共查询到20条相似文献,搜索用时 15 毫秒
1.
Yinfeng Bao Duoqian Dai Xiaohong Zhu Yanqiu Hu Yaping Qiu 《Journal of receptor and signal transduction research》2013,33(5-6):413-431
AbstractThe 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) is a master regulator of glycolysis in cancer cells by synthesizing fructose-2,6-bisphosphate (F-2,6-BP), a potent allosteric activator of phosphofructokinase-1 (PFK-1), which is a rate-limiting enzyme of glycolysis. PFKFB3 is an attractive target for cancer treatment. It is valuable to discover promising inhibitors by using 3D-QSAR pharmacophore modeling, virtual screening, molecular docking and molecular dynamics simulation. Twenty molecules with known activity were used to build 3D-QSAR pharmacophore models. The best pharmacophore model was ADHR called Hypo1, which had the highest correlation value of 0.98 and the lowest RMSD of 0.82. Then, the Hypo1 was validated by cost value method, test set method and decoy set validation method. Next, the Hypo1 combined with Lipinski's rule of five and ADMET properties were employed to screen databases including Asinex and Specs, total of 1,048,159 molecules. The hits retrieved from screening were docked into protein by different procedures including HTVS, SP and XP. Finally, nine molecules were picked out as potential PFKFB3 inhibitors. The stability of PFKFB3-lead complexes was verified by 40?ns molecular dynamics simulation. The binding free energy and the energy contribution of per residue to the binding energy were calculated by MM-PBSA based on molecular dynamics simulation. 相似文献
2.
《Bioorganic & medicinal chemistry letters》2014,24(16):3869-3876
3-Hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR) is generally regarded as targets for the treatment of hypercholesterolemia. HMGR inhibitors (more commonly known as statins) are discovered as plasma cholesterol lowering molecules. In this work, 120 atorvastatin analogues were studied using a combination of molecular modeling techniques including three-dimensional quantitative structure–activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulation. The results show that the best CoMFA (comparative molecular field analysis) model has q2 = 0.558 and r2 = 0.977, and the best CoMSIA (comparative molecular similarity indices analysis) model has q2 = 0.582 and r2 = 0.919. Molecular docking and MD simulation explored the binding relationship of the ligand and the receptor protein. The calculation results indicated that the hydrophobic and electrostatic fields play key roles in QSAR model. After MD simulation, we found four vital residues (Lys735, Arg590, Asp690 and Asn686) and three hydrophobic regions in HMGR binding site. The calculation results show that atorvastatin analogues obtained by introduction of F atoms or gem-difluoro groups could obviously improve the inhibitory activity. The new HMGR inhibitor analogues design in this Letter had been submitted which is being currently synthesized by our laboratories. 相似文献
3.
Li Q Kong X Xiao Z Zhang L Wang F Zhang H Li Y Wang Y 《Journal of molecular modeling》2012,18(6):2279-2289
Nicotinic acetylcholine receptor (nAChR) is a target for insect-selective neonicotinoid insecticides (NNs), exemplified by imidacloprid (IMI). In the present study, 78 IMI derivatives reported as inhibitors of Drosophila melanogaster nAChR (Dm-nAChR) and Musca domestica nAChR (Md-nAChR) were used for three-dimensional quantitative structure-activity relationship (3D-QSAR) studies. Two optimal models with good predictive power were obtained: Q(2) = 0.64, R(2)(pred) = 0.72 for Dm-nAChR, and Q(2) = 0.63, R(2)(pred) = 0.62 for Md-nAChR. In addition, homology modeling, molecular dynamic (MD) simulation, and molecular docking also showed that amino acids located within loops A, C, D and E play key roles in the interaction of Dm-/Md-nAChR with NNs. This is highly consistent with the results of graphical analysis of 3D-QSAR contour plots. Mutation analysis also implicates the Y/S mutation within loop B as being associated closely with NN resistance in Drosophila and Musca. The results obtained lead to a better understanding not only of interactions between these antagonists and Dm-/Md-nAChR, but also of the essential features that should be considered when designing novel inhibitors with desired activities. 相似文献
4.
5.
Srilata Ballu Ramesh Itteboina Sree Kanth Sivan 《Journal of receptor and signal transduction research》2018,38(1):61-70
Filamentous temperature-sensitive protein Z (FtsZ) is a protein encoded by the FtsZ gene that assembles into a Z-ring at the future site of the septum of bacterial cell division. Structurally, FtsZ is a homolog of eukaryotic tubulin but has low sequence similarity; this makes it possible to obtain FtsZ inhibitors without affecting the eukaryotic cell division. Computational studies were performed on a series of substituted 3-arylalkoxybenzamide derivatives reported as inhibitors of FtsZ activity in Staphylococcus aureus. Quantitative structure-activity relationship models (QSAR) models generated showed good statistical reliability, which is evident from r2ncv and r2loo values. The predictive ability of these models was determined and an acceptable predictive correlation (r2Pred) values were obtained. Finally, we performed molecular dynamics simulations in order to examine the stability of protein-ligand interactions. This facilitated us to compare free binding energies of cocrystal ligand and newly designed molecule B1. The good concordance between the docking results and comparative molecular field analysis (CoMFA)/comparative molecular similarity indices analysis (CoMSIA) contour maps afforded obliging clues for the rational modification of molecules to design more potent FtsZ inhibitors. 相似文献
6.
Naga Srinivas Tripuraneni 《Journal of biomolecular structure & dynamics》2016,34(11):2481-2492
Phosphodiesterases 4 enzyme is an attractive target for the design of anti-inflammatory and bronchodilator agents. In the present study, pharmacophore and atom-based 3D-QSAR studies were carried out for pyrazolopyridine and quinoline derivatives using Schrödinger suite 2014-3. A four-point pharmacophore model was developed using 74 molecules having pIC50 ranging from 10.1 to 4.5. The best four feature model consists of one hydrogen bond acceptor, two aromatic rings, and one hydrophobic group. The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a high correlation coefficient (R2?=?.9949), cross validation coefficient (Q2?=?.7291), and Pearson-r (.9107) at six component partial least square factor. The external validation indicated that our QSAR model possessed high predictive power with R2 value of .88. The generated model was further validated by enrichment studies using the decoy test. Molecular docking, free energy calculation, and molecular dynamics (MD) simulation studies have been performed to explore the putative binding modes of these ligands. A 10-ns MD simulation confirmed the docking results of both stability of the 1XMU–ligand complex and the presumed active conformation. Outcomes of the present study provide insight in designing novel molecules with better PDE4 inhibitory activity. 相似文献
7.
Yaping Qiu Yanqiu Hu Yinfeng Bao 《Journal of receptor and signal transduction research》2019,39(2):154-166
Filamentous temperature-sensitive protein Z (FtsZ), playing a key role in bacterial cell division, is regarded as a promising target for the design of antimicrobial agent. This study is looking for potential high-efficiency FtsZ inhibitors. Ligand-based pharmacophore and E-pharmacophore, virtual screening and molecular docking were used to detect promising FtsZ inhibitors, and molecular dynamics simulation was used to study the stability of protein-ligand complexes in this paper. Sixty-three inhibitors from published literatures with pIC50 ranging from 2.483 to 5.678 were collected to develop ligand-based pharmacophore model. 4DXD bound with 9PC was selected to develop the E-pharmacophore model. The pharmacophore models validated by test set method and decoy set were employed for virtual screening to exclude inactive compounds against ZINC database. After molecular docking, ADME analysis, IFD docking and MM-GBSA, 8 hits were identified as potent FtsZ inhibitors. A 50?ns molecular dynamics simulation was implemented on the compounds to assess the stability between potent inhibitors and FtsZ. The results indicated that the candidate compounds had a high docking score and were strongly combined with FtsZ by forming hydrogen bonding interactions with key amino acid residues, and van der Waals forces and hydrophobic interactions had significant contribution to the stability of the binding. Molecular dynamics simulation results showed that the protein-ligand compounds performed well in both the stability and flexibility of the simulation process. 相似文献
8.
As a tumor suppressor, p53 protein regulates the cell cycle and is involved in preventing tumorgenesis. The protein level
of p53 is under the tight control of its negative regulator human double minute 2 (HDM2) via ubiquitination. Therefore, the design of inhibitors of HDM2 has attracted much interest of research on developing novel anticancer drugs. Presently, two classes of molecules, i.e.,
the 1,4-benzodiazepine-2,5-diones (BDPs) and N-Acylpolyamine (NAPA) derivatives were studied by three-dimensional quantitative
structure–activity relationship (3D-QSAR) modeling approaches including the comparative molecular field analysis (CoMFA) and
comparative molecular similarity index analysis (CoMSIA) as promising p53-HDM2 inhibitors. Based on both the ligand-based and receptor-guided (docking) alignments, two optimal 3D-QSAR models were obtained
with good predictive power of q
2 = 0.41, r
2
pred = 0.60 for BDPs, and q
2 = 0.414, r
2
pred = 0.69 for NAPA analogs, respectively. By analysis of the model and its related contour maps, it is revealed that the electrostatic
interactions contributed much larger to the compound binding affinity than the steric effects. And the contour maps intuitively
suggested where to modify the molecular structures in order to improve the binding affinity. In addition, molecular dynamics
simulation (MD) study was also carried out on the dataset with purpose of exploring the detailed binding modes of ligand in
the HDM2 binding pocket. Based on the CoMFA contour maps and MD-based docking analyses, some key structural aspects responsible for
inhibitory activity of these two classes of compounds were concluded as follows: For BDPs, the R1 and R3 regions should have small electronegativity groups; substituents R2 and R4 should be larger, and R3 substituent mainly involves in H-bonds forming. For NAPA derivatives, bulky and electropositive groups in ring B and ring
A, small substituent at region P is favorable for the inhibitory activity. The models and related information, we hope, may
provide important insight into the inhibitor-p53-HDM2 interactions and be helpful for facilitating the design of novel potent inhibitors. 相似文献
9.
10.
11.
Swayansiddha Tripathy Mohammed Afzal Azam Srikanth Jupudi 《Journal of biomolecular structure & dynamics》2013,31(12):3218-3230
FtsZ is an appealing target for the design of antimicrobial agent that can be used to defeat the multidrug-resistant bacterial pathogens. Pharmacophore modelling, molecular docking and molecular dynamics (MD) simulation studies were performed on a series of three-substituted benzamide derivatives. In the present study a five-featured pharmacophore model with one hydrogen bond acceptors, one hydrogen bond donors, one hydrophobic and two aromatic rings was developed using 97 molecules having MIC values ranging from .07 to 957 μM. A statistically significant 3D-QSAR model was obtained using this pharmacophore hypothesis with a good correlation coefficient (R2 = .8319), cross validated coefficient (Q2 = .6213) and a high Fisher ratio (F = 103.9) with three component PLS factor. A good correlation between experimental and predicted activity of the training (R2 = .83) and test set (R2 = .67) molecules were displayed by ADHRR.1682 model. The generated model was further validated by enrichment studies using the decoy test and MAE-based criteria to measure the efficiency of the model. The docking studies of all selected inhibitors in the active site of FtsZ protein showed crucial hydrogen bond interactions with Val 207, Asn 263, Leu 209, Gly 205 and Asn-299 residues. The binding free energies of these inhibitors were calculated by the molecular mechanics/generalized born surface area VSGB 2.0 method. Finally, a 15 ns MD simulation was done to confirm the stability of the 4DXD–ligand complex. On a wider scope, the prospect of present work provides insight in designing molecules with better selective FtsZ inhibitory potential. 相似文献
12.
Mohammed Afzal Azam Srikanth Jupudi 《Journal of receptor and signal transduction research》2017,37(5):522-534
The discovery of clinically relevant inhibitors against MurF enzyme has proven to be a challenging task. In order to get further insight into the structural features required for the MurF inhibitory activity, we performed pharmacophore and atom-based three-dimensional quantitative structure–activity relationship studies for novel thiophene-3-carbonitriles based MurF inhibitors. The five-feature pharmacophore model was generated using 48 inhibitors having IC50 values ranging from 0.18 to 663?μm. The best-fitted model showed a higher coefficient of determination (R2?=?0.978), cross-validation coefficient (Q2?=?0.8835) and Pearson coefficient (0.9406) at four component partial least-squares factor. The model was validated with external data set and enrichment study. The effectiveness of the docking protocol was validated by docking the co-crystallized ligand into the catalytic pocket of MurF enzyme. Further, binding free energy calculated by the molecular mechanics generalized Born surface area approach showed that van der Waals and non-polar solvation energy terms are the main contributors to ligand binding in the active site of MurF enzyme. A 10-ns molecular dynamic simulation was performed to confirm the stability of the 3ZM6-ligand complex. Four new molecules are also designed as potent MurF inhibitors. These results provide insights regarding the development of novel MurF inhibitors with better binding affinity. 相似文献
13.
AbstractPhosphopantetheine adenylyltransferase (PPAT) has been recognized as a promising target to develop novel antimicrobial agents, which is a hexameric enzyme that catalyzes the penultimate step in coenzyme A biosynthesis. In this work, molecular modeling study was performed with a series of PPAT inhibitors using molecular docking, three-dimensional qualitative structure-activity relationship (3D-QSAR) and molecular dynamic (MD) simulations to reveal the structural determinants for their bioactivities. Molecular docking study was applied to understand the binding mode of PPAT with its inhibitors. Subsequently, 3D-QSAR model was constructed to find the features required for different substituents on the scaffolds. For the best comparative molecular field analysis (CoMFA) model, the Q2 and R2 values of which were calculated as 0.702 and 0.989, while they were calculated as 0.767 and 0.983 for the best comparative molecular similarity index analysis model. The statistical data verified the significance and accuracy of our 3D-QSAR models. Furthermore, MD simulations were carried out to evaluate the stability of the receptor–ligand contacts in physiological conditions, and the results were consistent with molecular docking studies and 3D-QSAR contour map analysis. Binding free energy was calculated with molecular mechanics generalized born surface area approach, the result of which coincided well with bioactivities and demonstrated that van der Waals accounted for the largest portion. Overall, our study provided a valuable insight for further research work on the recognition of potent PPAT inhibitors.Communicated by Ramaswamy H. Sarma 相似文献
14.
Xiaohong Zhu Liangliang Zhong Duoqian Dai Meiyuan Hong Rong You 《Molecular simulation》2017,43(7):534-547
AbstractThe p90 ribosomal s6 kinase 2 (RSK2) is a promising target because of its over expression and activation in human cancer cells and tissues. Over the last few years, significant efforts have been made in order to develop RSK2 inhibitors to treat myeloma, prostatic cancer, skin cancer and etc., but with limited success so far. In this paper, pharmacophore modelling, molecular docking study and molecular dynamics (MD) simulation have been performed to explore the novel inhibitors of RSK2. Pharmacophore models were developed by 95 molecules having pIC50 ranging from 4.577 to 9.000. The pharmacophore model includes one hydrogen bond acceptor (A), one hydrogen bond donor (D), one hydrophobic feature (H) and one aromatic ring (R). It is the best pharmacophore hypothesis that has the highest correlation coefficient (R2 = 0.91) and cross validation coefficient (Q2 = 0.71) at 5 component PLS factor. It was evaluated using enrichment analysis and the best model was used for virtual screening. The constraints used in this study were docking score, ADME properties, binding free energy estimates and IFD Score to screen the database. Ultimately, 12 hits were identified as potent and novel RSK2 inhibitors. A 15 ns molecular dynamics (MD) simulation was further employed to validate the reliability of the docking results. 相似文献
15.
Zhi-Zheng Wang Jing Yang Xu-Dong Sun Chao-Ya Ma Qi-Bing Gao 《Journal of biomolecular structure & dynamics》2019,37(13):3482-3495
16.
Yinli Gao Hanxun Wang Maosheng Cheng 《Journal of biomolecular structure & dynamics》2020,38(14):4119-4133
Abstract P21-activated kinase 4 (PAK4) is a serine/threonine protein kinase, which is associated with many cancer diseases, and thus being considered as a potential drug target. In this study, three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations were performed to explore the structure-activity relationship of a series of pyrropyrazole PAK4 inhibitors. The statistical parameters of comparative molecular field analysis (CoMFA, Q 2 = 0.837, R 2 = 0.990, and R 2 pred = 0.967) and comparative molecular similarity indices analysis (CoMSIA, Q 2 = 0.720, R 2 = 0.972, and R 2 pred = 0.946) were obtained from 3D-QSAR model, which exhibited good predictive ability and significant statistical reliability. The binding mode of PAK4 with its inhibitors was obtained through molecular docking study, which indicated that the residues of GLU396, LEU398, LYS350, and ASP458 were important for activity. Molecular mechanics generalized born surface area (MM-GBSA) method was performed to calculate the binding free energy, which indicated that the coulomb, lipophilic and van der Waals (vdW) interactions made major contributions to the binding affinity. Furthermore, through 100?ns MD simulations, we obtained the key amino acid residues and the types of interactions they participated in. Based on the constructed 3D-QSAR model, some novel pyrropyrazole derivatives targeting PAK4 were designed with improved predicted activities. Pharmacokinetic and toxicity predictions of the designed PAK4 inhibitors were obtained by the pkCSM, indicating these compounds had better absorption, distribution, metabolism, excretion and toxicity (ADMET) properties. Above research provided a valuable insight for developing novel and effective pyrropyrazole compounds targeting PAK4. 相似文献
17.
18.
D. Méndez-Luna M. Martínez-Archundia Rachid C. Maroun G. Ceballos-Reyes M.J. Fragoso-Vázquez D.E. González-Juárez 《Journal of biomolecular structure & dynamics》2013,31(10):2161-2172
The G-protein coupled estrogen receptor 1 GPER/GPR30 is a transmembrane seven-helix (7TM) receptor involved in the growth and proliferation of breast cancer. Due to the absence of a crystal structure of GPER/GPR30, in this work, molecular modeling studies have been carried out to build a three-dimensional structure, which was subsequently refined by molecular dynamics (MD) simulations (up to 120 ns). Furthermore, we explored GPER/GPR30’s molecular recognition properties by using reported agonist ligands (G1, estradiol (E2), tamoxifen, and fulvestrant) and the antagonist ligands (G15 and G36) in subsequent docking studies. Our results identified the E2 binding site on GPER/GPR30, as well as other receptor cavities for accepting large volume ligands, through GPER/GPR30 π–π, hydrophobic, and hydrogen bond interactions. Snapshots of the MD trajectory at 14 and 70 ns showed almost identical binding motifs for G1 and G15. It was also observed that C107 interacts with the acetyl oxygen of G1 (at 14 ns) and that at 70 ns the residue E275 interacts with the acetyl group and with the oxygen from the other agonist whereas the isopropyl group of G36 is oriented toward Met141, suggesting that both C107 and E275 could be involved in the protein activation. This contribution suggest that GPER1 has great structural changes which explain its great capacity to accept diverse ligands, and also, the same ligand could be recognized in different binding pose according to GPER structural conformations. 相似文献
19.
Ramesh Itteboina Srilata Ballu Sree Kanth Sivan 《Journal of receptor and signal transduction research》2013,33(5-6):462-474
AbstractA therapeutic rationale is proposed by selectively targeting tyrosine kinase 2 (TYK 2) to obtain potent TYK 2 inhibitors by molecular modeling studies. In the present study, we have taken tyrosine kinase (TYK 2) inhibitors and carried out molecular docking, 3?D quantitative structure–activity relationship (3D-QSAR) analysis and molecular dynamics (MD). Based on the 3D-QSAR results thirteen new compounds (R-1 to R-13) were designed and synthesized in good yields. The synthesized molecules were evaluated for their in vitro anticancer activity against LnCap and A549 cell lines. The molecules R-1, R-3, R-5, R-7, and R-10 exhibited considerable anti cancer activity. 相似文献
20.
Aurora-A, the most widely studied isoform of Aurora kinase overexpressed aberrantly in a wide variety of tumors, has been
implicated in early mitotic entry, degradation of natural tumor suppressor p53 and centrosome maturation and separation; hence,
potent inhibitors of Aurora-A may be therapeutically useful drugs in the treatment of various forms of cancer. Here, we report
an in silico study on a group of 220 reported Aurora-A inhibitors with six different substructures. Three-dimensional quantitative
structure–activity relationship (3D-QSAR) studies were carried out using comparative molecular field analysis (CoMFA) and
comparative molecular similarity indices analysis (CoMSIA) techniques on this series of molecules. The resultant optimum 3D-QSAR
models exhibited an r
cv2 value of 0.404-0.582 and their predictive ability was validated using an independent test set, ending in r
pred2 0.512-0.985. In addition, docking studies were employed to explore these protein–inhibitor interactions at the molecular
level. The results of 3D-QSAR and docking analyses validated each other, and the key structural requirements affecting Aurora-A
inhibitory activities, and the influential amino acids involved were identified. To the best of our knowledge, this is the
first report on 3D-QSAR modeling of Aurora-A inhibitors, and the results can be used to accurately predict the binding affinity
of related analogues and also facilitate the rational design of novel inhibitors with more potent biological activities. 相似文献