首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Jagjit Singh 《Aerobiologia》1996,12(2):121-127
In this special report, the possible causes of indoor air pollution and its impact on the health, comfort and productivity of the building occupant are discussed. The causes and symptoms of sick building syndrome, allergy and environmental illnesses and building related illnesses are discussed in the context of building environments. The remediation and prevention measures examine the solution to the problems caused by indoor air pollution in buildings.  相似文献   

2.

1. 1. Problems with regard to the relationship between energy conservation and indoor air quality in buildings are discussed with a brief history of legislation and practices in Japan since the oil crisis in 1973.

2. 2. In spite of energy conservation as widely advocated the sick building syndrome has hardly been manifested in most of the office spaces in Japan owing to the Law on the Assurance of Healthy Conditions in Buildings which enforced CO2 concentration to be kept lower than 1000 ppm.

Author Keywords: Indoor air quality; energy consumption; CO2 concentration; air conditioning; building  相似文献   


3.
Significant media and regulatory attention has been given to hazardous waste sites and to the remediation of such sites to protect nearby building occupants. Soil vapor intrusion (SVI) can be a major factor contributing to increased occupant expo sure to chemicals. However, there are many possible sources of indoor air pollution, thus complicating routine assessments. The intent of this paper is to provide an overview of the state of understanding related to chemical fate in the indoor environment. A generalized model is presented in the form of an ordinary differential equation that includes several terms that are not commonly accounted for in models involving the effects of SVI in indoor air. In addition to soil vapor intrusion several other sources of indoor contamination are described. Typical air exchange rates for residential dwellings are presented. Finally, recent findings related to the sorptive interactions between indoor air pollutants and indoor materials, as well as homogeneous and heterogeneous chemical reactions that can affect indoor air pollutants are described.  相似文献   

4.
Summary Children are exposed to indoor and outdoor air pollution. Whereas normal children can suffer such air condition without long term sequellae, other children at risk can develop, since infancy, bronchopulmonary disease either because of bad conditions of life or congenital or hereditary causes.  相似文献   

5.
There is nowadays no single fully satisfactory method for VOC removal from indoor air due to the difficulties linked to the very low concentration (microg m(-3) range), diversity, and variability at which VOCs are typically found in the indoor environment. Although biological methods have shown a certain potential for this purpose, the specific characteristic of indoor air and the indoor air environment brings numerous challenges. In particular, new methods must be developed to inoculate, express, and maintain a suitable and diverse catabolic ability under conditions of trace substrate concentration which might not sustain microbial growth. In addition, the biological treatment of indoor air must be able to purify large amounts of air in confined environments with minimal nuisances and release of microorganisms. This requires technical innovations, the development of specific testing protocols and a deep understanding of microbial activities and the mechanisms of substrate uptake at trace concentrations.  相似文献   

6.
Indoor environments play important roles in human health. The health hazards posed by polluted indoor environments include allergy, infections and toxicity. The term ‘sick building syndrome’ (SBS) describes causes of building occupants experiencing adverse health effects that appear to be linked to the time spent in a building. Questionnaire-based data were collected from the people who live or work in air-conditioned (A/C) rooms. Responses of the occupants were analyzed to understand the practices contributing to biotic pollution of indoor air-conditioned environments. Our survey revealed some interesting facts about the users of A/C rooms and their practices that may be contributing to the indoor air quality. The allergy complaints and use of anti-allergy medicines were noted commonly among the occupants of government (Govt.) organizations and computer training centers where cleaning of room and A/C filters were not done periodically. Cleaning practices may reduce the complaints.  相似文献   

7.
Indoor climate and air quality   总被引:2,自引:0,他引:2  
 In industrialized countries about 90% of the time is spent indoors. The ambient parameters affecting indoor thermal comfort are air temperature and humidity, air velocity, and radiant heat exchange within an enclosure. In assessing the thermal environment, one needs to consider all ambient parameters, the insulating properties of the occupants’ clothing, and the activity level of the occupants by means of heat balance models of the human body. Apart from thermal parameters, air quality (measured and perceived) is also of importance for well-being and health in indoor environments. Pollutant levels are influenced by both outdoor concentrations and by indoor emissions. Indoor levels can thus be lower (e.g. in the case of ozone and SO2) or higher (e.g. for CO2 and formaldehyde) than outdoor levels. Emissions from cooking play an important role, especially in developing countries. The humidity of the ambient air has a wide range of effects on the energy and water balance of the body as well as on elasticity, air quality perception, build-up of electrostatic charge and the formation or mould. However, its effect on the indoor climate is often overestimated. While air-handling systems are commonly used for achieving comfortable indoor climates, their use has also been linked to a variety of problems, some of which have received attention within the context of ”sick building syndrome”. Received: 27 October 1997 / Accepted 26 November 1997  相似文献   

8.
The occurrence of Stachybotrys chartarum in indoor environments has been linked to adverse health effects as well as few cases of pulmonary haemorrhages in humans. Although the highly toxic secondary metabolites of this fungus, like satratoxin G and H, were frequently claimed with outbreaks of such diseases, these toxins have hardly been identified in the air of naturally contaminated indoor environments. Herein, a case of a LC-MS/MS-confirmed occurrence of airborne S. chartarum-toxins in a water-damaged dwelling is reported. Satratoxin G (0.25 ng/m(3)) and satratoxin H (0.43 ng/m(3)) were detected. This provides further evidence that Stachybotrys-toxins can be transferred from mouldy indoor materials into air, which could be a factor in the aetiology of health symptoms related to the sick building syndrome.  相似文献   

9.
Although the number of studies of pollen concentrations inside and outside buildings is increasing, little is known about the efficiency of penetration of pollen from outdoor to indoor air, and further. We studied indoor and outdoor pollen concentrations in the town of Lappeenranta and in the municipality of Rautjärvi in SE Finland from May 3–23, 2004, i.e. throughout the Betula pollen season, and assessed the risk of exposure to pollen grains. Pollen concentrations were measured inside and outside a block of flats, a detached house, and the regional central hospital, using rotorod-type samplers; in the town of Joutseno data were compared with Burkard counts. Outdoor concentrations of Betula pollen grains ranged between low and abundant (0–855 grains m?3). The corresponding indoor concentrations near the main front doors varied from low to moderate (0–17 grains m?3) in the central hospital and were low (<10 grains m?3) in both residential buildings. Indoor concentrations further from the main front door were low (<10 grains m?3) at all study sites. The concentrations of Betula pollen decreased substantially from outdoors to indoors, and further toward the centre of the building, probably indicating relatively poor penetrating properties of the pollen grains and/or the short-lived presence of pollen grains in indoor air. The concentrations of Betula pollen inside the buildings during the peak flowering period were mostly at a level barely inducing reactions even in the most sensitive persons.  相似文献   

10.
In the setting of an aerobiological study of confined environments and environmental prevention of nosocomial infections, aerobiological monitoring of 22 areas in Montescano Medical Rehabilitation Centre (Pavia) was performed in three different months: February, May, and August, 1994. A Lanzoni 3000 spore trap was used for the monitoring. Examination of the results showed that, in the environments monitored, the indoor presence of fungi increased progresively over the three periods considered. The behaviour of individual genera of fungi differed. In the winter periodPenicillium andAspergillus were the most commonly encountered genera,Cladosporium was the dominant genus from the spring to the summer while the yeasts had their maximum counts in the spring morning. The use of air conditioning, combined with the low air exchange between outdoors and andoors in some of the environments certainly played a part in the low concentrations of these latter aerofungi.  相似文献   

11.
In the setting of an aerobiological study of confined environments and environmental prevention of nosocomial infections, aerobiological monitoring of 22 areas in Montescano Medical Rehabilitation Centre (Pavia) was performed in three different months: February, May, and August, 1994. A Lanzoni 3000 spore trap was used for the monitoring. Examination of the results showed that, in the environments monitored, the indoor presence of fungi increased progressively over the three periods considered. The behaviour of individual genera of fungi differed. In the winter periodPenicillium andAspergillus were the most commonly encountered genera.Cladosporium was the dominant genus from the spring to the summer while the yeasts had their maximum counts in the spring morning. The use of air conditioning, combined with the low air exchange between outdoors and indoors in some of the environments certainly played a part in the low concentrations of these latter aerofungi.  相似文献   

12.
Epidemiological evidence has concurred with clinical and experimental evidence to correlate current levels of ambient air pollution, both indoors and outdoors, with respiratory effects. In this respect, the use of specific epidemiological methods has been crucial. Common outdoor pollutants are particulate matter, nitrogen dioxide, carbon monoxide, volatile organic compounds and ozone. Short-term effects of outdoor air pollution include changes in lung function, respiratory symptoms and mortality due to respiratory causes. Increase in the use of health care resources has also been associated with short-term effects of air pollution. Long-term effects of cumulated exposure to urban air pollution include lung growth impairment, chronic obstructive pulmonary disease (COPD), lung cancer, and probably the development of asthma and allergies. Lung cancer and COPD have been related to a shorter life expectancy. Common indoor pollutants are environmental tobacco smoke, particulate matter, nitrogen dioxide, carbon monoxide, volatile organic compounds and biological allergens. Concentrations of these pollutants can be many times higher indoors than outdoors. Indoor air pollution may increase the risk of irritation phenomena, allergic sensitisation, acute and chronic respiratory disorders and lung function impairment. Recent conservative estimates have shown that 1.5-2 million deaths per year worldwide could be attributed to indoor air pollution. Further epidemiological research is necessary to better evaluate the respiratory health effects of air pollution and to implement protective programmes for public health.  相似文献   

13.
Poor indoor air quality is a health problem of escalating magnitude, as communities become increasingly urbanised and people’s behaviours change, lending to lives spent almost exclusively in indoor environments. The accumulation of, and continued exposure to, indoor air pollution has been shown to result in detrimental health outcomes. Particulate matter penetrating into the building, volatile organic compounds (VOCs) outgassing from synthetic materials and carbon dioxide from human respiration are the main contributors to these indoor air quality concerns. Whilst a range of physiochemical methods have been developed to remove contaminants from indoor air, all methods have high maintenance costs. Despite many years of study and substantial market demand, a well evidenced procedure for indoor air bioremediation for all applications is yet to be developed. This review presents the main aspects of using horticultural biotechnological tools for improving indoor air quality, and explores the history of the technology, from the humble potted plant through to active botanical biofiltration. Regarding the procedure of air purification by potted plants, many researchers and decades of work have confirmed that the plants remove CO2 through photosynthesis, degrade VOCs through the metabolic action of rhizospheric microbes, and can sequester particulate matter through a range of physical mechanisms. These benefits notwithstanding, there are practical barriers reducing the value of potted plants as standalone air cleaning devices. Recent technological advancements have led to the development of active botanical biofilters, or functional green walls, which are becoming increasingly efficient and have the potential for the functional mitigation of indoor air pollutant concentrations.  相似文献   

14.
15.
Abstract

Human health has been identified to be affected more significantly by indoor air quality. Among numerous pollutants present in indoor air, formaldehyde (FA) is of great concern because of its highly hazardous nature. The concentrations of FA were determined from 20 newly decorated homes in the city of Gonabad, Iran during 2015. It was found that the indoor air levels of FA in all the sampled houses were exceptionally high in the range of 21 to 360 µg/m3 (mean of 149.3 µg/m3). If the 24-h average concentrations of FA measured from those sites were concerned, nearly 40% of them were seen to exceed the WHO guideline values (i.e., 100 µg/m3). One of the important reasons for the high concentrations could be low air exchange rates in those houses (e.g., from 0.18 to 0.37?h?1), high levels of humidity in the newly decorating houses and stronger sources in the indoor environment. Furthermore, its pollution in homes with natural ventilation was seen to be much higher than those of mechanical ventilation. Due to high levels of indoor FA, more effective control procedures should be developed and employed to reduce the risk associated with formaldehyde exposure.  相似文献   

16.
Indoor environments play important roles in human health. The health hazards posed by polluted indoor environments include allergy, infections and toxicity. Life style changes have resulted in a shift from open air environments to air tight, energy efficient, environments, in which people spend a substantial portion of their time. Most indoor air pollution comes from the hazardous non biological agents and biological agents. Fungi are ubiquitous in distribution and are a serious threat to public health in indoor environments. In this communication, we have reviewed the current status on biotic indoor air pollution, role of fungi as biological contaminants and their impact on human health.  相似文献   

17.
Biocontaminants are minute particles derived from different biological materials. Indoor biocontaminants are associated with major public health problems. In Gulf countries, it is more precarious due to the harsh climatic conditions, including high ambient temperatures and relative humidity. In addition, due to COVID-19 pandemic, most of the time public is inside their home. Therefore, the aim of the study was to determine the load of biocontaminants in the indoor environment of Hail city. The results showed that most of the bacteria are gram-positive and higher in polymicrobial (87.1%) than monomicrobial (62.7%) association. There was no significant association with sample collection time and types of isolates. The most abundant microbes found in all samples were Staphylococcus aureus followed by Bacillus spp. Among Gram-negative bacterial isolates, E. coli was most common in tested indoor air samples. The study will be useful to find the biocontaminants associated with risk factors and their impact on human health in indoor environment, especially during the COVID-19 pandemic. These results indicate the need to implement health care awareness programs in the region to improve indoor air quality.  相似文献   

18.
This review explores the recent epidemiological literature to identify possible risk factors for childhood asthma development, as well as the proportion of cases that might be attributable to each factor. Tobacco smoke and house-dust-mite allergy are the only environmental risk factors with firmly established roles in asthma development. Together with genetics, these risk factors probably account for much of childhood asthma development. Suggestive risk factors include cockroach, pet, and mold allergens; low birth weight; small family size; and viral infection. More theoretical risk factors include insufficient breastfeeding, obesity/inactivity, ambient ozone, and living in non-farm settings. National/international trends suggest several risk factors that could play major roles in the rising prevalence of asthma. The “tighter” building construction of modern housing and the increasing time that children spend indoors has undoubtedly increased indoor allergen exposures. Children also spend more time in sedentary activities, with a concomitant decrease in physical activity and increase in obesity. Modern “hygiene” and the changing nature of childhood infection may have also increased asthma prevalence. Mechanisms have been suggested implicating ambient air pollution in asthma development, and there is limited epidemiological evidence supporting this hypothesis. However, this evidence does not resolve why pollution levels have been decreasing throughout the period that asthma rates have risen  相似文献   

19.
In the natural environmentMyrothecium species occur as soil or leaf surface saprobes or as weak plant pathogens. In addition, some species ofMyrothecium are known to produce trichothecene mycotoxins. During a previous aerobiological investigation at two Las Vegas elementary schools,Myrothecium conidia were found to be the second most abundant spore type identified indoors from Burkard personal spore trap samples. The present study was undertaken to re-examine the schools to locate the source ofMyrothecium spores and to examine the ability ofMyrothecium to grow on indoor substrates. There were no obvious signs of contamination in the classrooms; however,Myrothecium spores occurred on about 30% of the Burkard samples. Two colonies ofMyrothecium were identified from subcultures of the Andersen samples, and three colonies were identified from carpet dust samples. Culture studies showed that a strain ofMyrothecium cinctum was able to grow on various culture media as well as on various indoor substrates including paper, cardboard, wallpaper, ceiling tiles, dry wall, carpets and cotton rug. Although there was no attempt to estimate any human health risks, these investigations are believed to be the first to document abundantMyrothecium spores from indoor air samples.  相似文献   

20.
Real-time PCR detection of environmental mycobacteria in house dust   总被引:1,自引:0,他引:1  
Analysing the number and species of microbes in indoor dust is needed for assessment of human exposure to microbes in dwellings. Environmental mycobacteria are common heterotrophic bacteria in both natural and man-made environments and potential inducers of human immune system. Culture of mycobacteria from samples rich with other microbes is difficult due to the slow growth rate of mycobacteria and this has hampered the studies on their role in indoor human exposure. A quantitative, real-time 5'-nuclease (TaqMan) PCR assay was developed to detect environmental mycobacteria in indoor dust samples. The specificity of the primers and the probe targeting the 16S rDNA of mycobacteria, tested with 26 mycobacterial and 10 non-mycobacterial but related species, proved to be high. When tested on 20 indoor dust samples collected from five homes, the assay gave counts varying between 4.8 × 104 and 7.2 × 106 cell/g, being on average 1.1 × 103 times higher than culture. Seasonal variation in the dust counts of mycobacteria was observed by both culture and qPCR. Total of 140 isolates considered as mycobacteria by Ziehl-Neelsen staining and GLC-analyses were subjected to PCR analysis with the mycobacterial primers, and 39 isolates to partial 16S rDNA sequencing. All proved to be mycobacteria and revealed high diversity of mycobacterial species in the dust samples. Majority of the sequences were related to M. terrae and M. avium complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号