to better meet real conditions, but be aware of possible modelling errors. We invite the scientific community to validate the model used for a waste incinerator plant, and suggest putting up similar models for other processes, preferably those of similar relevance for Life Cycle Inventories.  相似文献   

6.
Data availability and data quality are still critical factors for successful LCA work. The SETAC-Europe LCA Working Group ‘Data Availability and Data Quality’ has therefore focused on ongoing developments toward a common data exchange format, public databases and accepted quality measures to find science-based solutions than can be widely accepted. A necessary prerequisite for the free flow and exchange of life cycle inventory (LCI) data and the comparability of LCIs is the consistent definition, nomenclature, and use of inventory parameters. This is the main subject of the subgroup ‘Recommended List of Exchanges’ that presents its results and findings here:
•  Rigid parameter lists for LCIs are not practical; especially, compulsory lists of measurements for all inventories are counterproductive. Instead, practitioners should be obliged to give the rationale for their scientific choice of selected and omitted parameters. The standardized (not: mandatory!) parameter list established by the subgroup can help to facilitate this.
•  The standardized nomenclature of LCI parameters and the standardized list of measurement bases (units) for these parameters need not be appliedinternally (e.g. in LCA software), but should be adhered to inexternal communications (data for publication and exchange). Deviations need to be clearly stated.
•  Sum parameters may or may not overlap - misinterpretations in either direction introduce a bias of unknown significance in the subsequent life cycle impact assessments (LCIA). The only person who can discriminate unambiguously is the practitioner who measures or calculates such values. Therefore, a clear statement of independence or overlap is necessary for every sum parameter reported.
•  Sum parameters should be only used when the group of emissions as such is measured. Individually measured emission parameters should not be hidden in group or sum parameters.
•  Problematic substances (such as carcinogens, ozone depleting agents and the like) maynever be obscured in group emissions (together with less harmful substances or with substances of different environmental impact), butmust be determined and reported individually, as mentioned in paragraph 3.3 of this article.
•  Mass and energy balances should be carried out on a unit process level. Mass balances should be done on the level of the entire mass flow in a process as well as on the level of individual chemical elements.
•  Whenever possible, practitioners should try to fill data gaps with their knowledge of analogous processes, environmental expert judgements, mass balance calculations, worst case assumptions or similar estimation procedures.
  相似文献   

7.
Goal, Scope and Background The goal of the present paper is to demonstrate how environmental product declarations (EPDs) are developed based on a set of product category rules (PCRs) in accordance with the requirements in the ISO 14025-standard. This is demonstrated by examples from the furniture industry in Norway, where several case models are evaluated. To ease the capability of developing EPDs in this industry, a database with specific environmental data for materials in furniture is developed. The database is used to produce the LCA for selected furniture models, and further, the database is the backbone of a data-assistance tool used to create the EPDs. Methods The LCA-data are produced based on traditional LCA-methodology. The PCR is based on a stakeholder analysis and the proposed methodology in the ISO 14025-standard. The EPDs developed so far, are results of close collaboration between companies and research centres in the Nordic countries. For the verification of the EPDs, auditing methodologies are used as a part of the audit of the companies' environmental management systems (EMS). Results and Conclusion Based on a hearing of a set of suggested PCRs, a consensus document for seating accommodation is developed. This is further the model for how to develop PCR-documents for all types of furniture, for example sleeping accommodations. Likewise, the database shall contain the most important data for the parts of a furniture model. Within the goal of the project period, EPDs will be developed for 80% of Norwegian furniture. The verification of the EPDs is done as a part of the certification procedures of EMS in accordance with the ISO 14001. Recommendation and Perspective The results presented in the paper are mainly for the pilot models in the project. However, the results will be further tested and the data-tool will be developed as a part of a product design tool where environmental requirements will be combined with quality requirements. The product design tool will be implemented in the furniture industry. Information on how to use EPDs in public purchasing will also be a part of future work.  相似文献   

8.
Goal and Background  Geographical and technological differences in Life Cycle Inventory data are an important source for uncertainty in the result of Life Cycle Assessments. Knowledge on their impact on the result of an LCA is scarce, and also knowledge on how to manage them in an LCA case study. Objective  Goal of this paper is to explore these differences for municipal solid waste incinerator plants, and to develop recommendations for managing technological and geographical differences. Methodology  The paper provides a definition of technological and geographical differences, and analyses their possible impacts. In a case study, the differences are caused intentionally in ‘games’, by virtually transplanting incineration plants to a different location and by changing parameters such as the composition of the waste input incinerated. The games are performed by using a modular model for municipal solid waste incinerator plants. In each case, an LCA including an Impact Assessment is calculated to trace the impact of these changes, and the results are compared. Conclusions  The conclusions of the paper are two-fold: (1) reduce the differences in inventory data where their impact on the result is high; where it is possible reducing them to a great extent, and the effort for performing the change acceptable; in the case of incineration plants: Adapt the flue gas treatment, especially a possible DeNOx step, to the real conditions; (2) make use of modular process models that allow adapting plant parameters to better meet real conditions, but be aware of possible modelling errors. The paper invites the scientific community to validate the model used for a waste incinerator plant, and suggest putting up similar models for other processes, preferably those of similar relevance for Life Cycle Inventories.  相似文献   

9.
Goal, Scope and Background  A methodological approach for representing agricultural products in terms of life cycle inventory is suggested in this paper. This approach was developed during the conduction of an LCA study for two perennial crops of important Brazilian exportation products: green coffee and orange juice, which included tillage cultivation by commercial farms, harvest, as well as product processing when pertinent. The published papers on agricultural products LCA usually discuss the final results in terms of LCIA, being not very clear what methodology or principles were applied on the LCI phase. The aim of this paper is to present a simple methodology that would be employed by different stakeholders as farmers, environment managers and decision makers for evaluating the environmental performance of their products. In recent years, many researchers have tried to make a worldwide effort in order to reach comparable results of LCA studies developed in different countries. So, the proposed methodology has also the aim of isolating the site-dependency of the results that are not strictly related to the agricultural production. The time coverage suggested is the period can be considered as an average for the specific tillage under evaluation, usually two crops, since there is a large variation on the inputs in every other crop, including the higher and subsequent lower productive periods. Method  The functional unit recommended is 1,000 kg of the specific product, being recommended to distinguish the energy used for the cultivation from that used by the processing stage. There are several specific considerations to transform the data collected through the questionnaires in an inventory data set of fertilizers (macro and micro nutrients), correctives, fillers and pesticides further detailed. Water used for chemicals preparation, in the cleaning and processing stages of the harvested crop is also considered. Land use refers to the area used land for cultivation divided by the medium life period of the tillage. The stoichiometric balance is performed based on the elementary composition of the products. An average carbohydrate formula is established for the products considering the relationship among the carbon, hydrogen and oxygen contents of them. The carbohydrate formula (output) is balanced with carbon dioxide and water (inputs) according to the basic principles of the photosynthesis reaction. The differences among the mineral composition of the products and the total content of these elements (N, P, K, Ca, Mg and micronutrients elements) for all the crop inputs (fertilizers, pesticides, correctives) are allocated as outputs of the system. The pesticides is counted in two forms: grouped in classes (herbicide, fungicide, acaricide, bactericide and inseticide) and specified by the chemical name of the active ingredient. Results and Discussion  A simplified inventory useful for different purposes is generated with the principles described in this paper. The exact fate of each pesticide, fertilizer or corrective or assumptions can be further associated to impact categories as nutriphication, human health, natural resources depletion, ecological toxicity, etc. In this approach the mass balance was focused in the grain or fruit growth and not in the plant or tree as a whole, considering basically the elementary composition of the product and the photosynthesis principle. Despite agricultural LCAs performed in different countries have been published, neither of them considers the carbon capture by the agricultural products during their growth. Conclusions  This method is based on well accepted universal principles of stoichiometry applied to the grain or fruit growth. Minimum estimations were introduced in this approach, which produces ‘clean inventories’, with comparable results between different studies. The generated inventory can be gradually improved as the understanding about each emission fate is known, producing a valid methodology for actual and future knowledge about the fate of tillage emissions. The inventory results of this method can be employed by different stakeholders as farmers, environment managers, decision makers and traders, with valuable environmental parameters for evaluating the environmental performance of their products and also for introducing improvements on their systems, without however to exhibit any particular data.  相似文献   

10.
Missing inventory estimation tool using extended input-output analysis   总被引:1,自引:0,他引:1  
Intention, Goal, Scope, Background  Input-Output Analysis (IOA) has recently been introduced to Life Cycle Assessment (LCA). In applying IOA to LCA studies, however, it is important to note that there are both advantages and disadvantages. Objectives  This paper aims to provide a better understanding of the advantages and disadvantages of adopting IOA in LCA, and introduces the methodology and principles of the Missing Inventory Estimation Tool (MIET) as one of the approaches to combine the strengths of process-specific LCA and IOA. Additionairy, we try to identify a number of possible errors in the use of IOA for LCA purposes, due to confusion between industry output and commodity, consumer’s price and producer’s price. Method  MIET utilises the 1996 US input-output table and various environmental statistics. It is based on an explicit distinction between commodity and industry output. Results and Discussion  MIET is a self-contained, publicly available database which can be applied directly in LCA studies to estimate missing processes. Conclusion  By adopting MILT results in existing, process-based, life-cycle inventory (LCI), LCA practitioners can fully utilise the process-specific information while expanding the system boundary. Recommendations and Outlook  MIET will be continuously updated to reflect both methodological developments and newly available data sources. For supporting information sec http:// wwwJeidenuniv.nl/cml/ssp/softwarc/miet.  相似文献   

11.
高凡  闫正龙  黄强 《生态学报》2011,31(21):6363-6370
流域尺度海量生态环境数据库构建是生态环境精准化研究的基础。以塔里木河流域生态环境数据库构建为例,对流域尺度海量生态环境数据建库的无缝数据拼接、建库规范设计、要素代码设计、空间索引设计、特征展示表及一键入库设计等关键技术进行了探讨。针对流域跨带裂缝问题,从缝隙源出发,通过分离物理数据层和逻辑数据层并区分矢量数据和栅格数据,在统一的多尺度空间框架体系下实现了海量数据的跨带无缝拼接;数据库规范设计和要素代码设计是数据入库前的关键工作,针对流域实际,分别采用规范化英文字母和图形数据比例尺设置数据库命名规范和建立代码标准;在ArcSDE框架下,采用格网索引设计和多级金字塔结构分别构建矢量数据和栅格数据的空间索引,提高了数据的快速检索和浏览;通过建立特征展示表并提出"一键入库"策略,提高了系统响应及数据入库效率等。通过构建流域尺度海量生态环境数据库系统,实现了流域尺度多源、多类型、跨带海量生态环境数据的有效存储和管理,为流域一体化管理和生态环境研究提供了基础数据支撑。  相似文献   

12.
Modelling data uncertainty is not common practice in life cycle inventories (LCI), although different techniques are available for estimating and expressing uncertainties, and for propagating the uncertainties to the final model results. To clarify and stimulate the use of data uncertainty assessments in common LCI practice, the SETAC working group ‘Data Availability and Quality’ presents a framework for data uncertainty assessment in LCI. Data uncertainty is divided in two categories: (1) lack of data, further specified as complete lack of data (data gaps) and a lack of representative data, and (2) data inaccuracy. Filling data gaps can be done by input-output modelling, using information for similar products or the main ingredients of a product, and applying the law of mass conservation. Lack of temporal, geographical and further technological correlation between the data used and needed may be accounted for by applying uncertainty factors to the non-representative data. Stochastic modelling, which can be performed by Monte Carlo simulation, is a promising technique to deal with data inaccuracy in LCIs.  相似文献   

13.
A survey of unresolved problems in life cycle assessment   总被引:2,自引:2,他引:0  
Background, aims, and scope  Life cycle assessment (LCA) stands as the pre-eminent tool for estimating environmental effects caused by products and processes from ‘cradle to grave’ or ‘cradle to cradle.’ It exists in multiple forms, claims a growing list of practitioners, and remains a focus of continuing research. Despite its popularity and codification by organizations such as the International Organization for Standards and the Society of Environmental Toxicology and Chemistry, life cycle assessment is a tool in need of improvement. Multiple authors have written about its individual problems, but a unified treatment of the subject is lacking. The following literature survey gathers and explains issues, problems and problematic decisions currently limiting LCA’s goal and scope definition and life cycle inventory phases. Main features  The review identifies 15 major problem areas and organizes them by the LCA phases in which each appears. This part of the review focuses on the first 7 of these problems occurring during the goal and scope definition and life cycle inventory phases. It is meant as a concise summary for practitioners interested in methodological limitations which might degrade the accuracy of their assessments. For new researchers, it provides an overview of pertinent problem areas toward which they might wish to direct their research efforts. Results and discussion  Multiple problems occur in each of LCA’s four phases and reduce the accuracy of this tool. Considering problem severity and the adequacy of current solutions, six of the 15 discussed problems are of paramount importance. In LCA’s first two phases, functional unit definition, boundary selection, and allocation are critical problems requiring particular attention. Conclusions and recommendations  Problems encountered during goal and scope definition arise from decisions about inclusion and exclusion while those in inventory analysis involve flows and transformations. Foundational decisions about the basis of comparison (functional unit), bounds of the study, and physical relationships between included processes largely dictate the representativeness and, therefore, the value of an LCA. It is for this reason that problems in functional unit definition, boundary selection, and allocation are the most critical examined in the first part of this review.
Bert BrasEmail:
  相似文献   

14.
Background, Goal and Scope  The research presented here represents one part of GlaxoSmithKline’s (GSK) efforts to identify and improve the life cycle impact profile of pharmaceutical products. The main goal of this work was to identify and analyze the cradle-to-gate environmental impacts in the synthesis of a typical Active Pharmaceutical Ingredient (API). A cradle-to-gate life cycle assessment of a commercial pharmaceutical product is presented as a case study. Methods  Life cycle inventory data were obtained using a modular gate-to-gate methodology developed in partnership with North Carolina State University (NCSU) while the impact assessment was performed utilizing GSK’s sustainability metrics methodology. Results and Discussion  Major contributors to the environmental footprint of a typical pharmaceutical product were identified. The results of this study indicate that solvent use accounts for a majority of the potential cradle-to-gate impacts associated with the manufacture of the commercial pharmaceutical product under study. If spent solvent is incinerated instead of recovered the life-cycle profile and impacts are considerably increased. Conclusions  This case study provided GSK with key insights into the life-cycle impacts of pharmaceutical products. It also helped to establish a well-documented approach to using life cycle within GSK and fostered the development of a practical methodology that is applicable to strategic decision making, internal business processes and other processes and tools.  相似文献   

15.
The conservation of individual plant and animal species has been advanced greatly by the World Conservation Union’s (IUCN) development of objective, repeatable, and transparent criteria for assessing extinction risk, which explicitly separate the process of risk assessment from priority-setting. Here we present an analogous procedure for assessing the extinction risk of terrestrial ecosystems, which may complement traditional species-specific risk assessments, or may provide an alternative when only landscape-level data are available. We developed four quantitative risk criteria, derived primarily from remotely sensed spatial data, information on one of which must be available to permit classification. Using a naming system analogous to the present IUCN species-specific system, our four criteria were: (A) reduction of land cover and continuing threat, (B) rapid rate of land cover change, (C) increased fragmentation, and (D) highly restricted geographical distribution. We applied these criteria to five ecosystems covering a range of spatial and temporal scales, regions of the world, and ecosystem types, and found that Indonesian Borneo’s lowland tropical forests and the Brazilian Atlantic rainforest were Critically Endangered, while South Africa’s grasslands and Brazil’s Mato Grosso were Vulnerable. Furthermore, at a finer grain of analysis, one region of Venezuela’s coastal dry forests (Margarita Island) qualified as Vulnerable, while another (the Guasare River watershed) was Critically Endangered. In northern Venezuela, deciduous forests were classified as Endangered, semi-deciduous forests Vulnerable, and evergreen forests of Least Concern. We conclude that adoption of such a standardized system will facilitate globally comparable, repeatable geographic analyses that clearly separate risk assessment (a fundamentally scientific process), from the definition of conservation priorities, which should take into account additional factors, such as ecological distinctiveness, costs, logistics, likelihood of success, and societal preferences. Jon Paul Rodríguez and Jennifer K. Balch are contributed equally to this work  相似文献   

16.
Information obtained from Nuclear Magnetic Resonance (NMR) experiments is encoded as a set of constraint lists when calculating three-dimensional structures for a protein. With the amount of constraint data from the world wide Protein Data Bank (wwPDB) that is now available, it is possible to do a global, large-scale analysis using only information from the constraints, without taking the coordinate information into account. This article describes such an analysis of distance constraints from NOE data based on a set of 1834 NMR PDB entries containing 1909 protein chains. In order to best represent the quality and extent of the data that is currently deposited at the wwPDB, only the original data as deposited by the authors was used, and no attempt was made to ‘clean up’ and further interpret this information. Because the constraint lists provide a single set of data, and not an ensemble of structural solutions, they are easier to analyse and provide a reduced form of structural information that is relevant for NMR analysis only. The online resource resulting from this analysis () makes it possible to check, for example, how often a particular contact occurs when assigning NOESY spectra, or to find out whether a particular sequence fragment is likely to be difficult to assign. In this respect it formalises information that scientists with experience in spectrum analysis are aware of but cannot necessarily quantify. The analysis described here illustrates the importance of depositing constraints (and all other possible NMR derived information) along with the structure coordinates, as this type of information can greatly assist the NMR community.  相似文献   

17.
18.
Cradle-to-gate study of red clay for use in the ceramic industry   总被引:2,自引:1,他引:1  
Background, Goal and Scope  The ceramic tile industry is one of the most important industries in Spain, with the highest concentration of firms to be found in the province of Castellón on the Mediterranean coast. The basic input material for this industry is red clay. The aim of this study was to carry out an LCA of the process of mining, treating and marketing this clay in order to identify the stages and unit processes that have the greatest impact on the environment. This LCA examines all the stages of the red clay from cradle to the customer’s gate, including the process of mining and treating the clay in the mining facilities and its later distribution to end users. Methods  Life cycle inventory (LCI): An exhaustive LCI was performed by collecting data from the mine run by Watts Blake Bearne Spain, S.A. (WBB-Spain) in Castellón. Inputs and outputs were collected for all the unit processes involved in the mining, treatment and marketing of the clay:
–  Mining the clay, which embraces the unit processes of removing the layer of vegetation covering the chosen area, preparing the area to allow access for the firm’s vehicles, and boring or blasting the place the clay is to be extracted from.
–  Treating the clay that is mined to make the finished product, which entails all unit processes required to separate out the waste material and transport it to the tip (which will later be reconditioned), excavating and transporting the clay to the crushing plant and later storing it in heaps before delivery to customers. All the internal transport that takes place between each unit process has also considered.
–  Distribution of the final product, where the clay is loaded onto dumper trucks and delivered to the customer.
Life cycle impact assessment (LCIA): According to ISO 1404X standards, the LCIA is performed at two levels. Firstly, the emissions accounted for in the inventory stage are sorted into impact categories to obtain an indicator for each category (mandatory elements). Secondly, the weighting of environmental data to a single unit is applied (optional elements). In compliance with ISO 14042, a sensitivity analysis is performed and three different impact assessment methods (Eco-Indicator’95, Eco-Indicator’99 and EPS’2000) are applied in order to analyse their influence on the results. Results  The processes that involve the movement of clay within the mine (excavation and loading and transport to the crushing facilities and heaps) are the ones that make the greatest contribution to impact categories for pollutant emissions. As weighting methods in LCA remain a controversial issue, a recommendation when robust results are required, can be to use several methods to examine the sensitivity of the results to different values and worldviews. In our application case, in spite of the differences between the three impact assessment methods applied (Eco-Indicator’95, Eco-Indicator’99 and EPS’2000), the same conclusions can be established from the environmental point of view and we can conclude that the ultimate results are not sensitive in the transformation of mid-points to end-points. Discussion  Taking into account the characteristics of the product being analysed, in addition to the impact categories for pollutant emissions that are traditionally considered in LCA studies, environmental parameters related to resource use (fuel, electricity and water consumption), waste generation (dangerous and non-dangerous wastes) and land use (natural resource appreciation and land use efficiency) and its later rehabilitation (degree of rehabilitation) have been defined. These parameters can be used as additional criteria for an environmental product declaration or criteria for a future eco-labelling of red clay. Conclusion  The results of this study made it possible to identify the unit processes that make the greatest contribution to environmental impact that being, specifically, excavation and loading and transport to the crushing facilities and heaps. Such processes are directly related to the fuel consumption, category that faithfully reproduces the environmental profile of most of the impact categories related to pollution emissions. Special interest has the consideration of additional parameters to quantify the land use and its later rehabilitation. Recommendations  The ceramic tile industry has a basis to market and promote tile products with improved environmental impacts. Given that transport and extraction are dominant underlying issues, it is quite likely that such environmental improvements are also win-win in the economic sense. The availability of exhaustive life cycle inventories is the key to allow this industry to, rapidly, incorporate LCA during product development. Complimentary life cycle costings would also be relatively minimal in terms of effort. Perspectives  Although this study performs the LCI for the basic raw material (clay), future studies should be conducted to complete an LCI for the remaining elements employed by the ceramic tile industry, with the aim of developing a characteristic LCI database for this industry. This includes data on raw materials (feldspar, silicious and feldspars sand, boron, glaze, frit, etc.) and processes (enamelling, firing, water waste treatment, etc.).  相似文献   

19.
Chinese medicine emphasizes the underlying connection of the bodily, emotional, social, and environmental dimensions in illness experience and healing. The therapeutic process, characterized as tiao (attuning, balancing), targets the patient’s overall illness condition and experience including both physical and nonphysical aspects of suffering. This study, incorporating techniques of microanalysis as an ethnographic tool and using an actual recorded clinical interaction as data, analyzes how the path to effective healing is negotiated among multiple clinical realities at a clinic of Chinese medicine in Beijing. A close examination of interactive features of actual face-to-face communication between a doctor and a patient in a specific case of “stagnation of emotions” reveals that, for an illness recognized in Chinese medicine as originating from disordered emotions, adjustment of the patient’s perceptions of reality and social relations is particularly salient in the “attuning” process. Efficacy then should be understood as more than physiological changes produced by herbs, but also as emergent through an interactive event of clinical encounters. This study demonstrates empirically how the clinical process of Chinese medicine works to define and transform the patient’s emotions and experience.  相似文献   

20.
The purification of clavulanic acid (CA), which is an important β-lactam antibiotic produced by submerged cultivation of Streptomyces clavuligerus, was studied through the use of phosphate and polyethylene glycol-based aqueous two-phase systems. The parameters’ effect on the yield and purification was evaluated through an experimental design and the preliminary results showed that the polyethylene molecular mass and tie-line length and phase volume ratio exerted the strongest effect on the yield and distribution coefficient in the range tested. In addition, the response surface methodology was used to optimize the distribution coefficient, yield, and purification factor. The optimal conditions of yield and purification factor are in the regions where polyethylene has a low molecular mass, pH close to the isoelectric point, and lower top phase volume. A 100% yield and a 1.5-fold purification factor are obtained when extracting CA by maximizing the conditions of an aqueous two-phase system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号