首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An accepted measure of anaerobic capacity is the maximal O2 deficit. But it is not feasible to use O2 deficit if > or =10 submaximal runs are needed to extrapolate the O2 demand of high velocity running (Medb? et al. 1988). Recently, an alternative method to determine O2 deficit was proposed (Hill 1996) using only results of supramaximal cycle ergometer tests. The purpose of this study was to evaluate this alternative method with data from treadmill tests. Twenty-six runners ran at 95%, 100%, 105%, and 110% of their velocity at VO2max. Times to exhaustion, velocity, and accumulated oxygen uptake (VO2) from each individual's four tests were fit to the following equation using iterative nonlinear regression: accumulated VO2 = (O2 demand x velocity x time)-O2 deficit. The mean value s derived for O2 demand and O2 deficit were 0.198+/-0.031 ml x kg(-1) x m(-1) and 42+/-22 ml x kg(-1). SEE for the parameters were 0.007+/-0.007 ml x kg(-1) x m(-1) and 8+/-10 ml x kg(-1), respectively. Mean R2 was 0.998+/-0.003. It was concluded that O2 deficit can be determined from all-out treadmill tests without the need to perform submaximal tests.  相似文献   

2.
Maximal oxygen consumption (V O2 max) expressed in ml/kg/min and predicted V O2 max were determined before and after 8 weeks of training in 24 boys 10-12 years. Training involved 13 of them while 11 were controls. Predicted V O2 max was based on submaximal cycling heart rate according to the Astrand-Rhyming procedure. Pre-training, V O2 max was underpredicted by 12 per cent. This resulted mainly from an apparently low cycling efficiency in these subjects compared to that implicit in the prediction equation. Although adjustments in the prediction equation could equalize the means for V O2 max and predicted V O2 max, the rather low correlation (r = .55) between these measures precluded the accurate prediction of individual scores. V O2 max remained unchanged with training while submaximal heart rate during bicycle and treadmill exercise showed a significant decrease, resulting in predicted increases in V O2 max in children. Since V O2 max was actually unchanged, the prediction falsely indicated an improvement. Furthermore, despite a significantly lower heart rate in the trained group, there was no difference in predicted V O2 max between the groups post-training. These findings indicate that if V O2 max is the parameter of interest, it would seem to be more satisfactory to measure it directly until more reliable methods of prediction are developed.  相似文献   

3.
The purpose of the present study was to examine the influence of 3 different high-intensity interval training regimens on the first and second ventilatory thresholds (VT(1) and VT(2)), anaerobic capacity (ANC), and plasma volume (PV) in well-trained endurance cyclists. Before and after 2 and 4 weeks of training, 38 well-trained cyclists (Vo(2)peak = 64.5 +/- 5.2 ml.kg(-1).min(-1)) performed (a) a progressive cycle test to measure Vo(2)peak, peak power output (PPO), VT(1), and VT(2); (b) a time to exhaustion test (T(max)) at their Vo(2)peak power output (P(max)); and (c) a 40-km time-trial (TT(40)). Subjects were assigned to 1 of 4 training groups (group 1: n = 8, 8 x 60% T(max) at P(max), 1:2 work-recovery ratio; group 2: n = 9, 8 x 60% T(max) at P(max), recovery at 65% maximum heart rate; group 3: n = 10, 12 x 30 seconds at 175% PPO, 4.5-minute recovery; control group: n = 11). The TT(40) performance, Vo(2)peak, VT(1), VT(2), and ANC were all significantly increased in groups 1, 2, and 3 (p < 0.05) but not in the control group. However, PV did not change in response to the 4-week training program. Changes in TT(40) performance were modestly related to the changes in Vo(2)peak, VT(1), VT(2), and ANC (r = 0.41, 0.34, 0.42, and 0.40, respectively; all p < 0.05). In conclusion, the improvements in TT(40) performance were related to significant increases in Vo(2)peak, VT(1), VT(2), and ANC but were not accompanied by significant changes in PV. Thus, peripheral adaptations rather than central adaptations are likely responsible for the improved performances witnessed in well-trained endurance athletes following various forms of high-intensity interval training programs.  相似文献   

4.
5.
High-intensity interval training (HIIT) in junior and adult soccer has been shown to improve oxygen uptake (VO?) and enhance soccer performance. The main purpose of this study was to examine the short term effects of a 5-week HIIT vs. high-volume training (HVT) program in 14-year-old soccer players regarding the effects on VO?max and 1,000-m time (T????) and on sprinting and jumping performance. In a 5-week period, 19 male soccer players with a mean (SD) age of 13.5 ± 0.4 years performed HIIT at close to ~90% of maximal heart rate. The HVT intensity was set at 60-75% of maximal heart rate. VO?max increased significantly (7.0%) from pre to post in HIIT but not after HVT. T???? decreased significantly after HIIT (~-10 vs. ~-5 seconds in HVT). Sprint performance increased significantly in both groups from pre to posttesting without any changes in jumping performance.  相似文献   

6.
The regression of oxygen uptake (O2) on power output and the O2 demand predicted for suprapeak oxygen uptake (O2peak) exercise (power output = 432 W) were compared in ten male cyclists [C, mean O2peak = 67.9 (SD 4.2) ml · kg–1 · min–1] and nine active, yet untrained men [UT, mean O2peak = 54.1 (SD 6.5) ml · kg–1 · min–1]. The O2-power regression was determined using a continuous incremental cycle test (CON4), performed twice, which comprised several 4-min exercise periods progressing in intensity from approximately 40%–85% O2peak. Minute ventilation (E), heart rate (HR), respiratory exchange ratio (R), blood lactate concentration ([1a]b) and rectal temperature (T re) were measured at rest and during CON4. The slope of the O2-power regression was greater (P 0.05) in C [12.4 (SD 0.7) ml · min–1. W–1] compared to UT [11.7 (SD 0.4) ml · min–1 W–1]; as a result, the O2 demand (at 432 W) was also higher (P 0.05) in C [5.97 (SD 0.23) l · min–1] than UT [5.70 (SD 0.15) 1 · min–1]. ExerciseR and [la]b were lower (P 0.05) in C .in comparison to UT at all power outputs, whereas E and HR were relatively lower (P 0.05) in C at power outputs approximating 180 W, 220 W and 270 W. Differences in fat metabolism estimated over the first three power outputs accounted for approximately 19% of the difference in O2-power slopes between the groups and up to 46% of the difference in O2 at a given intensity. Although the O2-power regressions were linear for C [r = 0.997 (SD 0.001)] and UT [r = 0.997 (SD 0.001)], the O2-power slope was higher at power outputs at or above the lactate threshold (13.2 ml · min–1 · W–1 than at lower intensities (11.6 ml · min–1 · W–1) in C, an effect which was less profound in UT. As a result, the exclusion of O2 at the highest power outputs completely abolished the difference in O2-power slopes between C and UT. Thus, the relatively higher O2 during incremental exercise in C can be almost entirely attributed to the higher O2 cost of cycling at higher power outputs. In addition, the presence of non-linear responses in O2 at higher intensities also confirms the invalidity of describing the O2 response across a wide range of power outputs using a linear function, and challenges the validity of predicting the O2 demand of more intense exercise by a linear extrapolation of this same function.  相似文献   

7.

Purpose

To compare two modalities of exercise training (i.e., Endurance Training [ET] and High-Intensity Interval Training [HIT]) on health-related parameters in obese children aged between 8 and 12 years.

Methods

Thirty obese children were randomly allocated into either the ET or HIT group. The ET group performed a 30 to 60-minute continuous exercise at 80% of the peak heart rate (HR). The HIT group training performed 3 to 6 sets of 60-s sprint at 100% of the peak velocity interspersed by a 3-min active recovery period at 50% of the exercise velocity. HIT sessions last ∼70% less than ET sessions. At baseline and after 12 weeks of intervention, aerobic fitness, body composition and metabolic parameters were assessed.

Results

Both the absolute (ET: 26.0%; HIT: 19.0%) and the relative VO2 peak (ET: 13.1%; HIT: 14.6%) were significantly increased in both groups after the intervention. Additionally, the total time of exercise (ET: 19.5%; HIT: 16.4%) and the peak velocity during the maximal graded cardiorespiratory test (ET: 16.9%; HIT: 13.4%) were significantly improved across interventions. Insulinemia (ET: 29.4%; HIT: 30.5%) and HOMA-index (ET: 42.8%; HIT: 37.0%) were significantly lower for both groups at POST when compared to PRE. Body mass was significantly reduced in the HIT (2.6%), but not in the ET group (1.2%). A significant reduction in BMI was observed for both groups after the intervention (ET: 3.0%; HIT: 5.0%). The responsiveness analysis revealed a very similar pattern of the most responsive variables among groups.

Conclusion

HIT and ET were equally effective in improving important health related parameters in obese youth.  相似文献   

8.
The purpose of this study was to examine the effect of intense interval training on erythrocyte 2,3-diphosphoglycerate (2,3-DPG) levels at rest and after maximal exercise. Eight normal men, mean +/- SE = 24.2 +/- 4.3 years, trained 4 days X week-1 for a period of 8 weeks. Each training session consisted of eight maximal 30-s rides on a cycle ergometer, with 4 min active rest between rides . Prior to and after training the subjects performed a maximal 45-s ride on an isokinetic cycle ergometer at 90 rev X min-1 and a graded leg exercise test ( GLET ) to exhaustion on a cycle ergometer. Blood samples were obtained from an antecubital vein before, during and after the GLET only. Training elicited significant increases in the amount of work done during the 45-s ride (P less than 0.05), and also in maximal oxygen uptake (VO2 max: Pre = 4.01 +/- 0.13; Post = 4.29 +/- 0.07 1 X min-1; P less than 0.05) during exercise and total recovery VO2 (Pre = 19.14 +/- 0.09; Post = 21.45 +/- 0.10 1 X 30 min-1; P less than 0.05) after the GLET . After training blood lactate was higher, base excess lower and pH lower during and following the GLET (P less than 0.05 for all variables).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
In this study we investigated the effect of pedal cadence on the cycling economy, accumulated oxygen deficit (AOD), maximal oxygen consumption (VO2max) and blood lactate transition thresholds of ten high-performance junior endurance cyclists [mean (SD): 17.4 (0.4) years; 183.8 (3.5) cm, 71.56 (3.75) kg]. Cycling economy was measured on three ergometers with the specific cadence requirements of: 90-100 rpm for the road dual chain ring (RDCR90-100 rpm) ergometer, 120-130 rpm for the track dual chain ring (TDCR120-130 rpm) ergometer, and 90-130 rpm for the track single chain ring (TSCR90-130 rpm) ergometer. AODs were then estimated using the regression of oxygen consumption (VO2) on power output for each of these ergometers, in conjunction with the data from a 2-min supramaximal paced effort on the TSCR90-130 rpm ergometer. A regression of VO2 on power output for each ergometer resulted in significant differences (P<0.001) between the slopes and intercepts that produced a lower AOD for the RDCR90-100 rpm [2.79 (0.43) l] compared with those for the TDCR120-130 rpm [4.11 (0.78) l] and TSCR90-130 rpm [4.06 (0.84) l]. While there were no statistically significant VO2max differences (P = 0.153) between the three treatments [RDCR90-100 rpm: 5.31 (0.24) l x min(-1); TDCR120-130 rpm; 5.33 (0.25) 1 x min(-1); TSCR90-130 rpm: 5.44 (0.27) l x min(-1)], all pairwise comparisons of the power output at which VO2max occurred were significantly different (P<0.001). Statistically significant differences were identified between the RDCR90-100 rpm and TDCR120-130 rpm tests for power output (P = 0.003) and blood lactate (P = 0.003) at the lactate threshold (Thla-), and for power output (P = 0.005) at the individual anaerobic threshold (Thiat). Our findings emphasise that pedal cadence specificity is essential when assessing the cycling economy, AOD and blood lactate transition thresholds of high-performance junior endurance cyclists.  相似文献   

10.
11.

Background

Sarcopenic obesity, associated with greater risk of cardiovascular disease (CVD) and mortality in rheumatoid arthritis (RA), may be related to dysregulated muscle remodeling. To determine whether exercise training could improve remodeling, we measured changes in inter-relationships of plasma galectin-3, skeletal muscle cytokines, and muscle myostatin in patients with RA and prediabetes before and after a high-intensity interval training (HIIT) program.

Methods

Previously sedentary persons with either RA (n = 12) or prediabetes (n = 9) completed a 10-week supervised HIIT program. At baseline and after training, participants underwent body composition (Bod Pod®) and cardiopulmonary exercise testing, plasma collection, and vastus lateralis biopsies. Plasma galectin-3, muscle cytokines, muscle interleukin-1 beta (mIL-1β), mIL-6, mIL-8, muscle tumor necrosis factor-alpha (mTNF-α), mIL-10, and muscle myostatin were measured via enzyme-linked immunosorbent assays. An independent cohort of patients with RA (n = 47) and age-, gender-, and body mass index (BMI)-matched non-RA controls (n = 23) were used for additional analyses of galectin-3 inter-relationships.

Results

Exercise training did not reduce mean concentration of galectin-3, muscle cytokines, or muscle myostatin in persons with either RA or prediabetes. However, training-induced alterations varied among individuals and were associated with cardiorespiratory fitness and body composition changes. Improved cardiorespiratory fitness (increased absolute peak maximal oxygen consumption, or VO2) correlated with reductions in galectin-3 (r = ?0.57, P = 0.05 in RA; r = ?0.48, P = 0.23 in prediabetes). Training-induced improvements in body composition were related to reductions in muscle IL-6 and TNF-α (r < ?0.60 and P <0.05 for all). However, the association between increased lean mass and decreased muscle IL-6 association was stronger in prediabetes compared with RA (Fisher r-to-z P = 0.0004); in prediabetes but not RA, lean mass increases occurred in conjunction with reductions in muscle myostatin (r = ?0.92; P <0.05; Fisher r-to-z P = 0.026). Subjects who received TNF inhibitors (n = 4) or hydroxychloroquine (n = 4) did not improve body composition with exercise training.

Conclusion

Exercise responses in muscle myostatin, cytokines, and body composition were significantly greater in prediabetes than in RA, consistent with impaired muscle remodeling in RA. To maximize physiologic improvements with exercise training in RA, a better understanding is needed of skeletal muscle and physiologic responses to exercise training and their modulation by RA disease–specific features or pharmacologic agents or both.

Trial registration

ClinicalTrials.gov Identifier: NCT02528344. Registered on August 19, 2015.
  相似文献   

12.
Brief episodes of nonlethal ischemia, commonly known as "ischemic preconditioning" (IP), are protective against cell injury induced by infarction. Moreover, muscle IP has been found capable of improving exercise performance. The aim of the study was the comparison of standard exercise performances carried out in normal conditions with those carried out following IP, achieved by brief muscle ischemia at rest (RIP) and after exercise (EIP). Seventeen physically active, healthy male subjects performed three incremental, randomly assigned maximal exercise tests on a cycle ergometer up to exhaustion. One was the reference (REF) test, whereas the others were performed after the RIP and EIP sessions. Total exercise time (TET), total work (TW), and maximal power output (W(max)), oxygen uptake (VO(2max)), and pulmonary ventilation (VE(max)) were assessed. Furthermore, impedance cardiography was used to measure maximal heart rate (HR(max)), stroke volume (SV(max)), and cardiac output (CO(max)). A subgroup of volunteers (n = 10) performed all-out tests to assess their anaerobic capacity. We found that both RIP and EIP protocols increased in a similar fashion TET, TW, W(max), VE(max), and HR(max) with respect to the REF test. In particular, W(max) increased by ~ 4% in both preconditioning procedures. However, preconditioning sessions failed to increase traditionally measured variables such as VO(2max), SV(max,) CO(max), and anaerobic capacity(.) It was concluded that muscle IP improves performance without any difference between RIP and EIP procedures. The mechanism of this effect could be related to changes in fatigue perception.  相似文献   

13.
The aim of this study was to compare the effects of high-intensity interval training (HIIT) and repeated-sprint training (RST) on aerobic fitness, tennis-specific endurance, linear and repeated-sprint ability (RSA), and jumping ability. Thirty-one competitive male tennis players took part in a training intervention of 6 weeks. The players were matched into 3 groups, HIIT (n = 11), RST (n = 12), or control group (CON, n = 9). The results showed significant time × intervention interactions for VO(2)peak, with a significant increase in the VO(2)peak level of 6.0% in HIIT (p = 0.008) and 4.9% in RST (p = 0.010), whereas no changes occurred in CON. However, the following differences were found between the intervention groups: The HIIT-induced greater improvements in tennis-specific endurance (HIIT 28.9% vs. RST 14.5%; p < 0.05) and RST led to a significant improvement in RSA (i.e., reduction in the mean sprint time of 3.8%; p < 0.05). Neither training strategy induced any effects on jumping and sprinting abilities. Both training interventions showed similar improvements in general aerobic fitness. Also, the present results suggest that RST represents a time-efficient stimulus for a simultaneous improvement of general and tennis-specific aerobic fitness as well for RSA.  相似文献   

14.
Low-volume high-intensity interval training (HIT) is emerging as a time-efficient exercise strategy for improving health and fitness. This form of exercise has not been tested in type 2 diabetes and thus we examined the effects of low-volume HIT on glucose regulation and skeletal muscle metabolic capacity in patients with type 2 diabetes. Eight patients with type 2 diabetes (63 ± 8 yr, body mass index 32 ± 6 kg/m(2), Hb(A1C) 6.9 ± 0.7%) volunteered to participate in this study. Participants performed six sessions of HIT (10 × 60-s cycling bouts eliciting ~90% maximal heart rate, interspersed with 60 s rest) over 2 wk. Before training and from ~48 to 72 h after the last training bout, glucose regulation was assessed using 24-h continuous glucose monitoring under standardized dietary conditions. Markers of skeletal muscle metabolic capacity were measured in biopsy samples (vastus lateralis) before and after (72 h) training. Average 24-h blood glucose concentration was reduced after training (7.6 ± 1.0 vs. 6.6 ± 0.7 mmol/l) as was the sum of the 3-h postprandial areas under the glucose curve for breakfast, lunch, and dinner (both P < 0.05). Training increased muscle mitochondrial capacity as evidenced by higher citrate synthase maximal activity (~20%) and protein content of Complex II 70 kDa subunit (~37%), Complex III Core 2 protein (~51%), and Complex IV subunit IV (~68%, all P < 0.05). Mitofusin 2 (~71%) and GLUT4 (~369%) protein content were also higher after training (both P < 0.05). Our findings indicate that low-volume HIT can rapidly improve glucose control and induce adaptations in skeletal muscle that are linked to improved metabolic health in patients with type 2 diabetes.  相似文献   

15.
Rats with electrodes implanted in the ventral tegmentum and posterior hypothalamus were trained to press a lever to obtain electrical stimulation through the electrodes. Stimulation in animals with ventral tegmental electrodes led to an increased concentration of homovanillic acid and dihydroxyphenylacetic acid in the forebrain of the animals. Stimulation in the posterior hypothalamus did not result in such raised concentrations in spite of the fact that the behaviour from the two sites was indistinguishable. Responding in the posterior hypothalamus was reduced by doses of neuroleptic drug similar to those reported to reduce responding in the ventral tegmental area.  相似文献   

16.
Colicins are released into the spent medium from colicinogenic cells. The pathway of release has been investigated in this study. The localization in producing cells of colicins A, E3 and of cloacin DF13 has been determined at various times after mitomycin C addition: no transient accumulation in the periplasmic space of colicinogenic E. coli K12 strains was detected by electron microscopy for any of the bacteriocins tested. Furthermore, asynchronous induction in individual cells was detected for each bacteriocin tested. These results strongly suggest that colicins, as well as cloacin DF13, do not transit through the periplasmic space before release from colicinogenic cells.  相似文献   

17.
The aim of this study was to examine (i) the effects of a severe interval training period on oxygen pulse kinetics (O2-p, the ratio between VO2 and heart rate), and (ii) to study the consequences of these effects on the variation of performance (time to exhaustion) during severe runs. Seven athletes were tested before and after an eight-weeks period of a specific intermittent training at v Delta 50, i.e., the intermediate velocity between the lactate threshold (vLT) and the velocity associated with VO2max (vVO2max ). During the test sessions, athletes performed an incremental test and an all-out test at the pretraining v Delta 50. After the training period they also completed an additional all-out test at the posttraining v Delta 50 (v Delta 50bis). Results showed that after training there was i) an increase in the O2-p maximal value during the incremental test (22.7 +/- 1.5 mlO2.b-1 vs. 20.6 +/- 1.5 mlO2.b-1; p < 0.04), ii) a decrease in the time to reach the O2-p steady state (TRO2-p ) at the same absolute v Delta 50 (33 +/- 7 s vs. 60 +/- 27 s; p < 0.04) and iii) an increase in the O2-p steady state duration (TSSO2-p) at the same absolute v Delta 50 (552 +/- 201 s vs. 407 +/- 106 s; p < 0.04). However, there was no relationship between the improvement of these two O 2 -p kinetics parameters (TRO2-p and TSS O2-p) and those of the performance. This study found that after an individualised interval-training program conducted at the same absolute velocity, the O2-p kinetics reached a steady state quicker and for a longer duration than before training. This is however not related with the improvement of performance.  相似文献   

18.
Noninvasive imaging techniques have been used to assess pulmonary edema following exercise but results remain equivocal. Most studies examining this phenomenon have used male subjects while the female response has received little attention. Some suggest that women, by virtue of their smaller lungs, airways, and diffusion surface areas may be more susceptible to pulmonary limitations during exercise. Accordingly, the purpose of this study was to determine if intense normobaric hypoxic exercise could induce pulmonary edema in women. Baseline lung density was obtained in eight highly trained female cyclists (mean +/- SD: age = 26 +/- 7 yr; height = 172.2 +/- 6.7 cm; mass = 64.1 +/- 6.7 kg; Vo(2max) = 52.2 +/- 2.2 ml.kg(-1).min(-1)) using computed tomography (CT). CT scans were obtained at the level of the aortic arch, the tracheal carina, and the superior end plate of the tenth thoracic vertebra. While breathing 15% O(2), subjects then performed five 2.5-km cycling intervals [mean power = 212 +/- 31 W; heart rate (HR) = 94.5 +/- 2.2%HRmax] separated by 5 min of recovery. Throughout the intervals, subjects desaturated to 82 +/- 4%, which was 13 +/- 2% below resting hypoxic levels. Scans were repeated 44 +/- 8 min following exercise. Mean lung density did not change from pre (0.138 +/- 0.014 g/ml)- to postexercise (0.137 +/- 0.011 g/ml). These findings suggest that pulmonary edema does not occur in highly trained females following intense normobaric hypoxic exercise.  相似文献   

19.
The intervals between successive action potentials (impulses, or "spikes") produced the maintained firing of a neuron (ISIs) are often treated as if they were independent on each other; that is, an impulse train is considered as a stationary renewal process. If this is so, the variability of the mean rate of firing impulses in a sequence of temporal windows should be predictable from the distribution of ISIs. This was found not to be the case for the maintained firing of retinal ganglion cells in goldfish. Although some evident nonstationarity sometimes resulted in greater variability of the observed rate distributions than those predicted (for relatively long temporal windows), as a general rule the observed rate distributions were considerable less dispersed than would be predicted by sampling of the ISI distributions. This was taken as evidence of long-term serial dependency between successive ISIs; however, two standard test for dependency (autocorrelations and serial correlograms failed to to reveal structure of sufficiently long duration to account for the effect noted.  相似文献   

20.
Hyperproduction of phosphate-binding protein, PhoS, in strains carrying a multicopy plasmic containing the phoS gene, resulted in saturation of export sites. As a consequence, pre-PhoS was accumulated both in the inner membrane and in the cytoplasm. This was evidenced both in electron-microscopy and after cell fractionation. Only the membrane-associated precursor could be matured and exported. The signal sequence of the cytoplasmic pre-PhoS was slowly degraded. It was first cleaved about in its middle and then completely removed. Electron microscope studies demonstrated that the cytoplasmic pre-PhoS cannot be exported post-translationally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号