首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Actin-fragmin kinase (AFK) from Physarum polycephalum specifically phosphorylates actin in the EGTA-resistant 1:1 actin-fragmin complex. The cDNA deduced amino acid sequence reveals two major domains of approximately 35 kDa each that are separated by a hinge-like proline/serine-rich segment of 50 residues. Whereas the N-terminal domain does not show any significant similarity to protein sequences from databases, there are six complete kelch repeats in the protein that comprise almost the entire C-terminal half of the molecule. To prove the intrinsic phosphorylation activity of AFK, full-length or partial cDNA fragments were expressed both in a reticulocyte lysate and in Escherichia coli. In both expression systems, we obtained specific actin phosphorylation and located the catalytic domain in the N-terminal half. Interestingly, this region did not contain any of the known protein kinase consensus sequences. The only known sequence motif present that could have been involved in nucleotide binding was a nearly perfect phosphate binding loop (P-loop). However, introduction of two different point mutations into this putative P-loop sequence did not alter the catalytic activity of the kinase, which indicates an as yet unknown mechanism for phosphate transfer. Our data suggest that AFK belongs to a new class of protein kinases and that this actin phosphorylation might be the first example of a widely distributed novel type of regulation of the actin cytoskeleton in non-muscle cells.  相似文献   

2.
Amoebae and plasmodia constitute the two vegetative growth phases of the Myxomycete Physarum. In vitro and in vivo phosphorylation of actin in plasmodia is tightly controlled by fragmin P, a plasmodium-specific actin-binding protein that enables actin phosphorylation by the actin-fragmin kinase. We investigated whether amoebal actin is phosphorylated by this kinase, in spite of the lack of fragmin P. Strong actin phosphorylation was detected only following addition of recombinant actin-fragmin kinase to cell-free extracts of amoebae, suggesting that amoebae contain a protein with properties similar to plasmodial fragmin. We purified the complex between actin and this protein to homogeneity. Using an antibody that specifically recognizes phosphorylated actin, we demonstrate that Thr203 in actin can be phosphorylated in this complex. A full-length amoebal fragmin cDNA was cloned and the deduced amino acid sequence shows 65% identity with plasmodial fragmin. However, the fragmins are encoded by different genes. Northern blots using RNA from a developing Physarum strain demonstrate that this fragmin isoform (fragmin A) is not expressed in plasmodia. In situ localization showed that fragmin A is present mainly underneath the plasma membrane. Our results indicate that Physarum amoebae express a fragmin P-like isoform which shares the property of binding actin and converting the latter into a substrate for the actin-fragmin kinase.  相似文献   

3.
The Physarum EGTA-resistant actin-fragmin complex, previously named cap 42(a+b), is phosphorylated in the actin subunit by an endogenous kinase [Maruta and Isenberg (1983) J. Biol. Chem., 258, 10151-10158]. This kinase has been purified and characterized. It is an 80 kDa monomeric enzyme, unaffected by known kinase regulators. Staurosporine acts as a potent inhibitor. The actin-fragmin complex is the preferred substrate. The phosphorylation is inhibited by micromolar Ca2+ concentrations, but only in the presence of additional actin. Polymerized actin (vertebrate muscle and non-muscle isoforms) and actin complexes with various actin-binding proteins are poorly phosphorylated. The heterotrimer consisting of two actins and one fragmin, which is formed from cap 42(a+b) and actin in the presence of micromolar concentrations of Ca2+, is also a poor substrate. From the other substrates tested, only histones were significantly phosphorylated, in particular histone H1. In the same manner, casein kinase I could also phosphorylate the actin-fragmin complex. The major phosphorylation site in actin is Thr203. A second minor site is Thr202. These residues constitute one of the contact sites for DNase I [Kabsch et al. (1990) Nature, 347, 37-44] and are also part of one of the predicted actin-actin contact sites in the F-actin model [Holmes et al. (1990) Nature, 347, 44-49].  相似文献   

4.
Protein tyrosine kinases are key enzymes of mammalian signal transduction. Substrate specificity is a fundamental property that determines the specificity and fidelity of signaling by protein tyrosine kinases. However, how protein tyrosine kinases recognize the protein substrates is not well understood. C-terminal Src kinase (Csk) specifically phosphorylates Src family kinases on a C-terminal Tyr residue, which down-regulates their activities. We have previously determined that Csk recognizes Src using a substrate-docking site away from the active site. In the current study, we identified the docking determinants in Src recognized by the Csk substrate-docking site and demonstrated an interaction between the docking determinants of Src and the Csk substrate-docking site for this recognition. A similar mechanism was confirmed for Csk recognition of another Src family kinase, Yes. Although both Csk and MAP kinases used docking sites for substrate recognition, their docking sites consisted of different substructures in the catalytic domain. These results helped establish a docking-based substrate recognition mechanism for Csk. This model may provide a framework for understanding substrate recognition and specificity of other protein tyrosine kinases.  相似文献   

5.
The SH2 domain of cytoplasmic tyrosine kinases can enhance catalytic activity and substrate recognition, but the molecular mechanisms by which this is achieved are poorly understood. We have solved the structure of the prototypic SH2-kinase unit of the human Fes tyrosine kinase, which appears specialized for positive signaling. In its active conformation, the SH2 domain tightly interacts with the kinase N-terminal lobe and positions the kinase alphaC helix in an active configuration through essential packing and electrostatic interactions. This interaction is stabilized by ligand binding to the SH2 domain. Our data indicate that Fes kinase activation is closely coupled to substrate recognition through cooperative SH2-kinase-substrate interactions. Similarly, we find that the SH2 domain of the active Abl kinase stimulates catalytic activity and substrate phosphorylation through a distinct SH2-kinase interface. Thus, the SH2 and catalytic domains of active Fes and Abl pro-oncogenic kinases form integrated structures essential for effective tyrosine kinase signaling.  相似文献   

6.
By combination of column chromatographies (heparin-agarose, HiTrap heparin and HiTrap SP columns) and gel filtration on a Superdex 200-pg HPLC column, an actin kinase was partially purified from a 1. 5 M NaCl extract of porcine liver. The actin kinase was finally purified, by actin-Sepharose column chromatography (HPLC), as an actin-binding protein kinase. The biochemical properties, such as (1) requirements of divalent cations (10 mM Mg(2+) and 3 mM Mn(2+)) and effective phosphate acceptors (actin and alpha-casein), (2) phosphorylation of both Ser- and Thr-residues on these two phosphate acceptors, (3) autophosphorylation of the catalytic subunit (approximately 37 kDa), and (4) inhibition kinetics by CK-I-7 (a CK-I specific inhibitor), of the purified actin kinase were similar to those reported for CK-I purified from various mammalian cells, but it was distinguishable from three cellular actin kinases (A-kinase, C-kinase and actin-fragmin kinase (approximately 80 kDa)). The 37 kDa actin kinase-mediated phosphorylation of actin did not relate to its polymerizability. Inhibition of CK-II-mediated phosphorylation of functional cellular proteins, including calmodulin (CaM), by actin was significantly stimulated after its full phosphorylation by the purified 37 kDa actin kinase or rCK-I in vitro. These results suggest that: (1) the 37 kDa Ser/Thr actin-binding kinase may be classified as a member of the CK-I family; and (2) specific phosphorylation of actin by the actin kinase may be involved in the suppression mechanism of CK-II-mediated signal transduction at the cellular level.  相似文献   

7.
In a screen of mouse erythroleukemia cDNA expression libraries with anti-phosphotyrosine antibodies, designed to isolate tyrosine kinase coding sequences, we identified several cDNAs encoding proteins identical or very similar to known protein-tyrosine kinases. However, two frequently isolated cDNAs, clk and nek, encode proteins which are most closely related to protein kinases involved in regulating progression through the cell cycle, and contain motifs generally considered diagnostic of protein-serine/threonine kinases. The clk gene product contains a C-terminal cdc2-like kinase domain, most similar to the FUS3 catalytic domain. The Clk protein, expressed in bacteria, becomes efficiently phosphorylated in vitro on tyrosine as well as serine/threonine, and phosphorylates the exogenous substrate poly(glu, tyr) on tyrosine. Direct biochemical evidence indicates that both protein-tyrosine and protein-serine/threonine kinase activities are intrinsic to the Clk catalytic domain. These results suggest the existence of a novel class of protein kinases, with an unusual substrate specificity, which may be involved in cell cycle control.  相似文献   

8.
The phosphorylation sites in the myristoylated alanine-rich C kinase substrate or MARCKS protein consist of four serines contained within a conserved, basic region of 25 amino acids, termed the phosphorylation site domain. A synthetic peptide comprising this domain was phosphorylated by both protein kinase C and its catalytic fragment with high affinity and apparent positive cooperativity. Tryptic phosphopeptides derived from the peptide appeared similar to phosphopeptides derived from the phosphorylated intact protein. The peptide was phosphorylated by cAMP- and cGMP-dependent protein kinases with markedly lower affinities. In peptides containing only one of the four serines, with the other three serines replaced by alanine, the affinities for protein kinase C ranged from 25 to 60 nM with Hill constants between 1.8 and 3.0. The potential pseudosubstrate peptide, in which all four serines were replaced by alanines, inhibited protein kinase C phosphorylation of histone or a peptide substrate with an IC50 of 100-200 nM with apparently non-competitive kinetics; it also inhibited the catalytic fragment of protein kinase C with a Ki of 20 nM, with kinetics of the mixed type. The peptide did not significantly inhibit the cAMP- and cGMP-dependent protein kinases. It inhibited Ca2+/calmodulin-dependent protein kinases I, II, and III by competing with the kinases for calmodulin. In addition, the peptide inhibited the Ca2+/calmodulin-independent activity of a proteolytic fragment of Ca2+/calmodulin protein kinase II, with an IC50 approximately 5 microM. Thus, the phosphorylation site domain peptide of the MARCKS protein is a high affinity substrate for protein kinase C in vitro; the cognate peptide containing no serines is a potent but not completely specific inhibitor of both protein kinase C and its catalytic fragment.  相似文献   

9.
Dar AC  Dever TE  Sicheri F 《Cell》2005,122(6):887-900
In response to binding viral double-stranded RNA byproducts within a cell, the RNA-dependent protein kinase PKR phosphorylates the alpha subunit of the translation initiation factor eIF2 on a regulatory site, Ser51. This triggers the general shutdown of protein synthesis and inhibition of viral propagation. To understand the basis for substrate recognition by and the regulation of PKR, we determined X-ray crystal structures of the catalytic domain of PKR in complex with eIF2alpha. The structures reveal that eIF2alpha binds to the C-terminal catalytic lobe while catalytic-domain dimerization is mediated by the N-terminal lobe. In addition to inducing a local unfolding of the Ser51 acceptor site in eIF2alpha, its mode of binding to PKR affords the Ser51 site full access to the catalytic cleft of PKR. The generality and implications of the structural mechanisms uncovered for PKR to the larger family of four human eIF2alpha protein kinases are discussed.  相似文献   

10.
Defects in Bruton's tyrosine kinase (Btk) are responsible for X chromosome-linked agammaglobulinemia in patients. Mutations in each of the structural domains of Btk have been detected in patients, yet a mechanistic explanation for most of these mutant phenotypes is lacking. To understand the possible role of the unique pleckstrin homology and Tec homology (PHTH) module of Btk, we have compared the enzymatic properties of full-length Btk and a Btk mutant lacking the PHTH module (BtkDeltaPHTH). Here we show that Btk and BtkDeltaPHTH have similar basal catalytic activity but very different abilities to recognize protein substrates. Furthermore, the catalytic domain of Btk is inactive, in contrast to the catalytic domain of the prototypical Src tyrosine kinase that retains full catalytic ability. These data suggest that the PHTH module plays an important role in protein substrate recognition, that Btk and Src likely have different interdomain organizations and regulations, and that alterations in substrate recognition might play a role in X chromosome-linked agammaglobulinemia.  相似文献   

11.
Most signal transduction pathways in humans are regulated by protein kinases through phosphorylation of their protein substrates. Typical eukaryotic protein kinases are of two major types: those that phosphorylate‐specific sequences containing tyrosine (~90 kinases) and those that phosphorylate either serine or threonine (~395 kinases). The highly conserved catalytic domain of protein kinases comprises a smaller N lobe and a larger C lobe separated by a cleft region lined by the activation loop. Prior studies find that protein tyrosine kinases recognize peptide substrates by binding the polypeptide chain along the C‐lobe on one side of the activation loop, while serine/threonine kinases bind their substrates in the cleft and on the side of the activation loop opposite to that of the tyrosine kinases. Substrate binding structural studies have been limited to four families of the tyrosine kinase group, and did not include Src tyrosine kinases. We examined peptide‐substrate binding to Src using paramagnetic‐relaxation‐enhancement NMR combined with molecular dynamics simulations. The results suggest Src tyrosine kinase can bind substrate positioning residues C‐terminal to the phosphoacceptor residue in an orientation similar to serine/threonine kinases, and unlike other tyrosine kinases. Mutagenesis corroborates this new perspective on tyrosine kinase substrate recognition. Rather than an evolutionary split between tyrosine and serine/threonine kinases, a change in substrate recognition may have occurred within the TK group of the human kinome. Protein tyrosine kinases have long been therapeutic targets, but many marketed drugs have deleterious off‐target effects. More accurate knowledge of substrate interactions of tyrosine kinases has the potential for improving drug selectivity.  相似文献   

12.
Phosphorylation is critical to regulation of the eukaryotic cell cycle. Entry to mitosis is triggered by the cyclin-dependent kinase CDK1 (Cdc2), which is inactivated during the preceding S and G2 phases by phosphorylation of T14 and Y15. Two homologous kinases, Wee1, which phosphorylates Y15, and Myt1, which phosphorylates both T14 and Y15, mediate this inactivation. We have determined the crystal structure of the catalytic domain of human somatic Wee1 (Wee1A) complexed with an active-site inhibitor at 1.8 A resolution. Although Wee1A is functionally a tyrosine kinase, in sequence and structure it most closely resembles serine/threonine kinases such as Chk1 and cAMP kinases. The crystal structure shows that although the catalytic site closely resembles that of other protein kinases, the activation segment contains Wee1-specific features that maintain it in an active conformation and, together with a key substitution in its glycine-rich loop, help determine its substrate specificity.  相似文献   

13.
Dephospho-coenzyme A kinase catalyzes the final step in CoA biosynthesis, the phosphorylation of the 3'-hydroxyl group of ribose using ATP as a phosphate donor. The protein from Haemophilus influenzae was cloned and expressed, and its crystal structure was determined at 2.0-A resolution in complex with ATP. The protein molecule consists of three domains: the canonical nucleotide-binding domain with a five-stranded parallel beta-sheet, the substrate-binding alpha-helical domain, and the lid domain formed by a pair of alpha-helices. The overall topology of the protein resembles the structures of nucleotide kinases. ATP binds in the P-loop in a manner observed in other kinases. The CoA-binding site is located at the interface of all three domains. The double-pocket structure of the substrate-binding site is unusual for nucleotide kinases. Amino acid residues implicated in substrate binding and catalysis have been identified. The structure analysis suggests large domain movements during the catalytic cycle.  相似文献   

14.
Degenerate polymerase chain reaction against conserved kinase catalytic subdomains identified 15 tyrosine and serine-threonine kinases expressed in surgically removed prostatic carcinoma tissues, including six receptor kinases (PDGFBR, IGF1-R, VEGFR2, MET, RYK, and EPH-A1), six non-receptor kinases (ABL, JAK1, JAK2, TYK2, PLK-1, and EMK), and three novel kinases. Several of these kinases are oncogenic, and may function in the development of prostate cancer. One of the novel kinases is a new member of the sterile 20 (STE20) family of serine-threonine kinases which we have called prostate-derived STE20-like kinase (PSK) and characterized functionally. PSK encodes an open reading frame of 3705 nucleotides and contains an N-terminal kinase domain. Immunoprecipitated PSK phosphorylates myelin basic protein and transfected PSK stimulates MKK4 and MKK7 and activates the c-Jun N-terminal kinase mitogen-activated protein kinase pathway. Microinjection of PSK into cells results in localization of PSK to a vesicular compartment and causes a marked reduction in actin stress fibers. In contrast, C-terminally truncated PSK (1-349) did not localize to this compartment or induce a decrease in stress fibers demonstrating a requirement for the C terminus. Kinase-defective PSK (K57A) was unable to reduce stress fibers. PSK is the first member of the STE20 family lacking a Cdc42/Rac binding domain that has been shown to regulate both the c-Jun N-terminal kinase mitogen-activated protein kinase pathway and the actin cytoskeleton.  相似文献   

15.
LOSK (LOng Ste20-like Kinase) protein kinases of mammals belong to a recently identified family of GCK kinases which are involved in the induction of apoptosis. LOSK have an N-terminal acidic catalytic domain and a long C-terminal basic structural domain which is cleaved off in cells by caspases during apoptosis. To study the LOSK enzymatic activity and its dependence on the structural domain, two preparations of this protein kinase were prepared: a natural full-length protein immunoprecipitated from CHO-K1 cultured cells and a recombinant N-terminal catalytic fragment synthesized in E. coli. Both preparations displayed the ability for autophosphorylation and the ability for phosphorylation of MBP and of H1 histone, and their activities were comparable. H1 histone was a better substrate for LOSK than casein and ATP was a better substrate than other nucleotides. The pH dependence of the activity of the immunoprecipitated protein was more pronounced than the pH dependence of its recombinant fragment deprived of the C-terminal domain. The catalytic and the structural domains of LOSK can interact through electrostatic forces; therefore, effects were studied of various polyions at the concentration of 0.1 mg/ml on the activity. Heparin, protamine sulfate, and poly(L-Lys) decreased tenfold the ability of the full-length kinase to phosphorylate H1 histone. Heparin did not affect the activity of the recombinant fragment, whereas protamine sulfate and poly(L-Lys) had a slight effect. Moreover, protamine increased fourfold the autophosphorylation of the immunoprecipitated protein kinase. These data suggest that the structural C-terminal domain of LOSK should be involved in the regulation of its protein kinase activity: the LOSK protein kinase with C-terminal domain cleaved off could significantly less depend on conditions in the cell than the full-size enzyme.  相似文献   

16.
BackgroundMyosin light chain kinase (MLCK) is a Ca2+-calmodulin-dependent enzyme dedicated to phosphorylate and activate myosin II to provide force for various motile processes. In smooth muscle cells and many other cells, small MLCK (S-MLCK) is a major isoform. S-MLCK is an actomyosin-binding protein firmly attached to contractile machinery in smooth muscle cells. Still, it can leave this location and contribute to other cellular processes. However, molecular mechanisms for switching the S-MLCK subcellular localization have not been described.MethodsSite-directed mutagenesis and in vitro protein phosphorylation were used to study functional roles of discrete in-vivo phosphorylated residues within the S-MLCK actin-binding domain. In vitro co-sedimentation analysis was applied to study the interaction of recombinant S-MLCK actin-binding fragment with filamentous actin. Subcellular distribution of phosphomimicking S-MLCK mutants was studied by fluorescent microscopy and differential cell extraction.ResultsPhosphorylation of S-MLCK actin-binding domain at Ser25 and/or Thr56 by proline-directed protein kinases or phosphomimicking these posttranslational modifications alters S-MLCK binding to actin filaments both in vitro and in cells, and induces S-MLCK subcellular translocation with no effect on the enzyme catalytic properties.ConclusionsPhosphorylation of the amino terminal actin-binding domain of S-MLCK renders differential subcellular targeting of the enzyme and may, thereby, contribute to a variety of context-dependent responses of S-MLCK to cellular and tissue stimuli.General significanceS-MLCK physiological function can potentially be modulated via phosphorylation of its actin recognition domain, a regulation distinct from the catalytic and calmodulin regulatory domains.  相似文献   

17.
Choanoflagellates are considered to be the closest living unicellular relatives of metazoans. The genome of the choanoflagellate Monosiga brevicollis contains a surprisingly high number and diversity of tyrosine kinases, tyrosine phosphatases, and phosphotyrosine-binding domains. Many of the tyrosine kinases possess combinations of domains that have not been observed in any multicellular organism. The role of these protein interaction domains in M. brevicollis kinase signaling is not clear. Here, we have carried out a biochemical characterization of Monosiga HMTK1, a protein containing a putative PTB domain linked to a tyrosine kinase catalytic domain. We cloned, expressed, and purified HMTK1, and we demonstrated that it possesses tyrosine kinase activity. We used immobilized peptide arrays to define a preferred ligand for the third PTB domain of HMTK1. Peptide sequences containing this ligand sequence are phosphorylated efficiently by recombinant HMTK1, suggesting that the PTB domain of HMTK1 has a role in substrate recognition analogous to the SH2 and SH3 domains of mammalian Src family kinases. We suggest that the substrate recruitment function of the noncatalytic domains of tyrosine kinases arose before their roles in autoinhibition.  相似文献   

18.
The alpha kinases are a widespread family of atypical protein kinases characterized by a novel type of catalytic domain. In this paper the peptide substrate recognition motifs for three alpha kinases, Dictyostelium discoideum myosin heavy chain kinase (MHCK) A and MHCK B and mammalian eukaryotic elongation factor-2 kinase (eEF-2K), were characterized by incorporating amino acid substitutions into a previously identified MHCK A peptide substrate (YAYDTRYRR) (Luo X. et al. (2001) J. Biol. Chem. 276, 17836-43). A lysine or arginine in the P+1 position on the C-terminal side of the phosphoacceptor threonine (P site) was found to be critical for peptide substrate recognition by MHCK A, MHCK B and eEF-2K. Phosphorylation by MHCK B was further enhanced 8-fold by a basic residue in the P+2 position whereas phosphorylation by MHCK A was enhanced 2- to 4-fold by basic residues in the P+2, P+3 and P+4 positions. eEF-2K required basic residues in both the P+1 and P+3 positions to recognize peptide substrates. eEF-2K, like MHCK A and MHCK B, exhibited a strong preference for threonine as the phosphoacceptor amino acid. In contrast, the Dictyostelium VwkA and mammalian TRPM7 alpha kinases phosphorylated both threonine and serine residues. The results, together with a phylogenetic analysis of the alpha kinase catalytic domain, support the view that the metazoan eEF-2Ks and the Dictyostelium MHCKs form a distinct subgroup of alpha kinases with conserved properties.  相似文献   

19.
We have cloned and characterized a novel mammalian serine/threonine protein kinase WNK1 (with no lysine (K)) from a rat brain cDNA library. WNK1 has 2126 amino acids and can be detected as a protein of approximately 230 kDa in various cell lines and rat tissues. WNK1 contains a small N-terminal domain followed by the kinase domain and a long C-terminal tail. The WNK1 kinase domain has the greatest similarity to the MEKK protein kinase family. However, overexpression of WNK1 in HEK293 cells exerts no detectable effect on the activity of known, co-transfected mitogen-activated protein kinases, suggesting that it belongs to a distinct pathway. WNK1 phosphorylates the exogenous substrate myelin basic protein as well as itself mostly on serine residues, confirming that it is a serine/threonine protein kinase. The demonstration of activity was striking because WNK1, and its homologs in other organisms lack the invariant catalytic lysine in subdomain II of protein kinases that is crucial for binding to ATP. A model of WNK1 using the structure of cAMP-dependent protein kinase suggests that lysine 233 in kinase subdomain I may provide this function. Mutation of this lysine residue to methionine eliminates WNK1 activity, consistent with the conclusion that it is required for catalysis. This distinct organization of catalytic residues indicates that WNK1 belongs to a novel family of serine/threonine protein kinases.  相似文献   

20.
We have determined X-ray crystal structures with up to 1.5 A resolution of the catalytic domain of death-associated protein kinase (DAPK), the first described member of a novel family of pro-apoptotic and tumor-suppressive serine/threonine kinases. The geometry of the active site was studied in the apo form, in a complex with nonhydrolyzable AMPPnP and in a ternary complex consisting of kinase, AMPPnP and either Mg2+ or Mn2+. The structures revealed a previously undescribed water-mediated stabilization of the interaction between the lysine that is conserved in protein kinases and the beta- and gamma-phosphates of ATP, as well as conformational changes at the active site upon ion binding. Comparison between these structures and nucleotide triphosphate complexes of several other kinases disclosed a number of unique features of the DAPK catalytic domain, among which is a highly ordered basic loop in the N-terminal domain that may participate in enzyme regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号