首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dysfunction of cholinergic basal forebrain (CBF) neurons of the nucleus basalis (NB) is a cardinal feature of Alzheimer's disease (AD) and correlates with cognitive decline. Survival of CBF neurons depends upon binding of nerve growth factor (NGF) with high-affinity (trkA) and low-affinity (p75(NTR)) neurotrophin receptors produced within CBF neurons. Since trkA and p75(NTR) protein levels are reduced within CBF neurons of people with mild cognitive impairment (MCI) and mild AD, trkA and/or p75(NTR) gene expression deficits may drive NB degeneration. Using single cell expression profiling methods coupled with custom-designed cDNA arrays and validation with real-time quantitative PCR (qPCR) and in situ hybridization, individual cholinergic NB neurons displayed a significant down regulation of trkA, trkB, and trkC expression during the progression of AD. An intermediate reduction was observed in MCI, with the greatest decrement in mild to moderate AD as compared to controls. Importantly, trk down regulation is associated with cognitive decline measured by the Global Cognitive Score (GCS) and the Mini-Mental State Examination (MMSE). In contrast, there is a lack of regulation of p75(NTR) expression. Thus, trk defects may be a molecular marker for the transition from no cognitive impairment (NCI) to MCI, and from MCI to frank AD.  相似文献   

2.
Molecular mechanisms underlying tauopathy remain undetermined. In the current study, single cell gene expression profiling was coupled with custom-designed cDNA array analysis to evaluate tau expression and other cytoskeletal elements within individual neuronal populations in patients with no cognitive impairment (NCI), mild cognitive impairment (MCI), and Alzheimer's disease (AD). Results revealed a shift in the ratio of three-repeat tau (3Rtau) to four-repeat tau (4Rtau) mRNAs within individual human cholinergic basal forebrain (CBF) neurons within nucleus basalis (NB) and CA1 hippocampal neurons during the progression of AD, but not during normal aging. A shift in 3Rtau to 4Rtau may precipitate a cascade of events in the selective vulnerability of neurons, ultimately leading to frank neurofibrillary tangle (NFT) formation in tauopathies including AD.  相似文献   

3.
G A Higgins  S Koh  K S Chen  F H Gage 《Neuron》1989,3(2):247-256
Chronic infusion of nerve growth factor (NGF) into the forebrain of the adult rat produced increases in NGF receptor (NGF-R) mRNA hybridization, NGF-R immunoreactivity, choline acetyltransferase (ChAT) mRNA hybridization, and neuronal hypertrophy, when compared with vehicle infusion or noninfused rat brain. In situ hybridization showed NGF induction of NGF-R gene expression, documented by increases in the number of NGF-R mRNA-positive cells within the medial septum, diagonal band, and nucleus basalis magnocellularis. NGF also produced hypertrophy of ChAT mRNA-positive neurons. These results suggest that NGF produces cholinergic neuronal hypertrophy through induction of NGF-R gene expression within the basal forebrain.  相似文献   

4.
5.
Evidence indicates that the degeneration of basal forebrain cholinergic neurons may represent an important factor underlying the progressive cognitive decline characterizing Alzheimer’s disease (AD). However, the nature of the relationship between cholinergic depletion and AD is not fully elucidated. This study aimed at clarifying some aspects of the relation existing between deficits in cerebral energy metabolism and degeneration of cholinergic system in AD, by investigating the neuronal metabolic activity of several cortical areas after depletion of basal forebrain cholinergic neurons. In cholinergically depleted rats, we evaluated the neuronal metabolic activity by assaying cytochrome oxidase (CO) activity in frontal, parietal and posterior parietal cortices at four different time-points after unilateral injection of 192 IgG-saporin in the nucleus basalis magnocellularis. Unilateral depletion of cholinergic cells in the basal forebrain induced a bilateral decrease of metabolic activity in all the analyzed areas. Frontal and parietal cortices showed decreased metabolic activity even 3 days after the lesion, when the cholinergic degeneration was still incomplete. In posterior parietal cortex metabolic activity decreased only 7 days after the lesion. The possible molecular mechanisms underlying these findings were also investigated. Real-time PCR showed an increase of CO mRNA levels at 3, 7 and 15 days after the lesion both in frontal and parietal cortices, followed by normalization at 30 days. Western Blot analysis did not show any change in CO protein levels at any time-point after the lesion. Our findings support a link between metabolic deficit and cholinergic hypofunctionality characterizing AD pathology. The present model of cholinergic hypofunctionality provides a useful means to study the complex mechanisms linking two fundamental and interrelated phenomena characterizing AD from the early stages.  相似文献   

6.
Nerve growth factor (NGF) acts through the receptor tyrosine kinase trkA to serve as a trophic factor for cholinergic neurons in the medial septal nucleus and vertical limb of the diagonal band. We have previously shown that the neuronal isoform of nitric oxide synthase (NOS) is selectively expressed in a large fraction of trkA-expressing cholinergic neurons in these brain regions in the adult rat, and that NGF induces the expression of neuronal-NOS in these cells. Herein, we show that: 1) neuronal-NOS is also localized to these neurons in the developing septum; 2) the expression of neuronal-NOS is regulated in the developing medial septal nucleus and vertical limb of the diagonal band; 3) neuronal-NOS regulation parallels that for other markers of basal forebrain cholinergic neuron differentiation, such as cholineacetyltransferase; and 4) NGF infusion in the postnatal period induces robust increases in neuronal-NOS mRNA and in NOS activity in the basal forebrain. Taken together with earlier findings, our results suggest that neuronal-NOS has a role in the differentiation and mature function of septal cholinergic neurons. Through enhancing neuronal-NOS synthesis, endogenous NGF is likely to regulate NO functions in vivo. Special issue dedicated to Dr. Hans Thoenen.  相似文献   

7.
Alzheimer's disease (AD) is associated with degenerative changes in nuclei of the basal forebrain which provide most of the cholinergic input to the cortex and hippocampus and with a reduction in presynaptic cholinergic parameters in these areas. Although the etiology and pathogenesis of AD are not known, several reports indicate the involvement of immunological mechanisms. In the present work we examined the existence of antibodies in sera of AD patients that bind specifically to cholinergic neurons. As antigens we employed the purely cholinergic electromotor neurons of the electric fish Torpedo which are chemically homogeneous and cross-react antigenically with human and other mammalian cholinergic neurons. Our findings show that immunoglobulins from sera of AD patients bind to a specific antigen (molecular mass 200 kilodaltons) in the cell bodies and axons of Torpedo electromotor neurons and that the levels of such antibodies are significantly higher in AD patients than in controls. The possible role of these antibodies in the cholinergic dysfunction in AD and their diagnostic potential are discussed.  相似文献   

8.
Multiple injections of 2 nmols of cyclised ethylcholine mustard aziridinium ion (ECMA), a putative cholinergic neurotoxin, were made (unilaterally) into the cortical terminal field of cholinergic neurons projecting from the nucleus basalis of Meynert (NBM) in the rat basal forebrain. After 30 days, choline acetyltransferase enzymatic activity, a marker for cholinergic function, was significantly lowered in both ipsilateral cortex and NBM, and cholinergic cell bodies in the latter reduced in cross-sectional area, a spectrum of effects characteristic of retrograde degeneration of this pathway. These results are discussed in the context of neurodegenerative diseases affecting cholinergic function.  相似文献   

9.
Galanin (GAL) and GAL receptors (GALR) are overexpressed in limbic brain regions associated with cognition in Alzheimer disease (AD). The functional consequences of this overexpression are unclear. Because GAL inhibits cholinergic transmission and restricts long-term potentiation in the hippocampus, GAL overexpression may exacerbate clinical features of AD. In contrast, GAL expression increases in response to neuronal injury, and galaninergic hyperinnervation prevents the decreased production of protein phosphatase 1 subtype mRNAs in cholinergic basal forebrain neurons in AD. Thus, GAL may also be neuroprotective for AD. Further elucidation of GAL activity in selectively vulnerable brain regions will help gauge the therapeutic potential of GALR ligands for the treatment of AD.  相似文献   

10.
The levels of nerve growth factor (NGF) and its mRNA in the rat central nervous system were determined by two-site enzyme immunoassay and quantitative Northern blots, respectively. Relatively high NGF levels (0.4-1.4 ng NGF/g wet weight) were found both in the regions innervated by the magnocellular cholinergic neurons of the basal forebrain (hippocampus, olfactory bulb, neocortex) and in the regions containing the cell bodies of these neurons (septum, nucleus of the diagonal band of Broca, nucleus basalis of Meynert). Comparatively low, but significant NGF levels (0.07-0.21 ng NGF/g wet weight) were found in various other brain regions. mRNANGF was found in the hippocampus and cortex but not in the septum. This suggests that magnocellular cholinergic neurons of the basal forebrain are supplied with NGF via retrograde axonal transport from their fields of innervation. These results, taken together with those of previous studies showing that these neurons are responsive to NGF, support the concept that NGF acts as trophic factor for magnocellular cholinergic neurons.  相似文献   

11.
We are interested in cellular co-expression patterns of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptor subunits 1-4 (GluR1-4) in substance P receptor (SPR)-containing neurons of the basal forebrain, which may act as a morphological basis for interaction between neurokinins and glutamate-driven neuronal signaling and excitotoxicity. Immunohistochemistry and laser scanning confocal microscopy in adult C57/BL mice revealed that distribution of SPR-positive neurons overlapped with that of GluR1-4-containing ones in most basal forebrain regions, i.e. the medial septal nucleus, nucleus of diagonal band of Broca, magnocellular preoptic nucleus and substantia innominata. Neurons showing both SPR and GluR1-4-immunoreactivities were found in above cholinergic neurons-rich containing basal forebrain regions. Semi-quantification analysis indicated that about 57-95% of SPR-positive neurons displayed GluR1-4-immunoreactivity. The percentages of AMPA receptor subunits co-localizing in SPR-positive neurons were GluR4 (48%), GluR1 (47%), GluR2 (26%) and GluR3 (20%), respectively. However, the neurons co-expressing SPR and GluR1-4 were hardly detected in the basal nucleus of Meynert of the basal forebrain. The co-localization of SPR and AMPA receptors has provided a molecular basis for functional interaction between neurokinins and AMPA receptors-mediated signaling in basal forebrain neurons. This study has also implied that glutamate-driven neuronal transmission and excitotoxicity can be modulated by neurokinin peptides in most basal forebrain regions but not in the basal nucleus of Meynert, suggesting that neurokinins or SP may play certain roles in determining neuronal functional properties or excitotoxic susceptibility in the various basal forebrain regions of mammals.  相似文献   

12.
The majority of the cortical cholinergic innervation implicated in attention and memory originates in the nucleus basalis of Meynert and in the horizontal limb of the diagonal band nucleus of the basal prosencephalon. Functional alterations in this system give rise to neuropsychiatric disorders as well as to the cognitive alterations described in Parkinson and Alzheimer's diseases. Despite the functional importance of these basal forebrain cholinergic neurons very little is known about their origin and development. Previous studies suggest that they originate in the medial ganglionic eminence of the telencephalic subpallium; however, our results identified Tbr1-expressing, reelin-positive neurons migrating from the ventral pallium to the subpallium that differentiate into cholinergic neurons in the basal forebrain nuclei projecting to the cortex. Experiments with Tbr1 knockout mice, which lack ventropallial structures, confirmed the pallial origin of cholinergic neurons in Meynert and horizontal diagonal band nuclei. Also, we demonstrate that Fgf8 signaling in the telencephalic midline attracts these neurons from the pallium to follow a tangential migratory route towards the basal forebrain.  相似文献   

13.
Choline acetyltransferase (ChAT), the enzyme responsible for the biosynthesis of acetylcholine, is presently the most specific marker for identifying cholinergic neurons in the central and peripheral nervous systems. The present article reviews immunohistochemical and in situ hybridization studies on the distribution of neurons expressing ChAT in the human central nervous system. Neurons with both immunoreactivity and in situ hybridization signals of ChAT are observed in the basal forebrain (diagonal band of Broca and nucleus basalis of Meynert), striatum (caudate nucleus, putamen and nucleus accumbens), cerebral cortex, mesopontine tegmental nuclei (pedunculopontine tegmental nucleus, laterodorsal tegmental nucleus and parabigeminal nucleus), cranial motor nuclei and spinal motor neurons. The cerebral cortex displays regional and laminal differences in the distribution of neurons with ChAT. The medial septal nucleus and medial habenular nucleus contain immunoreactive neurons for ChAT, which are devoid of ChAT mRNA signals. This is probably because there is a small number of cholinergic neurons with a low level of ChAT gene expression in these nuclei of human. Possible connections and speculated functions of these neurons are briefly summarized.  相似文献   

14.
This study was undertaken to estimate the total number of cholinergic cells and the percentage of cholinergic cells that contain estrogen receptor-alpha (ER alpha) in the rat basal forebrain. Double immunostaining for choline acetyltransferase (ChAT) and ER alpha was carried out on 50-microm-thick free-floating sections. Because routine mounting method causes considerable flattening of the sections, we embedded immunostained sections in Durcupan, an epoxy resin known to cause virtually no shrinkage. When this procedure was used the section thickness was well preserved, individual cells could be clearly identified, and subcellular localization of ER alpha immunoreactivity was easy to verify. Cell counting in these sections revealed that the rat basal forebrain contains 26,390 +/- 1097 (mean +/- SEM) cholinergic neurons. This comprises 9674 +/- 504 in the medial septum-vertical diagonal band of Broca, 9403 +/- 484 in the horizontal diagonal band of Broca, and 7312 +/- 281 in the nucleus basalis. In these nuclei, 60%, 46%, and 14% of the cholinergic neurons were co-localized with ER alpha, respectively. We believe that our results are an improvement on existing data because of the better distinction of individual neurons that the Durcupan embedding method brings.  相似文献   

15.
Goncharuk V  Jhamandas JH 《Peptides》2008,29(9):1544-1553
Human neuropeptide FF2 (hFF2) receptor has been postulated to mediate central autonomic regulation by virtue of its ability to bind with high affinity to many amidated neuropeptides. In the present immunohistochemical study, we identified hFF2 positive neurons in the forebrain and medulla oblongata of individuals, who died suddenly of mechanical trauma or hypothermia. Morphologically, these neurons demonstrated features identified with both projection neurons and interneurons. In the forebrain, the highest density of hFF2 expressing neurons was observed in the anterior amygdaloid area and dorsomedial hypothalamic nucleus, especially in its caudal part. A lesser density of hFF2 neurons was identified in the ventromedial hypothalamic nucleus, lateral and posterior hypothalamic areas whereas few cells were visualized in the paraventricular hypothalamic nucleus, perifornical nucleus, horizontal limb of the diagonal band, ventral division of the bed nucleus of the stria terminalis, nucleus basalis of Meynert and ventral tegmental area. In the medulla, significant numbers of hFF2 neurons were observed in the dorsal motor nucleus of vagus and to a lesser extent in the area of catecholaminergic cell groups, A1/C1. These data provide first immunohistochemical evidence of hFF2 localization in the human brain, which is consistent with that reported for tissue distribution of FF2 mRNA and FF2 binding sites within the brain of a variety of mammalian species. The distribution of hFF2 may help in identifying the role of amidated neuropeptides in the human brain within the context of central autonomic and neuroendocrine regulation.  相似文献   

16.
17.
Degeneration of basal forebrain cholinergic neurons (BFCNs) contributes to cognitive dysfunction in Alzheimer's disease (AD) and Down's syndrome (DS). We used Ts65Dn and Ts1Cje mouse models of DS to show that the increased dose of the amyloid precursor protein gene, App, acts to markedly decrease NGF retrograde transport and cause degeneration of BFCNs. NGF transport was also decreased in mice expressing wild-type human APP or a familial AD-linked mutant APP; while significant, the decreases were less marked and there was no evident degeneration of BFCNs. Because of evidence suggesting that the NGF transport defect was intra-axonal, we explored within cholinergic axons the status of early endosomes (EEs). NGF-containing EEs were enlarged in Ts65Dn mice and their App content was increased. Our study thus provides evidence for a pathogenic mechanism for DS in which increased expression of App, in the context of trisomy, causes abnormal transport of NGF and cholinergic neurodegeneration.  相似文献   

18.
Li ZM  Li XF 《生理学报》2012,64(1):69-74
Human amylin (hAmylin) is co-released with insulin from pancreatic B-cells and the actions of this peptide on its target tissues maintain the cell excitability and glucose homeostasis. Inappropriate control of hAmylin secretion may result in human disease, particularly Alzheimer's disease (AD). It's unknown that which kind of receptor is activated by human amylin, leading to the neurotoxicity in neurons of brain. Nicotinic acetylcholine receptors (nAChRs) are known to play a critical role in a variety of nervous diseases. In the present study, we sought to determine the inter-relationships between these two receptors by examining the actions of hAmylin and nicotine on whole-cell currents and membrane potential in basal forebrain neurons. Whole cell patch-clamp recordings were performed on enzymatically dissociated neurons of the diagonal band of Broca (DBB), a cholinergic basal forebrain nucleus. The results showed that either hAmylin or nicotine individually caused a dose-dependent (1 nmol/L-20 μmol/L) membrane depolarization and an increase in firing frequency of DBB neurons. Application of AC253, an amylin receptor antagonist, blocked the excitatory effects of not only hAmylin but also nicotine; dihydro-β-erythroidine (DHβE), a nAChR antagonist, also blocked the effects of nicotine and hAmylin. These electrophysiological results suggest that hAmylin receptor and nAChRs on DBB neurons are coupled and may function in a co-operative manner to influence the excitability of DBB neurons. This finding is important for us to understand the cause and mechanisms of AD.  相似文献   

19.
Radioactively labeled RNA probes in conjunction with in situ hybridization histochemistry have become a useful method for studying gene expression in the central nervous system. We used digoxigenin-labeled uridine triphosphate to synthesize cRNA probes for localization of nerve growth factor receptor (NGFR) mRNA in the rat basal forebrain. Detection of cells containing digoxigenin-labeled NGFR mRNA was accomplished using a digoxigenin antibody conjugated with alkaline phosphatase. NGFR mRNA-positive cells were distributed in three major cell groups in the basal forebrain: the medial septal nucleus, vertical and horizontal limbs of the diagonal band of Broca, and nucleus basalis. This technique provides a rapid and sensitive method for high-resolution detection of mRNA species in the central nervous system, as well as the potential for co-localization of two different mRNA species within individual cells.  相似文献   

20.
Pamela J. Hornby  Diane T. Piekut   《Peptides》1989,10(6):1139-1146
Neural input to distinct and separate populations of CRF-immunoreactive (ir) neurons in rat forebrain was investigated. The relationship of opiocortin and/or catecholamine fibers to different groups of CRF-containing neurons was elucidated using single and dual labeling immunocytochemical procedures. Antibodies to CRF, ACTH(1–39) and the catecholamine synthesizing enzymes which are tyrosine hydroxylase (TH), dopamine β-hydroxylase (DBH) and phenylethanolamine-N-methyltransferase (PNMT) were utilized. CRF-ir neuronal populations are localized predominantly in the following regions of rat forebrain: bed nucleus of stria terminalis, medial preoptic area, suprachiasmatic and paraventricular (PVN) nuclei of hypothalamus and central nucleus of amygdala. The present study demonstrates that CRF-ir neuronal groups in rat forebrain are not homogenous in that each population received a characteristic neural input. CRF-ir neurons in the PVN received a dense input of ACTH-, TH-, DBH-, and PNMT-ir fibers. In contrast, CRF-ir neurons in the central nucleus of amygdala are colocalized predominantly with TH-ir fiber/terminals. In the ventral portion of the bed nucleus of stria terminalis, TH-, ACTH- and DBH-ir fibers are demonstrated in close anatomical proximity to CRF-containing perikarya; in the dorsal portion of this nucleus, TH-ir fiber/terminals are colocalized with CRF-ir neurons. In the suprachiasmatic nucleus, neither opiocortin- nor catecholamine-immunostained fibers are observed in association with CRF-ir neurons. Our data suggest that there is a transmitter specificity of neural input to each CRF-ir neuronal population in rat forebrain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号