首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The segregating maize population (GK26 × Mo17)F2 has been used for identification of ISSR markers able to reveal a significant difference between alleles by a quantitative index. Confidence ranges have been determined for variation in 17 quantitative traits. Variations in the traits under study correlate with the inheritance of 16 marker loci have been found. The nature of these correlations and the possibility of chromosomal mapping of genetic markers are discussed.  相似文献   

2.
The relative roles of natural selection and direct environmental induction, as well as of natural selection and genetic drift, in creating clinal latitudinal variation in quantitative traits have seldom been assessed in vertebrates. To address these issues, we compared molecular and quantitative genetic differentiation between six common frog (Rana temporaria) populations along an approximately 1600 km long latitudinal gradient across Scandinavia. The degree of population differentiation (QST approximately 0.81) in three heritable quantitative traits (age and size at metamorphosis, growth rate) exceeded that in eight (neutral) microsatellite loci (FST = 0.24). Isolation by distance was clear for both neutral markers and quantitative traits, but considerably stronger for one of the three quantitative traits than for neutral markers. QST estimates obtained using animals subjected to different rearing conditions (temperature and food treatments) revealed some environmental dependency in patterns of population divergence in quantitative traits, but in general, these effects were weak in comparison to overall patterns. Pairwise comparisons of FST and QST estimates across populations and treatments revealed that the degree of quantitative trait differentiation was not generally predictable from knowledge of that in molecular markers. In fact, both positive and negative correlations were observed depending on conditions where the quantitative genetic variability had been measured. All in all, the results suggest a very high degree of genetic subdivision both in neutral marker genes and genes coding quantitative traits across a relatively recently (< 9000 years) colonized environmental gradient. In particular, they give evidence for natural selection being the primary agent behind the observed latitudinal differentiation in quantitative traits.  相似文献   

3.
Maldandi is a popular sorghum variety for post-rainy or rabi cultivation in southern and central states of India, which is predominantly used for food purpose. Over time many landraces have been collected from these states which have vernacular connection with Maldandi. Genetic diversity among 82 Maldandi landraces, collected from such geographical regions was evaluated using both morphological (quantitative and qualitative) and SSR markers. In general, both morphological and SSR diversity revealed wide variability among the accessions studied. Euclidean distances based on 17 quantitative traits classified the accessions into two major clusters with two out groups, while the 19 qualitative traits clustered the accessions in one major cluster with six out groups. Sixteen out of 20 (80%) SSR markers detected polymorphism among the accessions with average PIC value of 0.36. Un-weighted neighbor joining clustering grouped the accessions into three clusters with 46, 16 and 17 accessions, respectively throwing three outliers. Average similarity coefficients of 0.62 and 0.34 based on morphological (qualitative) and SSR data indicated presence of wide variability among the Maldandi landraces. The standard check, M 35?C1 (a selection from the original Maldandi) could not be differentiated from EP 98, LG 2, LG 10, IS 4509 and IS 40791 based on qualitative data alone, while EP 54 and IS 33839 were indistinguishable from M 35?C1 solely using SSR markers. Either of the dendrogram threw unique grouping patterns with some identity. Thirteen promising Maldandi accessions selected based on field performance as well as morphological and molecular diversity could be used in the rabi improvement programme. SSR markers combined with morphological traits may effectively be used for designing breeding strategy and management of biodiversity and conservation of Maldandi genetic resources.  相似文献   

4.
In an effort to elucidate the evolutionary mechanisms that determine the genetic architecture of a species, we have analyzed 17 populations of the microcrustacean Daphnia pulex for levels of genetic variation at the level of life-history characters and molecular markers in the nuclear and mitochondrial genomes. This species is highly subdivided, with approximately 30% of the variation for nuclear molecular markers and 50% of the variation for mitochondrial markers being distributed among populations. The average level of genetic subdivision for quantitative traits is essentially the same as that for nuclear markers, which superficially suggests that the life-history characters are diverging at the neutral rate. However, the existence of a strong correlation between the levels of population subdivision and broadsense heritabilities of individual traits argues against this interpretation, suggesting instead that the among-population divergence of some quantitative traits (most notably body size) is being driven by local adaptation to different environments. The fact that the mean phenotypes of the individual populations are also strongly correlated with local levels of homozygosity indicates that variation in local inbreeding plays a role in population differentiation. Rather than being a passive consequence of local founder effects, levels of homozygosity may be selected for directly for their effects on the phenotype (adaptive inbreeding depression). There is no relationship between the levels of variation within populations for molecular markers and quantitative characters, and this is explained by the fact that the average standing genetic variation for life-history characters in this species is equivalent to only 33 generations of variation generated by mutation.  相似文献   

5.
Mapping and manipulating quantitative traits in maize   总被引:24,自引:0,他引:24  
Maize has been used effectively as a model organism in the development and evaluation of molecular markers for the identification, mapping and manipulation of major genes affecting the expression of quantitative traits in plants. Although quantitative geneticists have recognized the possibility of major loci, the general dogma bad emerged that quantitative traits were controlled by many loci, each with a small effect. This interpretation sent a signal to the molecular biologist not to bother with quantitative traits because it would be essentially impossible to isolate a gene responsible for the trait. Recent results from numerous mapping studies have shown that quantitative traits are controlled by, at least some, factors with major effects, and have given credibility to the conclusion that major loci exist and that one might be able to study them. Positive results from marker-facilitated selection and introgression studies have further strengthened this conclusion.  相似文献   

6.
Understanding genetic characteristics in rice populations will facilitate exploring evolutionary mechanisms and gene cloning. Numerous molecular markers have been utilized in linkage map construction and quantitative trait locus (QTL) mappings. However, segregation-distorted markers were rarely considered, which prevented understanding genetic characteristics in many populations. In this study, we designed a 384-marker GoldenGate SNP array to genotype 283 recombination inbred lines (RILs) derived from 93-11 and Nipponbare Oryza sativa crosses. Using 294 markers that were highly polymorphic between parents, a linkage map with a total genetic distance of 1,583.2 cM was constructed, including 231 segregation-distorted markers. This linkage map was consistent with maps generated by other methods in previous studies. In total, 85 significant quantitative trait loci (QTLs) with phenotypic variation explained (PVE) values≥5% were identified. Among them, 34 QTLs were overlapped with reported genes/QTLs relevant to corresponding traits, and 17 QTLs were overlapped with reported sterility-related genes/QTLs. Our study provides evidence that segregation-distorted markers can be used in linkage map construction and QTL mapping. Moreover, genetic information resulting from this study will help us to understand recombination events and segregation distortion. Furthermore, this study will facilitate gene cloning and understanding mechanism of inter-subspecies hybrid sterility and correlations with important agronomic traits in rice.  相似文献   

7.
In India, molecular mapping and tagging of agronomically important genes using RFLP and RAPD markers have been carried out in three different crops: rice, mustard and chickpea. In rice, tagging of genes for resistance to gall midge and blast has been accomplished. Molecular mapping of cooking quality traits in rice is in progress. For fingerpringting rice cultivars, suitable probe enzyme combinations have been identified. In mustard, a partial RFLP linkage map has been constructed and one of the yellow seed-coat colour loci has been mapped. Significant associations of RFLP markers with quantitative traits have also been established. Potential use of RAPD markers to identify heterotic groups among mustard accessions has been demonstrated. In chickpea, the occurrence of considerable interspecific DNA polymorphism as revealed by RAPD analysis has facilitated construction of a partial linkage map.  相似文献   

8.
Abstract Understanding the utility and limitations of molecular markers for predicting the evolutionary potential of natural populations is important for both evolutionary and conservation genetics. To address this issue, the distribution of genetic variation for quantitative traits and molecular markers is estimated within and among 14 permanent lake populations of Daphnia pulicaria representing two regional groups from Oregon. Estimates of population subdivision for molecular and quantitative traits are concordant, with Q ST generally exceeding G ST. There is no evidence that microsatellites loci are less informative about subdivision for quantitative traits than are allozyme loci. Character-specific comparison of Q ST and G ST support divergent selection pressures among populations for the majority of life-history traits in both coast and mountain regions. The level of within-population variation for molecular markers is uninformative as to the genetic variation maintained for quantitative traits. In D. pulicaria , regional differences in the frequency of sex may contribute to variation in the maintenance of expressed within-population quantitative-genetic variation without substantially impacting diversity at the genic level. These data are compared to an identical dataset for 17 populations of the temporary-pond species, D. pulex .  相似文献   

9.
Wild species are valued as a unique source of genetic variation, but they have rarely been used for the genetic improvement of quantitative traits. To identify trait-improving quantitative trait loci (QTL) alleles from exotic species, an accession of Oryza rufipogon, a relative of cultivated rice, was chosen on the basis of a genetic diversity study. An interspecific BC2 testcross population (V20A/O. rufipogon//V20B///V20B////Ce64) consisting of 300 families was evaluated for 12 agronomically important quantitative traits. The O. rufipogon accession was phenotypically inferior for all 12 traits. However, transgressive segregants that outperformed the original elite hybrid variety, V20A/Ce64, were observed for all traits examined. A set of 122 RFLP and microsatellite markers was used to identify QTL. A total of 68 significant QTL were identified, and of these, 35 (51%) had beneficial alleles derived from the phenotypically inferior O. rufipogon parent. Nineteen (54%) of these beneficial QTL alleles were free of deleterious effects on other characters. O. rufipogon alleles at two QTL on chromosomes 1 and 2 were associated with an 18 and 17% increase in grain yield per plant, respectively, without delaying maturity or increasing plant height. This discovery suggests that the innovative use of molecular maps and markers can alter the way geneticists utilize wild and exotic germplasm.  相似文献   

10.
This paper compares the fine‐scale genetic structure of quantitative traits and allozyme markers within a natural population of Centaurea jacea s.l. To that end, a spatial autocorrelation approach is developed based on pairwise correlation coefficients between individuals and using sib families. Statistical properties of the proposed statistics are investigated with numerical simulations. Our results show that most quantitative traits have a significant spatial structure for their genetic component. On average, allozyme markers and the genetic component of quantitative traits have similar patterns of spatial autocorrelation that are consistent with a neutral model of isolation by distance. We also show evidence that environmental heterogeneity generates a spatial structure for the environmental component of quantitative traits. Results are discussed in terms of mechanisms generating spatial structure and are compared with those obtained on a large geographical scale.  相似文献   

11.
Precise mapping of quantitative trait loci(QTLs)is critical for assessing genetic effects and identifying candidate genes for quantitative traits.Interval and composite interval mappings have been the methods of choice for several decades,which have provided tools for identifying genomic regions harboring causal genes for quantitative traits.Historically,the concept was developed on the basis of sparse marker maps where genotypes of loci within intervals could not be observed.Currently,genomes of many organisms have been saturated with markers due to the new sequencing technologies.Genotyping by sequencing usually generates hundreds of thousands of single nucleotide polymorphisms(SNPs),which often include the causal polymorphisms.The concept of interval no longer exists,prompting the necessity of a norm change in QTL mapping technology to make use of the high-volume genomic data.Here we developed a statistical method and a software package to map QTLs by binning markers into haplotype blocks,called bins.The new method detects associations of bins with quantitative traits.It borrows the mixed model methodology with a polygenic control from genome-wide association studies(GWAS)and can handle all kinds of experimental populations under the linear mixed model(LMM)framework.We tested the method using both simulated data and data from populations of rice.The results showed that this method has higher power than the current methods.An R package named binQTL is available from GitHub.  相似文献   

12.
Localizing genes that contribute to drought avoidance in a quantitative way should enable the exploitation of these genes in breeding through marker-assisted selection, and may lead to the discovery of gene identity and function. Between 110 and 176 F6 recombinant inbred lines from a mapping population derived from a cross of upland rice varieties Bala and Azucena have been evaluated for indicators of drought avoidance in sites in the Philippines and West Africa over two dry seasons. A molecular map with 102 RFLP, 34 AFLP and six microsatellite markers has been used to map (by composite interval mapping) quantitative trait loci (QTLs) for the visual scores of leaf rolling and leaf drying and leaf relative water content. QTLs were mapped for each site and across sites. A total of 17 regions were identified which contained QTLs with a LOD score greater than 3.2. For leaf rolling, Bala was the parent contributing the majority of positive alleles whilst for the other traits, Bala and Azucena contributed more evenly. Six of the 17 regions influenced more than one trait, explaining the phenotypic correlations between traits that were observed. Three QTLs appeared to be specific to the Philippines experiments. One QTL had opposing effects in the Philippines and West Africa. QTLs for relative water content were detected on chromosome 8, congruent with an osmotic adjustment QTL identified in another population. Only three of the QTLs identified here have not been reliably identified in the two other populations that have been screened for drought avoidance. By using several populations assessed for drought avoidance in different sites, the distribution and utility of QTLs for drought avoidance in rice is being elucidated.  相似文献   

13.
Substantial advances have been made in the genetic improvement of agriculturally important animal and plant populations through artificial selection on quantitative traits. Most of this selection has been on the basis of observable phenotype, without knowledge of the genetic architecture of the selected characteristics. However, continuing molecular genetic analysis of traits in animal and plant populations is leading to a better understanding of quantitative trait genetics. The genes and genetic markers that are being discovered can be used to enhance the genetic improvement of breeding stock through marker-assisted selection.  相似文献   

14.
A quantitative method for investigation of relationship between polygenic and monogenic traits has been proposed. It is based on examination of relationship between frequencies of distribution classes of an adaptive quantitative trait and frequencies of certain genetic character in the same classes. The method permits to locate a gene marker within a space of quantitative trait values. Using adaptively significant morpho-anatomic traits, it is possible to estimate indirectly adaptive values of gene markers under consideration, since, in accordance with the concept of adaptive norm, "average" phenotypes have maximal fitness, whereas deviative phenotypes transgress the bounds of the optimum. As a genetical character, genotype of certain biochemical locus, individual heterozygosity range or interlocus combinations of alleles could be used. The method has been applied to newborn Astrakhan lambs. Principal component analysis has been used to obtain complex characterization for six constitutional characters. Some regularities in location of homo- and heterozygous genotypes of the transferrin locus within a space of morphological characters' values have been revealed.  相似文献   

15.
绵羊基因组研究进展   总被引:6,自引:1,他引:6  
郭晓红  储明星  周忠孝 《遗传》2004,26(1):103-108
过去几年中,家畜基因组计划取得了巨大进展。已经构建了猪、鸡、牛、绵羊、马、鹿的遗传图谱,其遗传标记间距在5~20cM。这些图谱对于家畜中与重要经济性状相关的基因或遗传标记的鉴定非常重要。该文从绵羊的基因图谱、比较图谱、重要经济性状基因及QTL定位方面对绵羊基因组的研究进展作了简要阐述。 Abstract:During the last few years,advances in livestock genome projects have been remarkable.Species-specific genetic maps exist for pig,chicken,cattle,sheep,horse,and deer with marker intervals of 5 to 20 cM.These maps have been essential for the identification of genes and genetic markers associated with importantly economic traits in livestock.In this paper,advances of gene map,comparative map,the genes for importantly economic traits and quantitative trait loci (QTL) mapping were briefly introduced in sheep.  相似文献   

16.
We report construction of a genetic linkage map of the guppy genome using 790 single nucleotide polymorphism markers, integrated from six mapping crosses. The markers define 23 linkage groups (LGs), corresponding to the known haploid number of guppy chromosomes. The map, which spans a genetic length of 899 cM, includes 276 markers linked to expressed genes (expressed sequence tag), which have been used to derive broad syntenic relationships of guppy LGs with medaka chromosomes. This combined linkage map should facilitate the advancement of genetic studies for a wide variety of complex adaptive phenotypes relevant to natural and sexual selection in this species. We have used the linkage data to predict quantitative trait loci for a set of variable male traits including size and colour pattern. Contributing loci map to the sex LG for many of these traits.  相似文献   

17.
AFLP markers have been successfully employed for the development of a high-density linkage map of ryegrass (Lolium perenne L.) using a progeny set of 95 plants from a testcross involving a doubled-haploid tester. This genetic map covered 930 cM in seven linkage groups and was based on 463 amplified fragment length polymorphism (AFLP) markers using 17 primer pairs, three isozymes and five EST markers. The average density of markers was approximately 1 per 2.0 cM. However, strong clustering of AFLP markers was observed at putative centromeric regions. Around these regions, 272 markers covered about 137 cM whereas the remaining 199 markers covered approximately 793 cM. Most genetic distances between consecutive pairs of markers were smaller than 20 cM except for five gaps on groups A, C, D, F and G. A skeletal map with a uniform distribution of markers can be extracted from this high-density map, and can be applied to detect and map QTLs. We report here the application of AFLP markers to genome mapping, in Lolium as a prelude to quantitative trait locus (QTL) identification for diverse agronomic traits in ryegrass and for marker-assisted plant breeding. Received: 4 November 1998 / Accepted:15 March 1999  相似文献   

18.
Many rat strains have been employed in the genetic study of quantitative traits such as blood pressure. In such genetic studies, it is essential to prepare rat genetic maps fine enough to identify the genes regulating quantitative traits. However, it is not an easy task to isolate a sufficient number of genetic markers polymorphic between a particular pair of rat strains. In this study, we applied the randomly amplified microsatellite polymorphism (RAMP) method, a simple method to identify co-dominant markers (Wu et al. Nucleic Acids Res 22, 3257, 1994), to isolate markers polymorphic between the stroke-prone spontaneously hypertensive rat and the Wistar-Kyoto rat, a genetically hypertensive strain and its normotensive control strain, which share a common genetic background. We successfully identified 111 RAMP markers distributed throughout the rat genome after screening 3046 sets of primers. We also showed that we could isolate ordinary simple-sequence-length-polymorphism markers by cloning RAMP markers. The RAMP method is a simple and efficient way to identify co-dominant genetic markers on mammalian genomes. Received: 10 October 1997 / Accepted: 16 March 1998  相似文献   

19.
The availability of dense panels of common single-nucleotide polymorphisms and sequence variants has facilitated the study of statistical features of the genetic architecture of complex traits and diseases via whole-genome regressions (WGRs). At the onset, traits were analyzed trait by trait, but recently, WGRs have been extended for analysis of several traits jointly. The expectation is that such an approach would offer insight into mechanisms that cause trait associations, such as pleiotropy. We demonstrate that correlation parameters inferred using markers can give a distorted picture of the genetic correlation between traits. In the absence of knowledge of linkage disequilibrium relationships between quantitative or disease trait loci and markers, speculating about genetic correlation and its causes (e.g., pleiotropy) using genomic data is conjectural.  相似文献   

20.
Weller JI  Soller M  Brody T 《Genetics》1988,118(2):329-339
Linkage relationships between loci affecting quantitative traits (QTL) and marker loci were examined in an interspecific cross between Lycopersicon esculentum and Lycopersicon pimpinellifolium. Parental lines differed for six morphological markers and for four electrophoretic markers. Almost 1700 F-2 plants were scored with respect to the genetic markers and also with respect to 18 quantitative traits. Major genes affecting the quantitative traits were not found, but out of 180 possible marker x trait combinations, 85 showed significant quantitative effects associated with the genetic markers. The average marker-associated main effect was on the order of 6% of the mean value of the trait. Most of the main effects were apparently due to linkage of QTL to the marker loci rather than to pleiotropy. Fourteen of the traits showed at least one highly significant effect of opposite sign to the overall difference between the parental lines, demonstrating the ability of this design to uncover cryptic genetic variation. Significant variance and skewness effects on the quantitative traits were found to be associated with the genetic markers, suggesting the possible presence of loci affecting the variance and shape of quantitative trait distribution in a population. Most marker-associated quantitative effects showed some degree of dominance, generally in the direction of the L. pimpinellifolium parent. When the significant marker-associated effects were examined in pairs, 12% showed significant interaction effects. The results of this study illustrate the potential usefulness of this type of analysis for the detailed genetic investigation of quantitative trait variation in suitably marked populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号