首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidation of ethane by an Acremonium species.   总被引:1,自引:1,他引:0       下载免费PDF全文
Ethane oxidation was studied in ethane-grown resting cells (mycelia) of an Acremonium sp. and in cell-free preparations of such mycelia. From resting cell experiments evidence was found for a pathway of ethane oxidation via ethanol, acetaldehyde, and acetic acid. In vitro studies indicated that ethane-oxidizing activity in such mycelia occurred predominantly in the microsomal fraction of crude homogenates. Microsomal preparations were inactive in the absence of added coenzyme. Marked stimulation of activity was obtained in such preparations with reduced nicotinamide adenine dinucleotide phosphate and to a much lesser degree with nicotinamide adenine dinucleotide phosphate. Ethane oxidation was inhibited by sodium azide and carbon monoxide.  相似文献   

2.
Formate dehydrogenase activity (EC 1.2.1.2) has been demonstrated in cell-free preparations of Mycobacterium phlei by following the reduction of 2,6 dichlorophenolindophenol. thiazolyl blue tetrazolium, or equine cytochrome c. The reduction of equine cytochrome c was inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide. Neither nicotinamide adenine dinucleotide nor nicotinamide adenine dinucleotide phosphate were reduced by this formate dehydrogenase. The enzyme was constitutive and associated with the particular fraction. The greatest level of activity was observed at pH 9.0, with 8 mM formate, and with extracts of cells taken from the log phase of growth. Formaldehyde, hypophosphite, nitrate, and bicarbonate all inhibited the oxidation of formate.  相似文献   

3.
The Pseudomonas multivorans glucose-6-phosphate dehydrogenase (EC 1.1.1.49) active with nicotinamide adenine dinucleotide, which is inhibitable by adenosine-5'-triphosphate, was purified approximately 1,000-fold from extracts of glucose-grown bacteria, and characterized with respect to subunit composition, response to different inhibitory ligands, and certain other properties. The enzyme was found to be an oligomer composed of four subunits of about 60,000 molecular weight. Reduced nicotinamide adenine dinucleotide phosphate, but not reduced nicotinamide adenine dinucleotide, was found to be a potent inhibitor of its activity. The range of concentrations of reduced nicotinamide adenine dinucleotide phosphate over which inhibition occurred was about 100-fold lower than that for adenosine-5'-triphosphate. The data suggest that reduced nicotinamide adenine dinucleotide phosphate may play an important role in regulation of hexose phosphate metabolism in P. multivorans. Antisera prepared against the purified enzyme strongly inhibited its activity, but failed to inhibit the activity of the nicotinamide adenine dinucleotide phosphate-specific glucose-6-phosphate dehydrogenase which is also present in extracts of this bacterium. Immunodiffusion experiments confirmed the results of the enzyme inhibition studies, and failed to support the idea that the two glucose-6-phosphate dehydrogenase species from P. multivorans represent different oligomeric forms of the same protein.  相似文献   

4.
A carbon paste electrode modified with the adsorbed products of the electrochemical oxidation of adenosine triphosphate is described. The electrode was applied to the amperometric electrocatalytic detection of the reduced form of both nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate. The catalytic oxidation current shows a linear dependence on the concentration of the reduced form of nicotinamide adenine dinucleotide up to 1x10(-4)M, with a detection limit of 5x10(-9)M. Modified carbon paste electrodes were coated with an electrogenerated film of nonconducting poly(o-phenylenediamine) to obtain a stable amperometric response for at least 150h. In addition to static measurements, determination of both reduced cofactors was carried out in a flow injection analysis system with a thin-layer amperometric detection cell. The electrocatalytic monitoring of reduced nicotinamide adenine dinucleotide phosphate was applied to flow injection measurement of isocitrate dehydrogenase activity in serum. The results were in good agreement with those for the standard spectrophotometric test kit. The proposed method consumed less time and reagents and provided better precision than the standard method.  相似文献   

5.
A nicotinamide adenine dinucleotide (NAD) linked 6-phosphogluconate (6-PG)dehydrogenase has been detected in Rhizobium. The enzyme activity is similar in both slow- and fast-growing rhizobia. The nicotinamide adenine dinucleotide phosphate (NADP) dependent 6-PG dehydrogenase was detected only in the fast growers and was more than twice as active as the NAD-linked enzyme. Partial characterization of the products of 6-PG oxidation in Rhizobium suggests that the NADP-linked enzyme is the decarboxylating enzyme of the pentose phosphate (PP) pathway (EC 1.1.1.44) whereas a phosphorylated six-carbon compound, containing ketonic group(s), is the product of the oxidation catalyzed by the NAD-linked enzyme.  相似文献   

6.
Pathway of n-Alkane Oxidation in Cladosporium resinae   总被引:2,自引:0,他引:2       下载免费PDF全文
Pathways of initial oxidation of n-alkanes were examined in two strains of Cladosporium resinae. Cells grow on dodecane and hexadecane and their primary alcohol and monoic acid derivatives. The homologous aldehydes do not support growth but are oxidized by intact cells and by cell-free preparations. Hexane and its derivatives support little or no growth, but cell extracts oxidize hexane, hexanol, and hexanal. Alkane oxidation by extracts is stimulated by reduced nicotinamide adenine dinucleotide (phosphate). Alcohol and aldehyde oxidation are stimulated by nicotinamide adenine dinucleotide (phosphate), and reduced coenzymes accumulate in the presence of cyanide or azide. Extracts supplied with (14)C-hexadecane convert it to the alcohol, aldehyde, and acid. Therefore, the major pathway for initial oxidation of n-alkanes is via the primary alcohol, aldehyde, and monoic acid, and the system can act on short-, intermediate-, and long-chain substrates. Thus, filamentous fungi appear to oxidize n-alkanes by pathways similar to those used by bacteria and yeasts.  相似文献   

7.
The two species of 6-phosphogluconate dehydrogenase (EC 1.1.1.43) from Pseudomonas multivorans were resolved from extracts of gluconate-grown bacteria and purified to homogeneity. Each enzyme comprised between 0.1 and 0.2% of the total cellular protein. Separation of the two enzymes, one which is specific for nicotinamide adenine dinucleotide phosphate and the other which is active with nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate was facilitated by the marked difference in their respective isoelectric points, which were at pH 5.0 and 6.9. Comparison of the subunit compositions of the two enzymes indicated that they do not share common peptide chains. The enzyme active with nicotinamide adenine dinucleotide was composed of two subunits of about 40,000 molecular weight, and the nicotinamide adenine dinucleotide phosphate-specific enzyme was composed of two subunits of about 60,000 molecular weight. Immunological studies indicated that the two enzymes do not share common antigenic determinants. Reduced nicotinamide adenine dinucleotide phosphate strongly inhibited the 6-phosphogluconate dehydrogenase active with nicotinamide adenine dinucleotide by decreasing its affinity for 6-phosphogluconate. Guanosine-5'-triphosphate had a similar influence on the nicotinamide adenine dinucleotide phosphate-specific 6-phosphogluconate dehydrogenase. These results in conjunction with other data indicating that reduced nicotinamide adenine dinucleotide phosphate stimulates the conversion of 6-phosphogluconate to pyruvate by crude bacterial extracts suggest that in P. multivorans, the relative distribution of 6-phosphogluconate into the pentose phosphate and Entner-Doudoroff pathways might be determined by the intracellular concentrations of reduced nicotinamide adenine dinucleotide phosphate and purine nucleotides.  相似文献   

8.
We measured both pyridine nucleotide levels and ribonucleotide reductase-specific activity in Yoshida ascites hepatoma cells as a function of growth in vivo and during recruitment from non-cycling to cycling state in vitro. Oxidized nicotinamide adenine dinucleotide (NAD+) and reduced nicotinamide adenine dinucleotide (NADP) levels remained unchanged during tumour growth, while NADP+ and reduced nicotinamide adenine dinucleotide phosphate (NADPH) levels were very high in exponentially growing cells and markedly decreased in the resting phase. Ribonucleotide reductase activity paralleled NADP(H) (NADP+ plus NADPH) intracellular content. The concomitant increase in both NADP(H) levels and ribonucleotide reductase activity was also observed during G1-S transition in vitro. Cells treated with hydroxyurea showed a comparable correlation between the pool size of NADP(H) and ribonucleotide reductase activity. On the basis of these findings, we suggest that fluctuations in NADP(H) levels and ribonucleotide reductase activity might play a critical role in cell cycle regulation.  相似文献   

9.
Cyanobacteria assimilate carbon dioxide through the Calvin cycle and therefore must regulate the activity of ribulose 1,5-bisophosphate carboxylase. Using an in situ assay, as well as measuring the activity in crude, partially purified, and homogeneous preparations, we can show that a number of phosphorylated intermediates exert a regulatory role. Three diverse organisms, Agmenellum quadruplicatum, Aphanocapsa 6714, and Anabaena sp. CA, were studied, and it was found that the in situ and cell-free carboxylase activities were particularly affected by low levels of phosphogluconate and reduced nicotinamide adenine dinucleotide phosphate. There was a marked activation by these ligands when the inactive enzyme was assayed in the presence of low levels of bicarbonate, a result significantly different from a previous report. Moreover, the fully activated enzyme was inhibited by phosphogluconate. In situ Anabaena CA carboxylase activity exhibited a particular capacity for activation by phosphogluconate and reduced nicotinamide adenine dinucleotide phosphate. However, activation of the crude, partially purified, or homogeneous Anabaena CA carboxylase by phosphogluconate and reduced nicotinamide adenine dinucleotide phosphate was significantly decreased when compared with enzyme activity in permeabilized cells. It appears that the microenvironment or the conformation of the enzyme within the cell may be significantly different from that of the isolated enzyme.  相似文献   

10.
Formation of Nitrate from 3-Nitropropionate by Aspergillus flavus   总被引:1,自引:1,他引:0       下载免费PDF全文
Extracts of the hyphae of a nitrifying strain of Aspergillus flavus formed nitrite and nitrate from 3-nitropropionate. Nicotinamide adenine dinucleotide phosphate and nicotinamide adenine dinucleotide enhanced the production of nitrate but not nitrite, whereas cysteine and diethyldithiocarbamate increased nitrite but diminished nitrate synthesis. Quinacrine reduced the extent of conversion of the nitro compound to nitrite and nitrate, but only the inhibition of nitrite formation was completely reversed by flavine coenzymes. Molecular oxygen was essential for this part of the nitrification sequence. 3-Chloropropionate stimulated the oxidation of nitrite by hyphae or enzyme preparations. Although the fungus contained a noncytochrome-linked nitrite-oxidizing enzyme, partially purified preparations free of this enzyme formed both nitrite and nitrate from 3-nitropropionate. Possible mechanisms of this latter stage of heterotrophic nitrification are discussed.  相似文献   

11.
Cell-free particulate fractions of extracts from the obligate methylotroph Methylococcus capsulatus catalyze the reduced nicotinamide adenine dinucleotide (NADH) and O2-dependent oxidation of methane (methane hydroxylase). The only oxidation product detected was formate. These preparations also catalyze the oxidation of methanol and formaldehyde to formate in the presence or absence of phenazine methosulphate with oxygen as the terminal electron acceptor. Methane hydroxylase activity cannot be reproducibly obtained from disintegrated cell suspensions even though the whole cells actively respired when methane was presented as a substrate. Varying the disintegration method or extraction medium had no significant effect on the activities obtained. When active particles were obtained, hydroxylase activity was stable at 0 C for days. Methane hydroxylase assays were made by measuring the methane-dependent oxidation of NADH by O2. In separate experiments, methane consumption and the accumulation of formate were also demonstrated. Formate is not oxidized by these particulate fractions. The effects of particle concentration, temperature, pH, and phosphate concentration on enzymic activity are described. Ethane is utilized in the presence of NADH and O2. The stoichiometric relationships of the reaction(s) with methane as substrate were not established since (i) the presumed initial product, methanol, is also oxidized to formate, and (ii) the contribution that NADH oxidase activity makes to the observed consumption of reactants could not be assessed in the presence of methane. Studies with known inhibitors of electron transport systems indicate that the path of electron flow from NADH to oxygen is different for the NADH oxidase, methane hydroxylase, and methanol oxidase activities.  相似文献   

12.
Salt-tolerant mutant Penicillium notatum sub-cultured in a glucose-peptone broth saturated with KCl shows continued attenuated growth when transferred to salt-free broth. Additional tests have shown E. coli S-RNA to be inferior to yeast RNA preparations, that base-free phosphate sources are inactive, but that nicotinamide adenine dinucleotide and flavine adenine dinucleotide are moderately active. All phosphate derivatives of adenine, cytosine and guanosine and inosine were active including 5'-polyphosphates, 3'(2')-monophosphates 5'-monophosphates, and adenine 3', 5'-cyclic monophosphate. Uracil derivatives were of low activity at best.Among base precursors, orotic acid was moderately active whereas imidazoles were not. The high activity of inosine 5'-phosphate a precursor of other purine nucleotides suggested that one mode of KCl action might involve a block in conversion of 4-amino-5-imidazole carboxamide ribonucleoside to the hypoxanthine nucleotide.  相似文献   

13.
Nicotinamide adenine dinucleotide phosphate-specific isocitrate dehydrogenase was extracted from etiolated pea (Pisum sativum L.) seedlings and was purified 65-fold. The purified enzyme exhibits one predominant protein band by polyacrylamide gel electrophoresis, which corresponds to the dehydrogenase activity as measured by the nitro blue tetrazolium technique. The reaction is readily reversible, the pH optima for the forward (nicotinamide adenine dinucleotide phosphate reduction) and reverse reactions being 8.4 and 6.0, respectively. The enzyme has different cofactor and inhibitor characteristics in the two directions. Manganese ions can be used as a cofactor for the reaction in each direction but magnesium ions only act as a cofactor in the forward reaction. Zinc ions, and to a lesser extent calcium ions, inhibit the enzyme at low concentrations when magnesium but not manganese is the metal activator. It is suggested that there is a fundamental difference between magnesium and manganese in the activation of the enzyme. The enzyme shows normal kinetics and the Michaelis contant for each substrate was determined. The inhibition by nucleotides, nucleosides, reaction products, and related compounds was studied. The enzyme shows a linear response to the mole fraction of reduced nicotinamide adenine dinucleotide phosphate when total nicotinamide adenine dinucleotide phosphate (nicotinamide adenine dinucleotide phosphate plus reduced nicotinamide adenine dinucleotide phosphate) is kept constant. Isocitrate in the presence of divalent metal ions will protect the enzyme from inactivation by p-chloromercuribenzoate. Protection is also afforded by manganese ions alone but not by magnesium ions alone There is a concerted inhibition of the enzyme by oxalacetate and glyoxylate.  相似文献   

14.
Isolated corn (Zea mays L.) mitochondria were found to oxidize reduced nicotinamide adenine dinucleotide phosphate in a KCl reaction medium. This oxidation was dependent on the presence of calcium or phosphate or both. Strontium and manganese substituted for calcium, but magnesium or barium did not. The oxidation of NADPH produced contraction of mitochondria swollen in KCl. Further evidence that the oxidation of NADPH was coupled was observed in respiratory control and adenosine diphosphate-oxygen ratios that were comparable to those reported for reduced nicotinamide adenine dinucleotide. The pathways of electron flow from NADH and NADPH were compared through the addition of electron transport inhibitors. The only difference between the two dinucleotides was that amytal was found to inhibit almost totally the state 3 oxidation of NADPH, but had little effect on the state 3 oxidation of NADH. The hypothetical pathways for electron flow from NADPH are discussed, as are the possible sites of calcium and phosphate stimulation.  相似文献   

15.
Mercurous ion (Hg(+))-dependent reduced nicotinamide adenine dinucleotide phosphate oxidation was demonstrated in an extract from cells of Escherichia coli W2252 that bear R factor.  相似文献   

16.
A microorganism capable of degrading DL-mandelic acid was isolated from sewage sediment of enrichment culture and was identified as Pseudomonas convexa. It was found to metabolize mandelic acid by a new pathway involving 4-hydroxymandelic acid, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, and 3,4-dihydroxybenzoic acid as aromatic intermediates. All the enzymes of the pathway were demonstrated in cell-free extracts. L-Mandelate-4-hydroxylase, a soluble enzyme, requires tetrahydropteridine, nicotinamide adenine dinucleotide phosphate, reduced form, and Fe2+ for its activity. The next enzyme, L-4-hydroxymandelate oxidase (decarboxylating), a particulate enzyme, requires flavine adenine dinucleotide and Mn2+ for its activity. A nicotinamide adenine dinucleotide-dependent, as well as a nicotinamide adenine dinucleotide phosphate-dependent, benzaldehyde dehydrogenase has been resolved and partially purified.  相似文献   

17.
Glutamate dehydrogenase from Mycoplasma laidlawii   总被引:2,自引:2,他引:0       下载免费PDF全文
Mycoplasma laidlawii possesses a single glutamate dehydrogenase (GDH) with dual coenzyme specificity [specificity for nicotinamide adenine dinucleotide (H) and nicotinamide adenine dinucleotide phosphate (H)]. A purification procedure is reported which results in an enzyme preparation with a specific activity of 79.5 units/mg and which displays only one significant protein band after gel electrophoresis. This one band was determined, by activity staining, to have all of the GDH nucleotide specificities. The molecular weight of the enzyme is 250,000 +/- 10%, and it has a subunit size of about 48,000. The enzyme exhibits measurable activity with aspartate and pyruvate but is inactive with eight other possible substrates. Purine nucleotides do not affect the activity. The K(m) for reduced nicotinamide adenine dinucleotide was 1.8 x 10(-4)m. The optimal substrate concentrations and pH optimum for each of the respective GDH activities are also reported.  相似文献   

18.
Bacterial Metabolism of Mevalonic Acid   总被引:5,自引:4,他引:1       下载免费PDF全文
Soluble cell-free extracts of actinomycete S4 grown on media containing mevalonate catalyze acetoacetate formation from mevalonate, mevaldate, and β-hydroxy-β-methylglutaryl-coenzyme A (CoA). Conversion of mevalonate to acetoacetate involves formation of free β-hydroxy-β-methylglutaryl-CoA, but not free mevaldate. The reaction favors mevalonate oxidation, and nicotinamide adenine dinucleotide, rather than nicotinamide adenine dinucleotide phosphate, acts as oxidant.  相似文献   

19.
Substitution of nicotinamide adenine dinucleotide dependent glucose-6-phosphate dehydrogenase for the nicotinamide adenine dinucleotide phosphate dependent enzyme has produced identical results in a number of enzyme-linked electrophoretic staining procedures. This substitution significantly reduces the cost of staining for adenylate kinase, creatine kinase, glucosephosphate isomerase, mannosephosphate isomerase, phosphoglucomutase, and pyruvate kinase activity by utilizing NAD rather than the more expensive NADP.  相似文献   

20.
Substitution of nicotinamide adenine dinucleotide dependent glucose-6-phosphate dehydrogenase for the nicotinamide adenine dinucleotide phosphate dependent enzyme has produced identical results in a number of enzyme-linked electrophoretic staining procedures. This substitution significantly reduces the cost of staining for adenylate kinase, creatine kinase, glucosephosphate isomerase, mannosephosphate isomerase, phosphoglucomutase, and pyruvate kinase activity by utilizing NAD rather than the more expensive NADP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号