首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The Src-homology 2 domain-containing adaptor protein Shb was recently cloned as a serum-inducible gene in the insulin-producing beta-TC1 cell line. Subsequent studies have revealed an involvement of Shb for apoptosis in NIH3T3 fibroblasts and differentiation in the neuronal PC12 cells. To assess a role of Shb for beta-cell function, transgenic mice utilizing the rat insulin promoter to drive expression of Shb were generated. MATERIALS AND METHODS: A gene construct allowing the Shb cDNA to be expressed from the rat insulin 2 promoter was microinjected into fertilized mouse oocytes and implanted into pseudopregnant mice. Mice containing a low copy number of this transgene were bred and used for further experimentation. Shb expression was determined by Western blot analysis. The insulin-positive area of whole pancreas, insulin secretion of isolated islets and islet cell apoptosis, glucose tolerance tests, and in vivo sensitivity to multiple injections of the beta-cell toxin streptozotocin were determined in control CBA and Shb-transgenic mice. RESULTS: Western blot analysis revealed elevated islet content of the Shb protein. Shb-transgenic mice displayed enhanced glucose-disappearance rates in response to an intravenous glucose injection. The relative pancreatic beta-cell area neonatally and at 6 months of age were increased in the Shb-transgenic mice. Islets isolated from Shb-transgenic mice showed enhanced insulin secretion in response to glucose and increased insulin and DNA content. Apoptosis was increased in islets isolated from Shb-transgenic mice compared with control islets both under basal conditions and after incubation with IL-1 beta + IFN-gamma. Rat insulinoma RINm5F cells overexpressing Shb displayed decreased viability during culture in 0.1% serum and after exposure to a cytotoxic dose of nicotinamide. Shb-transgenic mice injected with multiple doses of streptozotocin showed increased blood glucose values compared with the corresponding controls, suggesting increased in vivo susceptibility to this toxin. CONCLUSION: The results suggest that Shb has dual effects on beta-cell growth: whereas Shb increases beta-cell formation during late embryonal stages, Shb also enhances beta-cell death under certain stressful conditions and may thus contribute to beta-cell destruction in type 1 diabetes.  相似文献   

2.
Evidence for IL-6 production by and effects on the pancreatic beta-cell   总被引:12,自引:0,他引:12  
IFN-gamma and TNF-alpha injure the pancreatic beta-cell and may be involved in the pathogenesis of autoimmune type 1 diabetes. Because the induction of IL-6 appears to be an important host cell response to injury, we have examined whether IL-6 is produced by murine pancreatic islets or rat insulinoma (RIN-m5F) cells after their exposure to IFN-gamma and TNF-alpha. Islet culture supernatants contained detectable IL-6 activity which was increased 6-fold when islets were exposed to IFN-gamma and 40- and 115-fold when islets were exposed to TNF-alpha and TNF-alpha + IFN-gamma, respectively. A mAb against murine IL-6 abolished (control and IFN-gamma) or significantly reduced (TNF-alpha and TNF-alpha + IFN-gamma) the IL-6 activity in islet supernatants. The magnitude for the effects of IFN-gamma and TNF-alpha on the production of IL-6 from mouse islets was found to be both time and dose dependent. Northern blot hybridization analysis of islet total cytoplasmic RNA with a cDNA probe to murine IL-6 revealed a band at 1.3 kb, the intensity of which increased in islets exposed to IFN-gamma + TNF-alpha. IL-6 activity was also detected in culture supernatants from RIN-m5F cells exposed to TNF-alpha + IFN-gamma. Islets cultured with rIL-6 secreted higher levels of insulin compared with control islets. Pancreatic islet cells, in all probability beta-cells, produce IL-6, the expression of which is up-regulated by IFN-gamma and/or TNF-alpha. In addition to a possible role in regulating pancreatic beta-cell function we propose that IL-6 produced by the pancreatic beta-cell may act as a costimulator for autoreactive B and T lymphocytes in autoimmune diabetes.  相似文献   

3.
Thiazolidinediones acting as PPAR-gamma agonists are a new generation of oral antidiabetics addressing insulin resistance as a main feature of type-2 diabetes. In accordance to our results, pre-clinical studies have demonstrated that the thiazolinedione troglitazone prevents the development of insulin-dependent autoimmune type-1 diabetes. To investigate whether TGZ acts by affecting the ICAM-1/LFA-1 pathway and/or the Th1/Th2 cytokine balance in NOD mice, we analysed the IL-1beta-induced ICAM-1 expression on islet-cells and the LFA-1, CD25, IL-2, IFN-gamma, IL-4, and IL-10 expression on splenocytes. After 200 days of oral TGZ administration, islet cells from TGZ-treated NOD mice showed a reduced ICAM-1 expression in response to the pro-inflammatory cytokine IL-1beta. The expression of the ligand LFA-1 on CD4(+) and CD8(+) T-cells was comparable to that of placebo- and untreated controls. Also, the expression of Th1/Th2 cytokines was comparable in groups receiving TGZ or Placebo. Nevertheless, the investigated NOD mice segregated into IFN-gamma low- and IFN-gamma high producers as revealed by cluster analysis. Interestingly, the majority of TGZ-treated mice belonged to the cluster of IFN-gamma low producers. Thus, the prevention of autoimmune diabetes in NOD mice by TGZ seems to be associated with suppression of IL-1beta-induced ICAM-1 expression leading to a reduced vulnerability of pancreatic beta-cells during the effector stage of beta-cell destruction. In addition, IFN-gamma production was modulated, implicating that alteration of the Th1/Th2 cytokine balance might have contributed to diabetes prevention. The findings of this study suggest that TGZ exerts its effects by influencing both the beta-cells as the target of autoimmune beta-cell destruction and the T-cells as major effectors of the autoimmune process.  相似文献   

4.
Fas ligand (FasL), perforin, TNF-alpha, IL-1, and NO have been considered as effector molecule(s) leading to beta cell death in autoimmune diabetes. However, the real culprit(s) in beta cell destruction have long been elusive, despite intense investigation. We and others have demonstrated that FasL is not a major effector molecule in autoimmune diabetes, and previous inability to transfer diabetes to Fas-deficient nonobese diabetic (NOD)-lpr mice was due to constitutive FasL expression on lymphocytes from these mice. Here, we identified IFN-gamma/TNF-alpha synergism as the final effector molecules in autoimmune diabetes of NOD mice. A combination of IFN-gamma and TNF-alpha, but neither cytokine alone, induced classical caspase-dependent apoptosis in insulinoma and pancreatic islet cells. IFN-gamma treatment conferred susceptibility to TNF-alpha-induced apoptosis on otherwise resistant insulinoma cells by STAT1 activation followed by IFN regulatory factor (IRF)-1 induction. IRF-1 played a central role in IFN-gamma/TNF-alpha-induced cytotoxicity because inhibition of IRF-1 induction by antisense oligonucleotides blocked IFN-gamma/TNF-alpha-induced cytotoxicity, and transfection of IRF-1 rendered insulinoma cells susceptible to TNF-alpha-induced cytotoxicity. STAT1 and IRF-1 were expressed in pancreatic islets of diabetic NOD mice and colocalized with apoptotic cells. Moreover, anti-TNF-alpha Ab inhibited the development of diabetes after adoptive transfer. Taken together, our results indicate that IFN-gamma/TNF-alpha synergism is responsible for autoimmune diabetes in vivo as well as beta cell apoptosis in vitro and suggest a novel signal transduction in IFN-gamma/TNF-alpha synergism that may have relevance in other autoimmune diseases and synergistic anti-tumor effects of the two cytokines.  相似文献   

5.
Islet alpha- and delta-cells are spared autoimmune destruction directed at beta-cells in type 1 diabetes resulting in an apparent increase of non-beta endocrine cells in the islet core. We determined how islet remodeling in autoimmune diabetes compares to streptozotocin (STZ)-induced diabetes. Islet cell mass, proliferation, and immune cell infiltration in pancreas sections from diabetic NOD mice and mice with STZ-induced diabetes was assessed using quantitative image analysis. Serial sections were stained for various beta-cell markers and Ngn3, typically restricted to embryonic tissue, was only upregulated in diabetic NOD mouse islets. Serum levels of insulin, glucagon and GLP-1 were measured to compare hormone levels with respect to disease state. Total pancreatic alpha-cell mass did not change as autoimmune diabetes developed in NOD mice despite the proportion of islet area comprised of alpha- and delta-cells increased. By contrast, alpha- and delta-cell mass was increased in mice with STZ-induced diabetes. Serum levels of glucagon reflected these changes in alpha-cell mass: glucagon levels remained constant in NOD mice over time but increased significantly in STZ-induced diabetes. Increased serum GLP-1 levels were found in both models of diabetes, likely due to alpha-cell expression of prohormone convertase 1/3. Alpha- or delta-cell mass in STZ-diabetic mice did not normalize by replacement of insulin via osmotic mini-pumps or islet transplantation. Hence, the inflammatory milieu in NOD mouse islets may restrict alpha-cell expansion highlighting important differences between these two diabetes models and raising the possibility that increased alpha-cell mass might contribute to the hyperglycemia observed in the STZ model.  相似文献   

6.
Type 1 diabetes is thought to occur as a result of the loss of insulin-producing pancreatic beta cells by an environmentally triggered autoimmune reaction. In rodent models of diabetes, streptozotocin (STZ), a genotoxic methylating agent that is targeted to the beta cells, is used to trigger the initial cell death. High single doses of STZ cause extensive beta-cell necrosis, while multiple low doses induce limited apoptosis, which elicits an autoimmune reaction that eliminates the remaining cells. We now show that in mice lacking the DNA repair enzyme alkylpurine-DNA-N-glycosylase (APNG), beta-cell necrosis was markedly attenuated after a single dose of STZ. This is most probably due to the reduction in the frequency of base excision repair-induced strand breaks and the consequent activation of poly(ADP-ribose) polymerase (PARP), which results in catastrophic ATP depletion and cell necrosis. Indeed, PARP activity was not induced in APNG(-/-) islet cells following treatment with STZ in vitro. However, 48 h after STZ treatment, there was a peak of apoptosis in the beta cells of APNG(-/-) mice. Apoptosis was not observed in PARP-inhibited APNG(+/+) mice, suggesting that apoptotic pathways are activated in the absence of significant numbers of DNA strand breaks. Interestingly, STZ-treated APNG(-/-) mice succumbed to diabetes 8 months after treatment, in contrast to previous work with PARP inhibitors, where a high incidence of beta-cell tumors was observed. In the multiple-low-dose model, STZ induced diabetes in both APNG(-/-) and APNG(+/+) mice; however, the initial peak of apoptosis was 2.5-fold greater in the APNG(-/-) mice. We conclude that APNG substrates are diabetogenic but by different mechanisms according to the status of APNG activity.  相似文献   

7.
The GABA-synthesizing enzyme glutamic acid decarboxylase (GAD) is expressed in pancreatic beta-cells and GABA has been suggested to play a role in islet cell development and function. Mouse beta-cells predominantly express the larger isoform of the enzyme, GAD67, and very low levels of the second isoform, GAD65. Yet GAD65 has been shown to be a target of very early autoimmune T-cell responses associated with beta-cell destruction in the non-obese diabetic (NOD) mouse model of Type 1 diabetes. Mice deficient in GAD67, GAD65 or both were used to assess whether GABA is important for islet cell development, and whether GAD65 is required for initiation of insulitis and progression to Type 1 diabetes in the mouse. Lack of either GAD65 or GAD67 did not effect the development of islet cells and the general morphology of islets. When GAD65-/-(129/Sv) mice were backcrossed into the NOD strain for four generations, GAD65-deficient mice developed insulitis similar to GAD65+/+ mice. Furthermore, at the low penetrance of diabetes in this backcross, GAD65-deficient mice developed disease at the same rate and incidence as wildtype mice. The results suggest that GABA generated by either GAD65 or GAD67 is not critically involved in islet formation and that GAD65 expression is not an absolute requirement for development of autoimmune diabetes in the NOD mouse.  相似文献   

8.
Dispersed islet cells were prepared from collagenase-isolated lean mouse pancreatic islets by Dispase-II and subsequent mechanical treatment in calcium depleted media. An average yield of 600 cells per islet was obtained, 84% of the cells being beta-cells. Cells were incubated with radioactive chromium as a marker of cell viability. Optimal labelling of 1--2 cpm per cell was obtained by incubating 10(5) cells with 10(6) cpm of [51]Cr for 90 min. When islet cells were incubated with streptozotocin, this drug induced [51]Cr-release after a lag time of 2--4 hours. Furthermore, a positive correlation between streptozotocin concentrations and [51]Cr-release was found. This assay of cytotoxicity was highly reproducible and might be applicable in the study of other beta-cell damaging agents or autoimmune phenomena in the pathogenesis of diabetes.  相似文献   

9.
The ability of cyclosporine to prevent the increase in Ia and H-2K expression that occurs in mice with graft-vs-host disease (GVHD) was examined by means of absorption, indirect immunofluorescent staining (IIF), and indirect immunoperoxidase staining (IIP). Acute GVHD was induced in irradiated C3H/HeJ mice (H-2k) by injections of bone marrow and spleen cells from C57BL/6J mice (H-2b). Ten days after induction of acute GVHD, the spleens of mice not receiving cyclosporine expressed only donor Ia, reflecting their reconstitution by donor cells. The kidneys of such mice had a 10-fold increase in host Ia and H-2K expression, as previously reported. Treatment with cyclosporine reduced the amount of donor Ia and H-2K in spleens, and prevented the enhanced expression of recipient Ia and H-2K in kidneys in a dose-dependent manner. IIF or IIP staining showed that the principal change was in kidney tubules, where the induction of Ia and H-2K expression was greatly diminished. Cyclosporine administered to normal mice did not alter Ia expression except at high doses, at which it decreased Ia expression in kidneys and in spleens. The results suggest that prevention of enhanced MHC product expression could be part of the immunosuppressive actions of cyclosporine.  相似文献   

10.
BACKGROUND: The ability to transfer immunoregulatory, cytoprotective, or anti-apoptotic genes into pancreatic islet cells may allow enhanced resistance against the autoimmune destruction of these cells in type 1 diabetes. We describe here an inducible transduction system for expression of the anti-apoptotic bcl-2 gene in insulin-producing cells as a potential tool for protecting against beta-cell death. MATERIALS AND METHODS: Isolated pancreatic rat islet cells or rat insulinoma (RINm5F) cells were transduced using a progesterone antagonist (RU 486) inducible adenoviral vector system, expressing the bcl-2 gene. Bcl-2 overexpression was measured by Western blot assays and flow cytometry analysis. Following exposure to cytokines or to the mitochondrial uncoupler FCCP, cell survival was determined using fluorescence and electron microscopy, and a colorimetric assay (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]- 2H-tetrazolium-5-carboxanilide [XTT]-based) for cell viability. The mitochondrial membrane potential ((m)) was assessed using the lipophilic cationic membrane potential-sensitive dye JC-1. RESULTS: The adenoviral gene transfer system induced Bcl-2 expression in more than 70% of beta-cells and the protein expression levels were successfully regulated in response to varying concentrations of progesterone antagonist RU 486. Exposure of islet cells to proinflammatory cytokines IL-1beta, TNF-alpha, and IFN-gamma, or to the mitochondrial uncoupler FCCP resulted in disruption of the mitochondrial membrane potential ((m)) and beta-cell death. Bcl-2 overexpression stabilized (m) and prevented cell death in RINm5F cells but not in islet cells. In addition, prolonged in vitro culture revealed adenoviral-induced islet cell necrosis. CONCLUSIONS: The RU 486-regulated adenoviral system can achieve an efficient control of gene transfer at relatively low doses of the adenoviral vector. However, Bcl-2 overexpression in islet cells did not prevent adenoviral- or cytokine-induced toxicity, suggesting that the specific death pathway involved in adenoviral toxicity in beta-cells may bypass the mitochondrial permeability transition event.  相似文献   

11.
Viral infection is one environmental factor that may initiate beta-cell damage during the development of autoimmune diabetes. Formed during viral replication, double-stranded RNA (dsRNA) activates the antiviral response in infected cells. In combination, synthetic dsRNA (polyinosinic-polycytidylic acid, poly(I-C)) and interferon (IFN)-gamma stimulate inducible nitric-oxide synthase (iNOS) expression, inhibit insulin secretion, and induce islet degeneration. Interleukin-1 (IL-1) appears to mediate dsRNA + IFN-gamma-induced islet damage in a nitric oxide-dependent manner, as the interleukin-1 receptor antagonist protein prevents dsRNA + IFN-gamma-induced iNOS expression, inhibition of insulin secretion, and islet degeneration. IL-1beta is synthesized as an inactive precursor protein that requires cleavage by the IL-1beta-converting enzyme (ICE) for activation. dsRNA and IFN-gamma stimulate IL-1beta expression and ICE activation in primary beta-cells, respectively. Selective ICE inhibition attenuates dsRNA + IFN-gamma-induced iNOS expression by primary beta-cells. In addition, poly(I-C) + IFN-gamma-induced iNOS expression and nitric oxide production by human islets are prevented by interleukin-1 receptor antagonist protein, indicating that human islets respond to dsRNA and IFN-gamma in a manner similar to rat islets. These studies provide biochemical evidence for a novel mechanism by which viral infection may initiate beta-cell damage during the development of autoimmune diabetes. The viral replicative intermediate dsRNA stimulates beta-cell production of pro-IL-1beta, and following cleavage to its mature form by IFN-gamma-activated ICE, IL-1 then initiates beta-cell damage in a nitric oxide-dependent fashion.  相似文献   

12.
The appearance of Fas receptor at the surface of pancreatic beta-cells affected by progressive insulitis strongly suggests that Fas-mediated beta-cell apoptosis plays an important role in the pathogenesis of type 1 diabetes. In support of this concept, the present study has shown that islet cells from NOD mice and the beta-cell line NIT-1 respond to the proinflammatory cytokines IL-1beta and IFN-gamma with Fas surface expression in a dose- and time-dependent manner. Moreover, the prevention of cytokine-induced surface Fas expression by actinomycin D, cycloheximide, and brefeldin A demonstrated that trafficking of Fas to the beta-cell surface requires RNA and protein synthesis and, in addition is critically dependent on intracellular protein transport. Compared with total cellular Fas protein, the amount of Fas at the cell surface was relatively small and indicated that Fas is preferentially expressed in cytoplasmic compartments of NIT-1 cells. It is concluded that inflammatory insults specifically induce translocation of Fas to the beta-cell surface and that interference with cell surface Fas expression is a new strategy to improve beta-cell survival in inflamed islets.  相似文献   

13.
Androgen receptor (AR) mediates a wide range of cellular processes, such as proliferation, differentiation and apoptosis. Here we sought to identify whether AR was located in pancreatic beta-cells and investigate its functions in type 1 diabetes induced by multiple low doses of streptozotocin. Double/triple immunofluorescence, Western blot and semi-quantitative RT-PCR were carried out to determine variances of AR expression in beta-cells and correlation between AR and apoptosis/proliferation of beta-cells with progress of diabetes. In addition, in vitro primary beta-cells from control mice were cultured for 3 days or 6 days with compound stimulation in order to further identify effect of AR on beta-cell apoptosis and proliferation. AR expression in beta-cells peaked in control and 1-day diabetic mice, gradually and significantly decreased, even disappeared in diabetic mice with progress of diabetes. TUNEL-positive beta-cells were concomitant with overexpression of AR, and Ki67-positive beta-cells showed extremely weak, even negative AR staining. In vitro, AR could mediate beta-cell apoptosis, and AR antagonist flutamide contributed to beta-cell proliferation. In conclusion, AR is abundantly expressed in pancreatic beta-cell cytoplasm of control mice. With progress of type 1 diabetes, decrement of AR expression in diabetic mice contributes to prohibit beta-cells from apoptosis, and is strongly associated with beta-cell proliferation.  相似文献   

14.
In vivo monitoring of pancreatic beta-cells in a transgenic mouse model   总被引:2,自引:0,他引:2  
We generated a transgenic mouse model (RIP-luc) for the in vivo monitoring of pancreatic islet mass and function in response to metabolic disease. Using the rat insulin promoter fused to firefly luciferase, and noninvasive technology to detect luciferase activity, we tracked changes in reporter signal during metabolic disease states and correlated the changes in luciferase signal with metabolic status of the mouse. Transgene expression was found to be specific to the pancreatic islets in this transgenic model. Basal transgene expression was tracked in male and female mice fed either a chow or a high-fat diet and in response to treatment with streptozotocin. Pancreatic bioluminescent signal increased in mice fed a high-fat diet compared with chow-fed animals. In a model of chemically induced diabetes, the bioluminescent signal decreased in accordance with the onset of diabetes and reduction of islet beta-cell number. Preliminary studies using islets transplanted from this transgenic model suggest that in vivo image analysis can also be used to monitor transplanted islet viability and survival in the host. This transgenic model is a useful tool for in vivo studies of pancreatic beta-cells and as a donor for islet transplantation studies.  相似文献   

15.
Human urine-derived stem cells (hUSCs) are a potential stem cell source for cell therapy. However, the effect of hUSCs on glucose metabolism regulation in type 1 diabetes was not clear. Therefore, the aim of the study was to evaluate whether hUSCs have protective effect on streptozotocin (STZ)-induced diabetes. hUSCs were extracted and cultivated with a special culture medium. Flow cytometry analysis was applied to detect cell surface markers. BALB/c male nude mice were either injected with high-dose STZ (HD-STZ) or multiple low-dose STZ (MLD-STZ). Serum and pancreatic insulin were measured, islet morphology and its vascularization were investigated. hUSCs highly expressed CD29, CD73, CD90 and CD146, and could differentiate into, at least, bone and fat in vitro. Transplantation of hUSCs into HD-STZ treated mice prolonged the median survival time and improved their blood glucose, and into those with MLD-STZ improved the glucose tolerance, islet morphology and increased the serum and pancreas insulin content. Furthermore, CD31 expression increased significantly in islets of BALB/c nude mice treated with hUSCs compared to those of un-transplanted MLD-STZ mice. hUSCs could improve the median survival time and glucose homeostasis in STZ-treated mice through promoting islet vascular regeneration and pancreatic beta-cell survival.  相似文献   

16.
Type I diabetes mellitus is an autoimmune disease characterized by the selective destruction of the insulin-secreting beta-cell found in pancreatic islets of Langerhans. Cytokines such as interleukin-1 (IL-1), interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) mediate beta-cell dysfunction and islet degeneration, in part, through the induction of the inducible isoform of nitric-oxide synthase and the production of nitric oxide by beta-cells. Cytokines also stimulate the expression of the inducible isoform of cyclooxygenase, COX-2, and the production of prostaglandin E(2) (PGE(2)) by rat and human islets; however, the role of increased COX-2 expression and PGE(2) production in mediating cytokine-induced inhibition of islet metabolic function and viability has been incompletely characterized. In this study, we have shown that treatment of rat islets with IL-1beta or human islets with a cytokine mixture containing IL-1beta + IFN-gamma +/- TNF-alpha stimulates COX-2 expression and PGE(2) formation in a time-dependent manner. Co-incubation of rat and human islets with selective COX-2 inhibitors SC-58236 and Celecoxib, respectively, attenuated cytokine-induced PGE(2) formation. However, these inhibitors failed to prevent cytokine-mediated inhibition of insulin secretion or islet degeneration. These findings indicate that selective inhibition of COX-2 activity does not protect rat and human islets from cytokine-induced beta-cell dysfunction and islet degeneration and, furthermore, that islet production of PGE(2) does not mediate these inhibitory and destructive effects.  相似文献   

17.
The effect of systemic immunologic stimulation on renal expression of the H-2K (class I) and Ia (class II) antigens of the mouse major histocompatibility complex was explored. We previously reported that graft-vs-host (GvH) disease in mice caused an increase in host renal Ia expression. In the present experiments, we demonstrated that Kk antigen expression also increased during GvH. Other immune stimuli (allogeneic tumor grafts or injections of allogeneic spleen cells) caused increased renal Ia (and, where studied, Kk) expression in the epithelium of some renal tubules, as demonstrated by indirect immunofluorescence (IIF) or immunoperoxidase (IIP) staining. The normal interstitial Ia staining was frequently diminished in the kidneys of mice given these stimuli. At least in the case of allogeneic tumor grafts, the changes in renal Ia and H-2K were dependent on host T cells, in that no similar change appeared in nude (nu/nu) mice bearing allogeneic tumor grafts. By histochemical techniques, most of the change was in proximal tubules. In semiquantitative absorption, the total renal Ia was usually increased (two- to 20-fold) in parallel with the IIF or IIP changes. Serial studies revealed that MHC product induction was frequently transient and was not associated with detectable histologic abnormalities. In cultured renal cells, increased Iak and Kk could be demonstrated by IIF after 4 days of culture in supernatants of lymphocytes stimulated with concanavalin A: the activity in these supernatants was probably not interleukin 2, but might have been IFN-gamma, because IFN-gamma also induced this change. We conclude that systemic immunologic stimuli alter MHC product expression in renal tubule epithelium and that this effect can be stimulated in vitro by supernatants of stimulated lymphocytes.  相似文献   

18.
19.
Mice infected with reovirus develop abnormalities in glucose homeostasis. Reovirus strain type 3 Abney (T3A) was capable of systemic infection of nonobese diabetic (NOD) mice, an experimental model of autoimmune diabetes. Reovirus antigen was detected in pancreatic islets of T3A-infected mice, and primary cultures of pancreatic islets from NOD mice supported T3A growth. Significantly fewer T3A-infected animals compared to uninfected controls developed diabetes. However, despite the alteration in diabetes penetrance, insulitis was evident in T3A-infected mice. These results suggest that viral infection of NOD mice alters autoimmune responses to beta-cell antigens and thereby delays development of diabetes.  相似文献   

20.
beta-Cell apoptosis is a key event contributing to the pathogenesis of type 1 diabetes mellitus. In addition to apoptosis being the main mechanism by which beta cells are destroyed, beta-cell apoptosis has been implicated in the initiation of type 1 diabetes mellitus through antigen cross-presentation mechanisms that lead to beta-cell-specific T-cell activation. Caspase-3 is the major effector caspase involved in apoptotic pathways. Despite evidence supporting the importance of beta-cell apoptosis in the pathogenesis of type 1 diabetes, the specific role of caspase-3 in this process is unknown. Here, we show that Caspase-3 knockout (Casp3(-/-) mice were protected from developing diabetes in a multiple-low-dose streptozotocin autoimmune diabetes model. Lymphocyte infiltration of the pancreatic islets was completely absent in Casp3(-/-) mice. To determine the role of caspase-3-dependent apoptosis in disease initiation, a defined antigen-T-cell receptor transgenic system, RIP-GP/P14 double-transgenic mice with Casp3 null mutation, was examined. beta-cell antigen-specific T-cell activation and proliferation were observed only in the pancreatic draining lymph node of RIP-GP/P14/Casp3(+/-) mice, but not in mice lacking caspase-3. Together, our findings demonstrate that caspase-3-mediated beta-cell apoptosis is a requisite step for T-cell priming, a key initiating event in type 1 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号