首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have isolated 15 spontaneous mutants resistant to one or several antibiotics like chloramphenicol, erythromycin and spiramycin. We have shown by several criteria that all of them result from mutations localized in the mitochondrial DNA. The mutations have been mapped by allelism tests and by two- and three-factor crosses involving various configurations of resistant and sensitive alleles associated in cis or in trans with the mitochondrial locus omega which governs the polarity of genetic recombination. A general mapping procedure based on results of heterosexual (omega(+)x omega(-)) crosses and applicable to mutations localized in the polar segment is described and shown to be more resolving than that based on results of homosexual crosses. Mutations fall into three loci which are all linked and map in the following order: omega-R(I)-R(II)-R(III). The first locus is very tightly linked with omega while the second is less linked to the first. Mutations of similar resistance phenotype can belong to different loci and different phenotypes to the same locus. Mutations confer antibiotic resistance on isolated mitochondrial ribosomes and delineate a ribosomal segment of the mitochondrial DNA. Homo- and hetero-sexual crosses between mutants of the ribosomal segment and those belonging to the genetically unlinked ATPase locus, O(I), have been performed in various allele configurations. The polarity of recombination between R(I), R(II), R(III) and O(I) decreases as a function of the distance of the R locus from the omega locus rather than as a function of the distance of the R locus from the O(I) locus.  相似文献   

3.
Molecular analysis of the para locus, a sodium channel gene in Drosophila   总被引:26,自引:0,他引:26  
K Loughney  R Kreber  B Ganetzky 《Cell》1989,58(6):1143-1154
  相似文献   

4.
Caulobacter crescentus strains requiring isoleucine and valine (ilv) for growth were shown by transduction and pulsed-field gel electrophoresis to contain mutations at one of two unlinked loci, ilvB and ilvD. Other C. crescentus strains containing mutations at a third locus, ilvA, required either isoleucine or methionine for growth. Biochemical assays for threonine deaminase, acetohydroxyacid synthase, and dihydroxyacid dehydratase demonstrated that the ilvA locus encodes threonine deaminase, the ilvB locus encodes acetohydroxyacid synthase, and the ilvD locus encodes dihydroxyacid dehydratase. C. crescentus strains resistant to the herbicide sulfometuron methyl, which is known to inhibit the action of certain acetohydroxyacid synthases in a variety of bacteria and plants, were shown to contain mutations at the ilvB locus, further suggesting that an acetohydroxyacid synthase gene resides at this locus. Two recombinant plasmids isolated in our laboratory, pPLG389 and pJCT200, were capable of complementing strains containing the ilvB and ilvD mutations, respectively. The DNA in these plasmids hybridized to the corresponding genes of Escherichia coli and Serratia marcescens, confirming the presence of ilvB-like and ilvD-like DNA sequences at the ilvB and ilvD loci, respectively. However, no hybridization was observed between any of the other enteric ilv genes and C. crescentus DNA. These results suggest that C. crescentus contains an isoleucine-valine biosynthetic pathway which is similar to the corresponding pathway in enteric bacteria but that only the ilvB and ilvD genes contain sequences which are highly conserved at the DNA level.  相似文献   

5.
The zebrafish is a powerful experimental system for uncovering gene function in vertebrate organisms. Nevertheless, studies in the zebrafish have been limited by the approaches available for eliminating gene function. Here we present simple and efficient methods for inducing, detecting, and recovering mutations at virtually any locus in the zebrafish. Briefly, double-strand DNA breaks are induced at a locus of interest by synthetic nucleases, called TALENs. Subsequent host repair of the DNA lesions leads to the generation of insertion and deletion mutations at the targeted locus. To detect the induced DNA sequence alterations at targeted loci, genomes are examined using High Resolution Melt Analysis, an efficient and sensitive method for detecting the presence of newly arising sequence polymorphisms. As the DNA binding specificity of a TALEN is determined by a custom designed array of DNA recognition modules, each of which interacts with a single target nucleotide, TALENs with very high target sequence specificities can be easily generated. Using freely accessible reagents and Web-based software, and a very simple cloning strategy, a TALEN that uniquely recognizes a specific pre-determined locus in the zebrafish genome can be generated within days. Here we develop and test the activity of four TALENs directed at different target genes. Using the experimental approach described here, every embryo injected with RNA encoding a TALEN will acquire targeted mutations. Multiple independently arising mutations are produced in each growing embryo, and up to 50% of the host genomes may acquire a targeted mutation. Upon reaching adulthood, approximately 90% of these animals transmit targeted mutations to their progeny. Results presented here indicate the TALENs are highly sequence-specific and produce minimal off-target effects. In all, it takes about two weeks to create a target-specific TALEN and generate growing embryos that harbor an array of germ line mutations at a pre-specified locus.  相似文献   

6.
Null mutations at the polyhomeotic locus of Drosophila produce a complex phenotype during embryogenesis, which includes death of the ventral epidermis, misregulation of homeotic and segmentation gene expression, and global misrouting of CNS axons. It is shown here, through the use of mosaic analyses, double mutant combinations, and in vitro culture experiments, that all aspects of the phenotype with the exception of the axonal phenotype are cell autonomous. The changes in homeotic and segmentation gene expression in the CNS are not caused by death of the ventral epidermis, but are cell autonomous effects which most likely cause changes in neuronal cell identity. The axonal phenotype associated with ph mutations is also independent of epidermal cell death, but may be due to the nonautonomous effects of altered neuronal identities or to death or transformation of some as yet unidentified cell type. Despite the apparent autonomy of the ph mutation, mutant neurons can influence the development of adjacent wild-type neurons, presumably by depriving them of their normal fasciculation partners.  相似文献   

7.
8.
9.
10.
We have undertaken a developmental genetic analysis of the homeotic gene Sex combs reduced (Scr) of Drosophila melanogaster by examining embryonic and adult phenotypes of mutations affecting Scr gene function. Molecular mapping of Scr breakpoint lesions has defined a segment of greater than 70 kb of DNA necessary for proper Scr gene function. This region is split by the fushi tarazu (ftz) gene, with lesions affecting embryonic Scr function molecularly mapping to the region proximal (5') to ftz and those exhibiting polyphasic semilethality predominantly mapping distal (3') to ftz. Gain-of-function mutations are associated with genomic rearrangements and map throughout the Scr locus. Our analysis has revealed that the Scr locus encompasses genetic elements that are responsible for functions in both the embryonic and larval to adult periods of development. From these studies, we conclude that Scr is a complex genetic locus with an extensive regulatory region that directs functions required for normal head and thoracic development in both the embryo and the adult and that the regulation of Scr during these two periods is distinct.  相似文献   

11.
12.
13.
We have recently isolated two Arabidopsis thaliana DNA hypomethylation mutations, identifying the DDM1 locus, that cause a 70% reduction in genomic 5-methylcytosine levels [1]. Here we describe further phenotypic and biochemical characterization of the ddm1 mutants. ddm1/ddm1 homozygotes exhibited altered leaf shape, increased cauline leaf number, and a delay in the onset of flowering when compared to non-mutant siblings in a segregating population. Our biochemical characterization investigated two possible mechanisms for DNA hypomethylation. In order to see if ddm1 mutations affect DNA methyltransferase function, we compared DNA methyltransferase activities in extracts from wild-type and ddm1 mutant tissues. The ddm1 mutant extracts had as much DNA methyltransferase activity as that of the wild-type for both the CpI and CpNpG substrates suggesting that the DDM1 locus does not encode a DNA methyltransferase. Moreover, the ddm1 mutations did not affect the intracellular level of S-adenosylmethionine, the methyl group donor for DNA methylation. The possibility that the DDM1 gene product functions as a modifier of DNA methylation is discussed.  相似文献   

14.
Molecular organization of the cut locus of Drosophila melanogaster   总被引:21,自引:0,他引:21  
J W Jack 《Cell》1985,42(3):869-876
Mutations of the cut locus (ct) of Drosophila can be divided into four groups based on their phenotypes and complementation patterns. Each group alters the phenotype of a different set of tissues. Two hundred kilobases of ct DNA, located in 7B1-2, have been cloned by chromosomal walking, and the cloned sequences have been used to analyze more than 40 mutants. Based on the location of transposable element mutations and the extent of deficiencies and an inversion, four cut locus regions can be defined. Mutations in each region affect the phenotype of a different set of tissues. The most centromere proximal region contains mutations that are null for cut locus function. Within individual regions, a higher level of organization can be detected.  相似文献   

15.
A. Degelmann  P. A. Hardy    A. P. Mahowald 《Genetics》1990,126(2):427-434
We have analyzed female-sterile mutations at the X-linked loci fs(1)Nas and fs(1)ph which show allele-specific effects on egg shell structure and embryonic pattern formation. The majority of mutant alleles at both loci lead to a collapsed egg phenotype. The maternal effect lethal phenotype is characterized by cuticle defects resembling those found in three autosomal mutants of the terminal class. We have analyzed the complementation behavior of various heteroallelic combinations at both loci and show that one such combination at the fs(1)Nas locus is capable of restoring normal fertility. We have investigated possible interactions between fs(1)Nas and fs(1)ph and also between the terminal allele of fs(1)Nas and various maternal effect mutations altering the anteroposterior polarity of embryos. We have isolated one new allele of fs(1)Nas which combines the locus-typical phenotypic features with novel cuticle phenotypes. Our results suggest that the products of fs(1)Nas and fs(1)ph are required for the stability of the vitelline membrane and are also involved in a morphogenetic pathway necessary for the correct differentiation of the terminal regions of the embryo. Possible mechanisms to account for the association of these two functions are discussed.  相似文献   

16.
17.
18.
A nonpolymorphic class I gene in the murine major histocompatibility complex   总被引:33,自引:0,他引:33  
A L Mellor  E H Weiss  M Kress  G Jay  R A Flavell 《Cell》1984,36(1):139-144
DNA sequence analysis of a class I gene (Q10), which maps to the Qa2,3 locus in the C57BL/10 (H-2b haplotype) mouse, reveals that it is almost identical to a cDNA clone (pH16) isolated from a SWR/J (H-2q haplotype) mouse liver cDNA library. Exon 5, in particular, has an unusual structure such that a polypeptide product is unlikely to be anchored in the cell membrane. Our findings suggest that the two sequences are derived from allelic class I genes, which are nonpolymorphic, in contrast to H-2K allelic sequences from the same mice, and they may encode liver-specific polypeptides of unknown function. Our previous studies indicate that the Q10 gene is a potential donor gene for the generation of mutations at the H-2K locus by inter-gene transfer of genetic information. Thus the lack of polymorphism in class I genes at the Q10 locus implies either that they are not recipients for such exchanges or that selective pressure prevents the accumulation of mutations in genes at this locus.  相似文献   

19.
A transposon Tn10 insertion in topA, the structural gene of Escherichia coli DNA topoisomerase I, behaves as an excluded marker in genetic crosses with many strains of E. coli. However, derivative strains that accept this mutant topA allele are readily selected. We show that many of these topA mutant strains contain additional mutations that compensate for the loss of DNA topoisomerase I. Genetic methods for mapping and manipulating such compensatory mutations are described. These methods include a plate-mating test for the ability of strains to accept a topA::Tn10 allele and a powerful indirect selection for transferring compensatory mutations from male strains into non-compensatory female strains. One collection of spontaneous compensatory mutants is analyzed in detail and is shown to include compensatory mutations at three distinct loci: gyrA and gyrB, the genes that encode the subunits of DNA gyrase, and a previously unidentified locus near tolC. Mutations at this third locus, referred to as toc (topoisomerase one compensatory) mutations, do not behave as point mutations in transductional crosses and do not result in lowered DNA gyrase activity. These results show that wild-type strains of E. coli require DNA topoisomerase I, and at least one class of compensatory mutations can relieve this requirement by a mechanism other than reduction of DNA gyrase activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号